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Abstract

The forced magnetic reconnection due to the boundary perturbation is investigated analytically
by use of the boundary layer theory. A new reconnected flux is derived with the exact asymp-
totic matching and a time dependent imposition of the boundary perturbation. By virtue of the
exact matching, the effect of the inertia of the plasma in the inner layer is correctly included.
At the initial evolution, the magnetic field lines reconnect on the time scale which includes the
time scale of the imposition of the boundary perturbation and it can be faster than the Sweet-
Parker time scale. The local current is induced on the resonant surface to suppress the growth
of magnetic islands at the initial evolution. Moreover the equation for the time evolution of
the reconnected flux is proposed in terms of an integral equation.

1 Introduction

In plasma confinement, there are two kinds of
the magnetic reconnections: free reconnection
and forced reconnection. The free reconnection
is the spontaneous instability such as the tear-
ing $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}[1]$ . Although a magnetic equilibrium
is stable for the free reconnection, an externally
imposed boundary perturbation forces to give
rise to the magnetic reconnection on the reso-
nant surface; it is called forced reconnection.[2]
The energy source of the perturbation of the
forced reconnection is the boundary perturba-
tion, while that of the free reconnection is the
equilibrium magnetic field.

The forced reconnection occurs in the mag-
netic island formation due to the resonan-
$\mathrm{t}$ magnetic field $\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}[2]$ and in the seed is-
lands formation for the $\mathrm{n}\mathrm{e}\mathrm{o}$-classical tear-
ing mode due to the geometrically coupled
$\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[3]$ in the plasma confinement such
as tokamaks. The error field is the small devia-
tion from axial symmetry of the magnetic field
lines and it perturbs the plasma boundary. In
the later case, as a model, the boundary per-
turbation expresses the toroidal coupling with
a magnetic signal produced by another MHD
instability.

The response of the plasma to the applied
boundary perturbation is described by the sim-
ple $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}[2]$ which is fruitful for the analyti-
cal study. In this model, the perturbation is
caused by a deformation of the plasma bound-

$\mathrm{a}\mathrm{r}\mathrm{y}$. The ideal MHD equations for this defor-
mation of the boundary yields two equilibriums
with different topologies. One magnetic equi-
librium has the same topology as the original
equilibrium with a local current sheet on the
resonant surface. The other has the differen-
$\mathrm{t}$ topology with magnetic islands on the reso-
nant surface without the current sheet. The
former is called equilibrium (I), and the latter
is called equilibrium (11) $.[2]$ The existence of
the equilibrium (II) implies that the boundary
perturbation can change the topology of the
magnetic field lines and give rise to the forced
magnetic reconnection to construct the mag-
netic islands on the resonant surface.

The time evolution of the forced recon-
nection process is investigated by use of the
boundary layer theory.[2, 4, 5] The analysis of
linear evolution is important, since it affects
to the subsequent nonlinear evolution. In the
previous linear analysis, the time scale of the
initial evolution of the forced reconnection is
believed to be Sweet-Parker time scale. We re-
vealed that this time scale stems from the using
of the matching condition which is valid only
in the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}_{-}\psi$ approximation; the effect of
the inertia of the plasma in the inner layer is
neglected in this matching condition. Howev-
er it is important to include the effect of the
inertia as well as the resistivity in the analysis
of the forced reconnection.

In this paper we correct the analysis in the
previous $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}\mathrm{s}[2,4,5]$ in order to obtain the
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is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ inner layer. Asymptotic matching of
the two regions yields equations for the time
evolution of magnetic islands.

Figure 1: Coordinate system for the slab of
incmpressible plasma

exact linear evolution of the forced reconnec-
tion. First, we adopt the exact matching con-
dition and use the exact solution for the inner
layer equation to take into account the effect of
the inertia in the inner layer, correctly. Second,
in the previous works, although the imposition
of the boundary perturbation is assumed to be
much slower than the Alfven time scale, the
plasma boundary is deformed suddenly excep-
$\mathrm{t}$ in Ref.[3]. Thus we correct this point and
consider the time dependent imposition of the
boundary perturbation so that the outer region
obeys the ideal MHD equilibrium equations.

The paper is organized as follows. We de-
scribe the model and the method of analy-
sis in section 2. In section 3, a new Laplace
transformed reconnected flux based on the ex-
act matching condition is presented. With this
condition, the initial evolution of the forced re-
connection is calculated in section 4. In section
5, the time evolution equation of the recon-
nected flux is introduced. Finally section 6 is
devoted to the summary and discussion.

