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Abstract

It ‘will be noted that several initial conditions besides anti-parallel
vortices give varying degrees of evidence for a singularity of the incom-
pressible Euler equations. The primary test is whether the peak vorticity
approximately obeys ||w|] ~ C./(Tc —t). Another test is the integral en-
strophy production growing as Qpr = [dVwieijw; ~ 1/(Te —t). This is
related to the requirement for two separate length scales being necessary
to describe the collapse to a point. The only flow with evidence for the
blowup of §2,, besides initially anti-parallel vortices is initially orthogonal
vortices where |lw|| is becoming singular at the point where arms from
each initial vortex have become anti-parallel. C, = 19 for both initially
anti-parallel and orthogonal vortices.

1 Introduction

To form a singularity from smooth initial conditions without external forcing
implies that the velocity that would be needed to bring two vortex lines together
must develop from the nonlinear terms and must be self-induced by the vorticity
near the lines themselves through the law of Biot-Savart.
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A simplified picture of such a singularity is given in Fig. 1. If initially there
is no vorticity between two regions of vorticity separated by a distance J, due
to Kelvin’s theorem vorticity cannot appear in this gap in the Euler equations
unless the regions of vorticity touch, that is as § — 0. A condition for a finite
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Figure 1: Diagram of the interaction of anti-parallel vortices. From an initial
condition of anti-parallel vortices separated at their closest approach by 4, if
v # 0 there is reconnection that forms new vortices indicated by the dashed
curves. However, if v = 0, a singularity can form when & = 0 if the vortices are
pushed together by the self-induced strain indicated by e.

time singularity can be placed upon the the strain e perpendicular to the vortex
lines that pushes them together using an equation for 6.

ds/dt = —es | 2)

which integrated out becomes

o(t) = exp(—/o eds)

and implies that &(t) — 0 if
¢
/ eds — 0o - (3)
0

This can happen in a finite time of ¢t = T, only if the strain e goes to infinity
with a form implied by this equation.

The original, precise definition of this condition [2] was written in terms of
the Lo, norm of vorticity ||w||« or the peak vorticity w, as the condition that
if there is to be a singularity at a time 7% then

T
/ l|wlloods — oo (4)
0

is required. In other words, not only must ||lw||sc — 00, but it must do so in a
time integrable manner. It has since been shown [22] that this condition applies
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to any derivative of the velocity field, including the strain pushing vortex lines
together.

This condition (4) has several implications. First, there cannot be any sin-
gularities in higher derivatives of the velocity without there being a singularity
in the vorticity. There is no need to look for singularities in higher derivatives,
which makes the search for a singularity tractible with numerical methods. The
second property of (4) that is important for simulations is that if the growth of
||lw]lco is assumed to be algebraic

”wuoo ~ 1/(Tc - t)PY _ (5)

then (4) implies that v > 1 if there is to be a singularity.

Based upon dimensional analysis, the expectation is that v = 1, that is its
lower bound. This expectation was used in the analysis of the evolution of pair
of anti-parallel vortex lines using the Euler equations [14] and in the analogous
analysis of the growth of current in ideal magnetohydrodynamics {19].

While a relationship between strain and the growth of the vorticity is implied
by the mathematics used to bound vorticity (4), the equation relating strain to
vorticity directly was not used. This equation is that the strain in the direction
of vorticity o at position x [9] is

_3 [ peoc d3y 6
2@ = o [ DEGusbrsser i (©)
and D is a geometrical factor determined by finding the volume of the trapezoid
formed by the three unit vectors given. This equation can be used to derive
higher order conditions for the existence of a singularity of Euler that bring role
of the curvature of vortex lines [10, 11] into play. These conditions are used to
bound the BKM result, and so become bounds on a singularity themselves.
One condition written in terms of algebraic collapse is that a length

R~ |V(@(z +y) o)™ (7)

that could be physically interpreted as a radius of curvature, should obey

Tc
/ R72(t)ds — (8)
0

if there is a singularity [10]. If there is an algebraic decrease like R ~ (T — 1),
this implies p > 1/2 and p = 1/2 is expected, just as v = 1 is expected for ||wl|co
(5).

Another length scale that comes into the proof of this result in [10] is due to
the necessity that Biot-Savart contributions to the growth of the peak vorticity
cannot come within some distance p of ||w|leo. That is, a self-similar form
consistent with p = 1/2 cannot go all the way to y = 0. The mathematics

would suggest that p/R ~ f;(l/R)ds orp~ (T, —t)if p=1/2 for R. Evidence
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for two length scales collapsing respectively as R and p has been presented before
[18]. An important consequence of having two length scales collapsing in this
manner is that the volume integral of the enstrophy production should go as
the peak vorticity cubed times the volume of a sheet of extent R and thickness
p:

Qpr = / dVwieijw; ~ O(pR*wl) ~ 1/(T. — t) (9)

The three tests used to provide evidence for a singularity of incompressible Euler
[14] are summarized in Figure 2.
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Figure 2: Dependence of 1/||wlleo, 1/|l€yylloc and 1/ [ dVw;e;jw; on time from
the anti-parallel Euler calculation [14] showing convergence to a singular time
of about T' = 18.7.