2 Model and Equations

In this section we shall present the basic e-
quations and recall some fundamental proper-
ties of the boundary layer theory for the forced
magnetic reconnection. In the boundary lay-
er theory, we separate the entire plasma into
two regions. One is the outer region, where
the plasma is quasi-static and governed by the
ideal MHD equations. The other is the vicin-
ity of the resonant surface, where the inertia
and resistivity of the plasma are important; it

2.1 Outer region

In order to investigate the process of the forced
reconnection, we consider the response of the
plasma to the applied boundary perturbation
on the equilibrium. We shall consider a slab of
incompressible plasma bounded by two parallel
perfectly conducting walls. The magnetic field
is represented as $B=B_{T}e_{z}+e_{z}\cross\nabla\psi$ , where
$B_{T}$ stands for the uniform toroidal field and $\psi$

is a magnetic potential. We take the coordi-
nate with the $xy$-plane normal to the toroidal
field $B_{T}$ and the $y$-axis parallel to the wall and
the $x$-axis normal to it. The magnetic equilib-
rium is governed by the ideal MHD equations,

$\nabla\cross(j\mathrm{x}B)=0$ , (1)

where $j=\nabla\cross B/4\pi$ is the current density.
In the absence of the boundary perturba-

tion, we have the static equilibrium $\psi=\psi \mathrm{o}(X)$

subjected to the boundary conditions $\psi_{0}(x=$

$\pm a)=const$ . where $a$ is the half of the plasma
width. This equilibrium is assumed to have
the resonant surface at the center of plasma,
$x=0$ , and supposed to be stable for the usual
tearing mode, such as $\psi_{0}=B_{0}x^{2}/2a$ for the
Taylor’s $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}[2]$ .

Here we consider the imposition of the
boundary perturbation to the initial static e-
quilibrium. The externally imposed boundary
perturbation is described by means of the de-
formation of the plasma boundary as

$\psi(x=\pm(a-\delta(t/\tau_{e})\cos ky))=const.$ ,

where $k,$ $\mathit{5}_{e}(t/\tau_{e})$ and $\tau_{e}$ are wave number, time
dependent amplitude and imposition time s-
cale of the boundary perturbation, respective-
ly. The boundary perturbation is very weak,
$\delta(t/\tau_{\epsilon})<<a$ , such as the error field. We as-
sume that imposition of the boundary pertur-
bation is much slower than the Alfven time s-
cale $\tau_{A}=a/v_{A}$ so that the outer region is al-
ways in equilibrium and obeys the ideal MHD
equations, and much faster than any resistive
time $\tau_{R}=4\pi a^{2}/\eta$ ,

$\tau_{A}<<\tau_{\mathrm{e}}<<\mathcal{T}_{R}$,

where $v_{A}=B_{0}/(4\pi\rho)^{1/2}$ is the Alfven speed,
and $\eta$ and $\rho$ are the normalized resistivity and
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the density of the plasma respectively. How-
ever, in the previous works, the outer region
is assumed to obey the ideal MHD equation-

$\mathrm{s}$ and the sudden imposition, $\delta(t/\tau_{\mathrm{e}})=\delta\theta(t)$ ,
is considered, where $\theta$ is the Heaviside func-
tion; these contradict each other. Therefore we
should consider the slowly varying imposition
of the boundary perturbation.

The magnetic equilibrium perturbed by the
boundary deformation is written as
$\psi(x,t)=\psi_{0}(X)+\psi_{1}(x,t)\cos ky$, (2)

where $\psi_{1}(x, t)$ denotes the perturbed part due
to the boundary perturbation. Since the
boundary perturbation is imposed on the time
scale much slower than the Alfven time scale,
the plasma is quasi-static and obeys the ideal
MHD equations (1) except the vicinity of the
resonant surface, where $x=0$ . The ideal MHD
equations (1) for the perturbation $\psi_{1}(x,t)$ is

$B_{0y}(x) \{\frac{\partial^{2}\psi_{1}(x,t)}{\partial^{2}x}-k^{2}\psi_{1}(x,t)\}=0$, (3)

with the boundary condition

$\psi_{1}(\pm a)=\delta(t/\tau_{e})B_{0}y(a)\equiv\psi_{e}(t/\tau_{e})$ ,

where $B_{0y}(x)=d\psi_{0}(X)/dx$ . The solution to
this equation, $\psi_{1}(x,t)$ , should be a even func-
tion for $x$ , since the equation (3) and the
boundary condition are unchanged for $xarrow$

$-X$ . Thus the quasi-equilibrium state as the
solution to the equation (3) can be written as
$\psi_{1}(x,t)=\psi_{1}(\mathrm{o}, t)f(_{X})+\psi_{e}(t/\tau_{e})g(x)$ , (4)

where $f(x.)$ stands for the eigenfunction for the
usual tearlng mode subjected to the boundary
conditions $f(\mathrm{O})=1$ and $f(\pm a)=0$ and $g(x)$ is
the response to the imposed boundary pertur-
bation which satisfies the boundary conditions
$g(\mathrm{O})=0$ and $g(\pm a)=1.[3,6]$ These func-
tions satisfies the ideal MHD equation (3), re-
spectively. The first term corresponds to the
reconnected flux and the second term corre-
sponds to the shielded flux for the cylindrical
geometry. $[6, 8]$ The time dependent coefficient
$\psi_{1}(0,t)$ is the magnetic potential on the reso-
nant surface and expresses the amount of re-
connected flux at the resonant surface; here
after we call it reconnected flux. Since the
imposition function, $\psi_{e}(b/\tau_{e})$ , is a given func-
tion, the time evolution of the forced reconnec-
tion is described only by the reconnected flux
$\psi_{1}(0,t)[2]$ .

In order to determine the reconnected flux,
$\psi_{1}(0,t)$ , we consider the initial value problem
by applying the Laplace transform

$\tilde{f}(x, s)=\int_{0}^{\infty}f(x,t)e^{-st}dt$ ,

to the equation (4). The initial condition for
the perturbation is $\psi_{1}(x, \mathrm{o})=0$ , since there
is no deformation of the boundary $\psi_{e}(0)=$

$0$ at $t=0$ . Demanding that the Laplace-
transformed outer solution matches asymptot-
ically to the inner layer solution, we will have
the matching condition in section 3. The
Laplace-transformed outer solution can be ex-
panded asymptotically as

$\tilde{\psi}_{1}(x, s)\approx\tilde{\psi}1(\mathrm{o}, S)\{1+\frac{\Delta_{outer}’}{2}x+\cdots\}$ , (5)

as $xarrow+\mathrm{O}$ where

$\Delta_{\circ ute}’(rs)$ $\equiv$ $\frac{1}{\tilde{\psi}_{1}(0,S)}[\frac{d\tilde{\psi}_{1}(_{XS})}{dx’}]_{-0}+0$

$=$ $\Delta_{0}^{l}+\Delta_{s}’\frac{\tilde{\psi}_{e}(_{S)}}{\tilde{\psi}_{1}(0,S)}$ , (6)

where

$\Delta_{0}’=[\frac{df(x)}{dx}]_{-^{0}}^{+0}$ , $\Delta_{S}’=[\frac{dg(x)}{dx}]_{-0}^{+0}$ ,

are the stability parameter for the usual tear-
ing mode in the absence of the boundary per-
turbation and the deviation from it due to the
boundary perturbation. Since the initial equi-
librium is supposed to be stable, $\Delta_{0}’$ is nega-
tive.

For instance, in the Taylor’s model, $f(x)=$
$G(x)-G(a)F(x)/F(a),$ $g(x)=F(x)/F(a)$ ,
$\Delta_{0}’=-2kG(a)/F(a)$ and $\Delta_{S}’=2k/F(a)$ where
$F(x)=|\sinh kX|,$ $G(x)=\cosh kx$ . The (I)
sate is realized when $\psi_{1}(0, t)=0$ . On the other
hand $\psi_{1}(0, t)=B_{0}\delta/\cosh ka$ can be regarded
as the full reconnected state corresponding to
the (II) state which has the magnetic islands
with the width, $2\sqrt{2a\psi_{1}(\mathrm{o})/B_{0}}$.

2.2 Inner Layer

As seen in the previous subsection, the time
development of the forced reconnection as the
quasi-equilibrium state is determined only by
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the reconnected flux $\psi_{1}(0,t)$ . However the ide-
al MHD equation cannot determine the time
evolution of it. In order to obtain the recon-
nected flux, we should investigate the dynam-
ics in the vicinity of the resonant surface, i.e.
the inner layer, where the effect of the inertia
and resistivity should be included. The inner
layer obeys the reduced MHD equations,

$\rho(\frac{\partial}{\partial t}+v\cdot\nabla \mathrm{I}^{\nabla\varphi}2=B\cdot\nabla jz’$ (7)

$\frac{\partial\psi}{\partial t}+B\cdot\nabla\varphi=\frac{\eta}{4\pi}\nabla 2\psi$ , (8)

where $j_{z}=\nabla^{2}\psi/4\pi$ and $v=e_{z}\cross\nabla\varphi$ indi-
cate $z$-component of the current density and
the velocity of the plasma respectively, and
$\varphi=\varphi_{1}(x)\sin ky$ is a static potential or stream
function. Since the deformation of the bound-
ary is very small, the perturbation $\psi_{1}$ is small
at the initial evolution. Thus the perturbed
quantities obey the linearized reduced MHD
equations. We consider the initial value prob-
lem and apply the Laplace transform to the
linearized reduced MHD equations with the
initial condition $\psi_{1}(x, \mathrm{o})=\varphi_{1}(x,0)=0$ and
stretch the $x$-axis in the vicinity of the res-
onant surface with the ratio $\epsilon a$ , where $\epsilon^{4}=$

$s\tau_{A}^{2}/(4(ka)^{2}\tau_{R})$ , then we have the equations in
the inner layer,

$4 \epsilon\Omega\frac{d^{2}U}{d\theta^{2}}=\theta\frac{d^{2}\Psi}{d\theta^{2}}$ , (9)

$\frac{d^{2}\Psi}{d\theta^{2}}=\epsilon\Omega(4\Psi+\theta U)$ , (10)

where $U=-4\epsilon k^{2}\tilde{\varphi}_{1}/S$ and $\Psi=k\tilde{\psi}_{1}/B_{0}$ are
the normalized stream function and magnet-
ic potential respectively, and $\theta=x/\epsilon a$ is the
stretched coordinate and $\Omega=\epsilon\tau_{R}s/4$ . Then
it follows from the $\mathrm{e}\mathrm{q}\mathrm{s}$ . (9) and (10) that the
inner layer equation $\mathrm{a}\mathrm{s}[9]$

$\frac{d^{2}\chi\prime}{d\theta^{2}}-\frac{2}{\theta}\frac{d\chi}{d\theta}-(4\mathcal{E}\Omega+\frac{\theta^{2}}{4})x=-\frac{\chi_{\infty}}{4}\theta^{2}$ , (11)

where

$\chi\equiv 4\mathcal{E}\Omega\frac{dU}{d\theta}+\chi_{\infty}=\theta^{2}\frac{d}{d\theta}(\frac{\Psi}{\theta})$ . (12)