An important implication concerning blowup of the enstrophy production

Qpr in eq. (9) is that it implies that Q = ||w||3 ~ — log(T. —t), that is marginally
singular growth of enstrophy.

2 What is needed next.

The anti-parallel initial condition is rather contrived and thus raises many ques-
tions if we are to be able to claim that this has anything to do with turbulence.
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One is whether the evolution of other structures could satisfy the mathematical
requirements. A related question is whether from relatively arbitrary initial con-
ditions, does something resembling anti-parallel vortices always evolve? Then
_ there is the question of what happens after viscosity plays a role and how does
something resembling fully-developed turbulence, with the scaling laws that
have been discussed, appear. At the last time of the Euler calculations the
spectra are very steep, possibly approaching E(k) ~ k=3, and the structure
near the singular point is more like a sheet than a tube. There must be some
significant changes if it is to go from this state to a fully turbulent state with a
E(k) ~ k=%/3 spectrum dominated by vortex tubes.
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Figure 3: 1/||w|lco and 1/w;e;;w; in Euler for orthogonal vortices.

Calculations that have looked at reconnection or singularities can be clas-
sified as either vortex filament calculations or simulations from smooth initial
conditions of only a few Fourier modes. A possibly important parameter might
be the helicity, a second quadratic invariant of the three-dimensional Euler equa-
tions,

H:/me. (10)

Besides the anti-parallel vortex filament calculations, two additional vortex fila-
ment calculations with net initial helicity are linked vortex rings and othogonal
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tubes. Linked tubes have only been studied at low resolution [1] where sur-
prising effects in helicity H were found. The recent success in finding signs of
singular behavior linked magnetic flux rings suggests that the hydrodynamic
problem be revisited.

Figure 3 shows 1/||w||oc and [ dVw;e;jw; for a new orthogonal vortex tube
simulation. This is the only evidence for a singularity of Euler besides the anti-
parallel case that this author believes meets the BKM tests and supports the
previous claim [4] that this type of initial condition has singular behavior. It
was in fact anamolous trends in one of the early orthogonal vortex simulations
by Melander and Zabusky presented at a meeting in Los Alamos in 1988 that
led this author to conclude that there was a possibility of a singularity of Euler.
The important property that might predispose this initial condition to singular
behavior might be that it naturally localizes the interaction. Figure 4 shows
isosurfaces of this flow. Near the point of ||Jw|| at t = 10, the vortices appear
to be anti-parallel, while away from this point there are sheets of vorticity being
shed off that look similar to the winding of vortex lines in the outer parts in the
singular anti-parallel case shown in [17]. The singular time is predicted to be
about T' = 2. At any given time (7" — t)||w||co &~ 20, which is consistent with the
anti-parallel analysis in Figure 2. It is also consistent with the growth of ||w]|eo
for the case of a perturbed cylindrical shear calculation [12].

Thus the orthogonal vortex case could be important for showing that the
singular scaling of the anti-parallel case might be unique, that is the only possi-
bility. However, what BKM analysis has been done with viscous, smooth initial
conditions [15] finds (T — t)||w||cc < 10 not =2 20 for the Taylor-Green case. It
would therefore be useful to investigate these smooth initial conditions at suffi-
cient resolution to clarify these trends, and also to determine what happens after
a near singular event. To date, v = 0 simulations starting with smooth initial
conditions only show sheet-like non-singular behavior [8]. At least for Taylor-
Green the equivalent of at least 20482 could be run, which should be sufficient
to get out of the sheet-regime and into a regime that in viscous calculations [15]
shows ||w|lco ~ 1/(T —t).

Higher resolution calculations from smooth initial conditions such as Taylor-
Green [7], Kida flow [5], and from random initial conditions [13] are needed
because for each of these cases has either when weakly linear 1/||w]|s behavior
or another singular behavior. In all of these calculations, the spectrum at 7.
is always the order of k=, which is very steep in a manner similar to the anti-
parallel Euler case [14] which found k™2 as ¢t — T... To go from nearly singular
behavior to turbulence the energy transfer mechanism after the near singularity
must provide a means to go from this k™2 spectrum to k~5/3. For all of the
cases mentioned this occurs at ¢t ~ 27T, as well as a peak in the enstrophy and
a flow dominated by vortex tubes. That is, all the properties of fully-developed
turbulence.
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Figure 4: 1/||lw|lco and 1/wse;jw; in Euler for orthogonal vortices. The three
frames are t = 0, 6 and 10. Arms are pulled out of the original vortices, become
anti-parallel, then vorticity within the arms develops singular behavior.
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