This equation corresponds to the equation of $\chi$

in Ref. [9] by rewriting the variables $\thetaarrow\sqrt{2}\hat{x}$

and $2\epsilon\Omegaarrow\hat{\lambda}^{3/2}/4$ .
Following Ara et. $\mathrm{a}1.[9]$ we obtain the solu-

tion to the inner layer equation (11) without
any approximation such as the analysis in the
previous works.[2, 4, 5] The solution has the
form

$\chi$ $=$ $x_{\infty}- \chi_{\infty}\frac{2\epsilon\Omega}{\sqrt{2}}\int_{0}^{1}y^{2\epsilon\Omega-5/4}\sqrt{1+y}$

$\cross\exp(\frac{-\theta^{2}}{4}\frac{1-y}{1+y})dy$ . (13)

Since the solution at the outer region has the
symmetry $\psi_{1}(-x)=\psi_{1}(x),$ $U$ and $\Psi$ should
be odd and even functions for $\theta$ , respectively.
Integrating the equation (12) to satisfy these
parity gives the solution for positive $\theta$ as

$U= \frac{1}{4\epsilon\Omega}\int_{0}^{\theta}(\chi-\chi\infty)d\theta$ ,

$\Psi(\theta)$ $=$ $- \chi+\theta\int_{0}^{\theta}\frac{1}{\theta}\frac{d\chi}{d\theta}d\theta$

$=$ $- \chi_{\infty}+\chi_{\infty}\frac{2\epsilon\Omega}{\sqrt{2}}\int_{0}^{1}y^{2\Omega}-5/4\sqrt{1+y}\epsilon$

$\cross\exp(\frac{-\theta^{2}}{4}\frac{1-y}{1+y})dy(14)$

$+ \chi_{\infty}\theta\frac{\sqrt{7\ulcorner}2\epsilon\Omega}{2\sqrt{2}}\int_{0}1\sqrt{1-y}y^{2\zeta\Omega-5/4}$

xerf $( \frac{\theta}{2}\frac{\sqrt{1-y}}{\sqrt{1+y}})dy$ , (15)

where erf indicates the error function and the
normalization factor $\chi_{\infty}$ is related to the mag-
netic potential at the neutral surface in the in-
ner layer, $\Psi(0)$ , as

$\chi_{\infty}=\frac{\Psi(0)}{\frac{2\epsilon\Omega}{2\epsilon\Omega-1/4}F(1,-1/2,2\epsilon\Omega+3/4,1/2)-1},$ (16)

where $F$ is the Gauss’s Hypergeometric func-
tion.

The asymptotic expansion of $\Psi$ can be writ-
ten as

$\Psi(\theta)\approx-x_{\infty}\{1-\frac{2\epsilon\Omega\pi}{4\sqrt{2}}\frac{\Gamma(2\epsilon\Omega-1/4)}{\Gamma(2\epsilon\Omega+5/4)}\theta+\cdots \mathrm{I}(17)$

as $\thetaarrow+\infty$ where $\Gamma$ is the gamma function
and

$2 \epsilon\Omega=\frac{(s\tau_{A^{/31/3}}^{2}\tau_{R})^{3/}2}{4ka}$ , $\Omega=\frac{(s\tau_{A}\tau 2/53R/5)^{5}/4}{4\sqrt{2ka}}$ .
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3 Reconnected flux with exact asymp-
totic matching

Demanding that the solution for the inner layer
equation matches asymptotically with the so-
lution at the outer region yields the matching
conditions. The matching conditions give the
Laplace-transformed reconnected flux which
determines the time evolution of the magnetic
islands due to the forced reconnection.

Here we adopt the exact matching condi-
tion, while the matching condition adopted
in the previous works is available only in the
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}_{-}\psi$ approximation. In order to be clar-
ify this point, we rewrite the asymptotic ex-
pansion of $\Psi,$ (17), as

$\Psi(\theta)\approx\Psi_{\infty}\{1+\frac{\Delta_{in}’ner}{2}x+\cdots\}$ (18)

for $\thetaarrow+\infty$ where

$\Psi_{\infty}=-\chi_{\infty}$ , (19)

$\Delta_{ier}’(_{S)}nn$ $=$ $\frac{1}{\epsilon a}\frac{1}{\Psi_{\infty}}[\frac{d\Psi}{d\theta}]_{-\infty}^{\infty}$

$=$ $\frac{-\pi\Omega}{\sqrt{2}a}\frac{\Gamma(2C\Omega-1/4)}{\Gamma(2\epsilon\Omega+5/4)}$ . (20)

In the previous analysis,[2, 4, 5] $[d\Psi/d\theta]_{-\infty}^{+\infty}$ is
divided by $\Psi(0)$ instead of $\Psi_{\infty}$ in the equation
(20).. That is valid only in the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}_{-}\psi$ ap-
proxlmation which is neglect the effect of the
inertia of the plasma in the inner layer. The
effect of the inertia makes $\Psi(0)$ deviate from
$\Psi_{\infty}=-\chi_{\infty}$ as shown in the equation (16).

Asymptotic matching of (5) and (18) yields
the exact matching conditions which include
the effect of the inertia of the plasma in the
inner layer, correctly, as

$\tilde{\psi}_{1}(0, s)=\frac{B_{0}}{k}\Psi_{\infty}$ , (21)

$\Delta_{out\epsilon r};=\Delta_{ir}\prime nne$ . (22)

Combining the matching conditions (21) and
(22), and the equation (6), we have the exact
Laplace-transformed reconnected flux

$\tilde{\psi}_{1}(0, s)=\frac{\Delta_{s}^{\prime\overline{\psi}e}(S)}{\Delta_{ier}’nn(s)-\Delta_{0}’’}$ (23)

based on the $\mathrm{b}$ oundary layer analysis of the lin-
earized reduced MHD equations without any
approximations. In the absence of the bound-
ary perturbation, $\psi_{e}=0$ , the initial value
problem reduces to the eigenvalue problem and
the equation (23) gives the dispersion relation
of the general resistive modes, $\Delta_{inn}’(e\mathrm{r}S)-\Delta_{0}’=$

$0[9,10,12]$ .
Exactly saying, there are two reconnected

fluxes. One is the reconnected flux at $x=0$ ,
$\tilde{\psi}_{1}(0, S)$ , which represents the changing of the
equilibrium with the global deformation of the
magnetic field lines as seen in the equation (4).
The other is the reconnected flux at the origin
of the stretched coordinate $\theta=0,$ $\Psi(0)$ , which
represents the reconnected flux at the neutral
surface in the inner layer and is called inner-
layer reconnected flux in this paper. The in-
ertia of the plasma affects on the inner-layer
reconnected flux, $\Psi(0)$ , to be different from
the reconnected flux, $\tilde{\psi}_{1}(0, S)$ . Although re-
connected flux $\psi_{1}(\mathrm{o}, t)$ represents the global
deformation of the magnetic field lines by the
boundary perturbation, it’s increase express-
es not only the deformation due to the recon-
nection, but also the ideal deformation by the
boundary perturbation.

Combining the equations (16), (19) and the
matching condition (21) we have the Laplace-
transformed inner-layer reconnected flux as,

$\Psi(0)=\frac{k}{B_{0}}\{1-\frac{2\epsilon\Omega}{2\epsilon\Omega-1/4}$

$\cross F(1, -1/2,2_{\mathcal{E}}\Omega+3/4,1/2)\}\tilde{\psi}_{1}(\mathrm{o}, S)(24)$

This difference in the equation (24) corre-
sponds to the one between reconnection rate
$R$ and $q\hat{c}$ in equation (18) in Ref. [11]. For the
low growth rate limit, $sarrow \mathrm{O}$ , the equation (24)
is reduced to

$\Psi(0)=\frac{k}{B_{0}}\tilde{\psi}_{1}(\mathrm{o}, S)$ , (25)

to validate the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}-\psi$ matching condi-
tion $\Delta_{out}’er=[d\Psi/d\theta]_{-\infty}^{\infty}/(\epsilon a\Psi(\mathrm{o}))[2]$ . This
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}_{-}\psi$ matching condition leads to the ini-
tial evolution with the Sweet-Parker time scale.

4 Initial evolution

We calculate the initial evolution of the recon-
nected flux by use of the theorem that the Tay-
lor series expansion of a function $f(t)$ at $t=0$
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corresponds to the asymptotic power expan-
sion of the Laplace-transformed function $\tilde{f}(s)$

for $sarrow\infty$ .
Here we consider the imposition of the

boundary perturbation. As mentioned above
the sudden imposition of the boundary pertur-
bation in the previous works contradicts to the
assumption that the outer region is the quasi-
static ideal equilibrium. In fact this imposition
leads to the unphysical result. Therefore we
have to adopt the time dependent imposition.
The imposition function is assumed to be even
for $t$ , for simplicity, then it can be expanded as

$\psi_{e}(t/\tau \mathrm{e})\approx\frac{\psi_{e}’’(\mathrm{o})}{2!}\frac{t^{2}}{\tau_{e}^{2}}+\frac{\psi_{e}^{\prime\prime\prime\prime}(0)}{4!}\frac{t^{4}}{\tau_{e}^{4}}+\frac{\psi_{e}^{\prime\prime\prime\prime}J\prime(0)}{6!}\frac{t^{6}}{\tau_{e}^{6}}+\cdots$ ,

since $\psi_{e}(0)=0$ .
With this time varying imposition, the

Laplace-transformed reconnected flux (23) can
be asymptotically expanded in $s$ as

$\tilde{\psi}_{1}(0,S)$ $\approx$ $- \frac{\Delta_{s}’}{\Delta_{0}’}\{\frac{\psi_{e}’’(0)}{\tau_{e}^{2_{S^{3}}}}+\frac{\psi_{e}^{J/}(\mathrm{o})}{\tau_{\alpha}\tau_{e^{2_{S^{4}}}}}$

$+( \frac{\psi_{e}^{\prime/}(\mathrm{o})}{\tau_{e}^{2_{\mathcal{T}_{\alpha}^{2}}}}+\frac{\psi_{e}^{\prime\prime JJ}(\mathrm{o})}{\tau_{e}^{4}})\frac{1}{s^{5}}$

$+( \frac{\psi_{e}’’(\mathrm{o})}{\tau_{e}^{2_{\mathcal{T}_{\alpha}^{2}}}}+\frac{\psi_{e}’’’\prime(\mathrm{o})}{\tau_{e}^{4}})\frac{1}{\tau_{\alpha}s^{6}}$

$+( \frac{\psi_{e}\prime\prime\prime\prime\prime\prime(\mathrm{o})}{\tau_{\epsilon}^{6}}+\frac{\psi_{e}’’(\mathrm{o})}{\tau_{e^{\mathcal{T}_{\alpha}^{4}}}^{2}}+\frac{\psi_{\mathrm{e}}’’’\prime(\mathrm{o})}{\tau_{e^{\mathcal{T}_{\alpha}^{2}}}^{4}}$

$+ \frac{4^{2}\psi_{e}^{;;}(\mathrm{o})}{\tau_{e}^{2}\tau_{\alpha^{\mathcal{T}_{c}^{3}}}})\frac{1}{s^{7}}+\cdots\}$ (26)

for $sarrow\infty$ , where

$\tau_{\alpha}=\frac{-\Delta_{0}’}{\pi k}\tau_{A}$ , $\tau_{c}=\frac{\tau_{AR}^{2/3}\tau 1/3}{(ka)^{2/3}}$ ,

denote the ideal time scale and the typical time
scale of the inner layer, respectively. The in-
version of Laplace transform of this equation
gives the Taylor expansion of the reconnected
flux as

$\psi_{1}(0,t)$ $=$ $- \frac{\Delta_{s}’}{\Delta_{0}’}\{\frac{\psi_{e}^{J\prime}(0)}{\tau_{\mathrm{e}}^{2}}\frac{t^{2}}{2!}+\frac{\psi_{e}’’(\mathrm{o})}{\tau_{\alpha^{\mathcal{T}_{e^{2}}}}}\frac{t^{3}}{3!}$

$+( \frac{\psi_{e}’’(0)}{\tau_{e^{2}}\mathcal{T}_{\alpha^{2}}}+\frac{\psi_{e}^{\prime\prime\prime\prime}(\mathrm{o})}{\tau_{e}^{4}})\frac{t^{4}}{4!}$

$+( \frac{\psi_{e}^{J/}(\mathrm{o})}{\tau_{e}^{2_{\mathcal{T}_{\alpha}^{2}}}}+’\frac{\psi_{e}’’’(0)}{\tau_{e}^{4}})\frac{t^{5}}{\tau_{\alpha}5!}$

$+( \frac{\psi_{e}’’’\prime\prime\prime(\mathrm{o})}{\tau_{e}^{6}}+\frac{\psi_{e}’’(0)}{\tau_{e}^{2}\tau_{\alpha}^{4}}+\frac{\psi_{e}’’’\prime(0)}{\tau_{e}^{4}\tau_{\alpha^{2}}}$

$+ \frac{4^{2}\psi_{e}^{J\prime}(\mathrm{o})}{\tau_{ec}^{23}\tau_{\alpha}\tau})\frac{t^{6}}{6!}+\cdots\}$ (27)

This reconnected flux vanishes at $t=0$ to
satisfy the initial condition. Here we consid-
er the time scale of the $\mathrm{r}e$connection process.
The first term is dominant at the initial evo-
lution, therefore the reconnection occurs with
the boundary perturbation imposition time s-
cale, $\tau_{e}$ which can be faster than the Sweet-
Parker time scale. Hence it appears that the
exact matching leads to the different time scale
of the initial evolution from the Sweet-Parker
time scale in the previous investigations. The
each term in the Taylor series (27) consists of
$t/\tau t/e’ A\mathcal{T}$ and $t/\tau_{AR}^{2/3}\tau^{1/3}$ . and the resistive time
scale in $\tau_{c}\propto\tau_{AR}^{2/3}\tau 1/3$ appears at higher than
the 5th order. It appears that the stability
parameter for the tearing mode $\Delta_{0}’$ which is
included in $\tau_{\alpha}$ is important. The reconnected
flux with large $\Delta_{0}’$ increased more slowly than
that with small $\Delta_{0}’$ .

When the boundary perturbation is im-
posed, the local current is induced at the res-
onant surface. It is represented by the total
current in the inner layer and is equivalent to
the difference of the $y$ component of the mag-
netic field at the resonant surface, $x=0$ ,

$\Delta B_{y}(t)$ $\equiv$ $[ \frac{\partial\psi_{1}(x,t)}{\partial x}]^{+0}-0$

$=$ $\Delta_{0}’\psi_{1}(0,t)+\Delta’\psi se(t)$ . (28)

This equation implies that the total curren-
$\mathrm{t}$ decays with the increase of the reconnected
flux $\psi_{1}(0,t)$ , and increases with the imposition
function $\psi_{e}(t)$ , since $\Delta_{0}’<0$ for the stable equi-
librium and $\Delta_{s}’>0$ . Substituting the equation
(27) into (28) gives the initial evolution of the
total current in the inner layer as

$\Delta B_{y}(t)$ $=$ $- \Delta_{s}’\{\frac{\psi_{e}’’(0)}{3!}\frac{t^{3}}{\tau_{\alpha^{\mathcal{T}_{e^{2}}}}}+\frac{\psi_{e}^{l\prime}(0)}{\tau_{\alpha}^{2}\tau_{e}^{2}}\frac{t^{4}}{4!}$

$+( \frac{\psi_{e}^{J;}(0)}{\tau_{e}^{2_{\mathcal{T}_{\alpha}^{2}}}}+\frac{\psi_{e}^{\prime\prime\prime\prime}(\mathrm{o})}{\tau_{e}^{4}})\frac{t^{5}}{\tau_{\alpha}5!}$

$+( \frac{\psi_{e}’’(\mathrm{o})}{\tau_{\epsilon^{\mathcal{T}_{\alpha}^{4}}}^{2}}+\frac{\psi_{e}^{JJ\prime r}(0)}{\tau_{e}^{4}\tau_{\alpha}^{2}}+\frac{4^{2}\psi_{e}’’(0)}{\tau_{e\mathrm{c}}^{2_{\mathcal{T}_{\alpha^{\mathcal{T}}}}3}})\frac{t^{6}}{6!}$

$+\cdots\}$ (29)
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It grows with the negative sign, thus the sta-
bility parameter $\Delta’=\Delta B_{y}/\psi_{1}(0,t)$ is negative
in the initial evolution and $\Delta’=0$ at $t=0$ ,
while it is claimed that $\Delta’arrow\infty$ at $t=0$ in the
previous works. The negative sign of the total
current in the inner layer implies that the local
current is induced on the resonant surface to
suppress the growth of magnetic islands. This
negative growth stems from the fact that the
initial static equilibrium is stable, $\Delta_{0}’<0$ .

As mentioned above there are two reconnect-
ed fluxes. The reconnected flux derived above
is the one at the resonant surface for the outer
variable $x=0$ . However the limit $xarrow \mathrm{O}$ of the
outer variable corresponds to the limit $\thetaarrow\infty$

of the inner variable as shown in the matching
conditions. The magnetic and dynamic struc-
tures in the inner layer makes the reconnected
flux at $x=0$ to be different from the one at
$\theta=0$ . Therefore the exact reconnected flux
in the inner layer should be defined at $\theta=0$ :
inner-layer reconnected flux. Although, in the
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}_{-}\psi$ approximation, these reconnected
flux have the same value as shown in the equa-
tion (25), in the forced reconnection process
the effect of the inertia makes these to be $\mathrm{d}-$

ifferent values as shown in the equation (24).
The inner-layer reconnected flux is defined as

$\psi_{inn}er(\theta=0,t)\equiv L^{-1}[B_{0(\mathrm{o}}\Psi)/k]$ .

The inverse Laplace-transformation of the
asymptotic expansion of the equation (24) with
the equation (26) yields the Taylor expansion
of the $\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}-1\mathrm{a}\mathrm{y}\mathrm{e}^{\tau}\mathrm{A}$ reconnected flux as

$\psi_{inner}(0,t\mathrm{I}$ $=$ $\frac{\Delta_{s}’}{\Delta_{0}’}\{\frac{2\psi_{e}’’(\mathrm{o})}{\tau_{e^{\mathcal{T}_{c}^{3}}}^{2}}\frac{t^{5}}{5!}+\frac{2\psi_{\mathrm{e}}^{J\prime}(\mathrm{o})}{\mathcal{T}_{\alpha}\mathcal{T}^{2}\mathcal{T}^{3},ec}\frac{t^{6}}{6!}$

$+ \frac{t^{7}}{7!\tau_{ec}^{2}\tau^{3}}(\frac{\psi_{e}’(\mathrm{o})}{\tau_{\alpha}^{2}},+\frac{\psi_{e}\prime\prime\prime\prime(0)}{\tau_{e}^{2}})$

$+( \frac{2\psi_{e}’’(0)}{\tau_{\alpha}\mathcal{T}_{ec}32_{\mathcal{T}}3}+\frac{2\psi_{e}\prime\prime\prime\prime(0)}{\tau_{e\alpha}^{4_{\mathcal{T}}}\tau_{c}^{3}}$

$- \frac{4\psi_{e}’’(0)}{\tau_{e}^{2}\mathcal{T}_{c}^{6}})\frac{t^{8}}{8!}+\cdots\}$ (30)

It evolves with the time scale more close to
the inner-layer time scale $\tau_{\mathrm{c}}\propto\tau_{AR}^{2/3}\tau 1/3$ than
the imposition time scale which is dominant
in the initial evolution of the reconnected flux
$\psi_{1}(0, t)$ . Therefore the inner-layer reconnected
flux can also increase faster than the Sweet-
Parker time scale.

5 Time evolution equation for recon-
nected flux

In the preceding section we obtained the ini-
tial evolution. In this section we propose the
new method to determine the time evolution
of the reconnected flux which can describe the
evolution subsequent to the initial evolution.
The Laplace-transformed equation of the re-
connected flux (23) can be rewritten as

$\tilde{\psi}_{1}(0, S)-\frac{\Delta_{inne}’(\prime S)}{\Delta_{0}’}\tilde{\psi}_{1}(0,s)=\frac{-\Delta_{s}’}{\Delta_{0}’}\tilde{\psi}_{e}(_{S)}$.

The inversion of Laplace transform of this e-
quation gives the following inhomogeneous sec-
ond kind Volterra equation as

$\psi_{1}(0,t)-\frac{1}{\Delta_{0}’}\int_{0}^{t}\psi_{1}(\mathrm{o}, \mathcal{T})G(t-\tau)d_{\mathcal{T}}$

$= \frac{-\Delta_{s}’}{\Delta_{0}’}\psi_{\mathrm{e}}(t)$ , (31)

where the kernel $G(t)$ is the inverse of the
Laplace transform of $\Delta_{inn}’(erS)$ and written as

$G(t)$ $=$ $\frac{-4k}{3\tau_{A}}\{\frac{\sqrt{\pi}}{2}\exp(\frac{t}{\tau_{c}})+\sum_{=n1}^{\infty}\frac{\sqrt{n-1/4}}{n!}$

$\cross\Gamma(n-1/2)\exp(\frac{-t}{2\tau_{n}})\sin(\frac{\sqrt{3}}{2}\frac{t}{\tau_{n}})\}$

$+ \frac{k}{3\pi\tau_{A}}\int_{0}^{\infty}\sqrt{x}|\Gamma(iX-1/4)|2$

$\cross \mathrm{e}\mathrm{x}_{\mathrm{P}(}-(4X)2/3t/\tau \mathrm{c}-\pi x)dx,$ (32)

where
$\tau_{n}=\frac{\tau_{c}}{(4n-1)^{2/}3}$ ,

$| \Gamma(iX-1/4)|^{2}=|\Gamma(-1/4)|^{2}\prod_{n=0}^{\infty}\frac{(n-1/4)^{2}}{x^{2}+(n-1/4)2}$ .

The right hand side of the integral $\mathrm{e}-$

quation (31) expresses the imposition of the
boundary perturbation. It is related the the
fact that the initial evolution of the reconnec-
tion (27) is dominated by the imposition func-
tion, $\psi_{e}(t/\tau_{\mathrm{e}})$ . Since the kernel $G(t)$ expresses
the response of the inner layer for the boundary
perturbation, the time scale in the exponential
function in $G(t)$ is the reconnection time scale
$\tau_{c}\propto\tau_{AR}^{2/3}\tau 1/3$ . At $t=0$ the integral part van-
ishes and $\psi_{e}(0)=0$ , thus the reconnected flux
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vanishes at the initial time, $\psi_{1}(0,0)=0$ , to
satisfy the initial condition.

The integral $e$quation for the inner layer re-
connected flux $\psi_{inner}(0, t)$ is deduced in the
same way as the equation for the reconnect-
ed flux $\psi_{1}(0,t)$ .

6 Summary and discussion

We have corrected the previous boundary lay-
er analysis of the forced reconnection due to
the external boundary perturbation to be ap-
propriate for the following points. One is the
matching condition. With the exact match-
ing condition, the effect of the inertia of the
plasma in the inner layer is included correct-
ly. The other is the imposition of the bound-
ary perturbation. We have adopted the time
dependent imposition of the boundary pertur-
bation so that the outer region obeys the ide-
al MHD equilibrium equations. By correcting
these points, we derived the new Laplace trans-
formed reconnected flux with the exact solu-
tion of the linearized reduced magnetohydro-
dynamics equations for the inner layer equa-
tion.

Since the effect of the inertia is exactly in-
cluded, the exact matching conditions lead to
the two reconnected fluxes: the reconnected
flux and the inner-layer reconnected flux. The
former represents the global deformation of the
magnetic field lines with the changing of the
quasi-static equilibrium. The later represents
the real reconnection at the neutral surface in
the inner layer. It is shown that the charac-
teristic time scale of the reconnection in the
initial evolution is significantly differ$e\mathrm{n}\mathrm{t}$ from
the one in the previous $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}\mathrm{s}[2,4,5]$ ; the time
scal$e$ of these reconnected fluxes include the
time scale of the imposition of the boundary
perturbation. Therefore it appears that the
initial evolution of the forced reconnection is
strongly affected by the imposition time scale
and could be faster than the evolution with the
Sweet-Parker time scale.

The boundary perturbation induces the lo-
cal current on the resonant surface. In the ini-
tial evolution the local current has the negative
sign to suppress the growth of the magnetic is-
lands. This suppression stems from the fact
that the initial equilibrium is stable in the ab-
sence of the boundary perturbation. For the
forced reconnection, the instability parameter

$\Delta’$ , that is related to the local current on the
resonant surface, varies with time, while $\Delta’$ is
often fixed for the usual tearing modes. By
virtue of the exact asymptotic matching, we
have $\Delta’=0$ at $t=0$ and it increases with the
negative sign, while $\Delta’arrow\infty$ at $t=0$ in the
previous $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}\mathrm{s}[2,4,5]$ .

These results implies the modification of the
previous estimation for the transition from the
linear to the nonlinear stage.[4] The modifica-
tion of the transition is expected to have a sig-
nificant effect on the time scale of the islands
growth and the decay of the local current on
the resonant surface in the nonlinear evolution.

A new method is also proposed in terms of
an integral equation for the time evolution of
the reconnected flux. The subsequent evolu-
tion of the initial evolution will be obtained by
use of the integral equation, in the following
paper.
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