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Several Questions on Singularities:
Theories and Applications
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Question: Why do you study SINGULARITIES?
Answer 1: Because it’s there.

Answer 2: Singularities appear everywhere. We can not avoid
singularities, for studying regular objects. So studying singular-
ities is indispensable in mathematics and other area.

Answer 3: Any information on an object concentrates on its
singularities. Thus studying singularities is one of fundamental
methods in mathematics and other area. We must face with
singularities positively.

Question: Are there any applications of singularity theory?

Answer:  YES. I have collected below some of naive ques-
tions that I have faced during the usual study of applications of
singularity theory.

§1. Singularities of Biicklund Transformations: Classical The-
ory and Problems.

§2. Frontal Surfaces: Genericity of Mappings to Singular
Spaces.



§3. Plane-to-Plane Mappings: Global Configurations.

84. Singularities in Projective Differential Geometry: Singu-
lar Surface Theory.

I would like to thank Satoshi Koike for his providing me the
opportunity to talk at the symposium and to write this survey
article.

1 Singularities of Backlund Transformations:
Classical Theory and Problems

Bécklund transformations are transformations of partial differ-
ential equations as well as their solutions. They are first intro-
duced around surface theory. See [3]. There are many references
on them, related to soliton theory [6]. Recently, Backlund trans-
" formations have been re-cast in the context of integrable systems
in differential geometry [9][2].

In this note we recall the classical definition of Backlund
transformations following [3], and pose problems related to sin-
gularity theory.

A smooth function z = f(z,y), as is well-known, can be de-
scribed by the surface {(z,v,2) | z = f(z,y)}, the graph of f,
in the (z,v, 2)-space, endowed with the projection (z,y, 2z) —
(z,y). If we forget the projection, namely, if we do not distin-
guish the variables (z,y) and the value 2, then the study on
functions of two variables is reduced to the study of surfaces in
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the three space.

A tangent plane to a surface in (z,y, z)-space can be repre-
sented by additional two parameters p and q. When the surface
is the graph of a function f(z,y), we take p = f;,q = f,, the
partial derivatives. Thus a graphical surface M = {z = f(z,y)}
can be lifted naturally to a surface

M = {(137y:f(xay)7fr(x7y)7fy(x7y)} |

in the five dimensional space {(z,y, z,p,q)}.

Consider the canonical one-form o = dz — pdz — gdy. Then «
is a contact one-form on this R®. The canonical contact structure
on RS is defined by the Pfaff equation oo = 0, namely by the
distribution {v € TR® | (o, v) = 0} C TR®.

Then the lifting M is a Legendre surface, namely aly =0
[1].

To treat non-graphical surfaces, it is natural to introduce the
manifold of contact elements of R®. A contact element of R?
is, by definition, a linear (hyper)plane of the tangent space to
a point in R3. Since a contact element is defined by a non-
zero cotangent vector up to non-zero scalar multiplication, the
manifold consisting of all contact elements of R? is identified
with the fiber-wise projectification PT*R3.

Let 7 : PT*R? — R3 be the natural projection, mapping a
contact element to its base point. Then each fiber is a projective
plane RP?, which is a compactification of the (p, q)-plane: If we
fix the decomposition R?* = R?x R, we have the natural embed-
ding R® — PT*R3, defined by (z,y, z,p,9) — (z,¥, 2, [p, g, 1]).

37



The canonical contact structure on R® naturally extends to
a contact structure D C TPT*R? on the manifold PT*R? of
“contact elements: A tangent vector v € T,PT*R3 to PT*R® at
a contact element c¢ belongs to D if and only if m,(u) C ¢(C
TroR®). Here m, : TPT*R? — TR’ is the linearization of
7 : PT*R3? — R3.

Any surface in R?, then, lifts naturally to a Legendre surface
in PT*R3 with respect to the contact structure D defined above.

In what follows, we talk on PT*R? for the theoretical natu-
rality, but you may replace it by R® without loss of significance
of the problem.

Now we consider a transformation of surfaces in R3. We
regard the transformed surfaces lie in another R3? which is a
copy of R? with coordinates 2,1/, 2. Set M = PT*RP? and
denote by M’ the corresponding copy of M: This M’ has the
affine coordinate ',y 2/, p', ¢ and the local contact form o/ =
dz —p'dx’ — ¢'dy’.

Consider the product manifold M x M’ of dimension 10. Thus
M x M’ has affine coordinates z,v, z,p,q,2", vy, 2, v, ¢

Denote by pr: M x M’ — M and pr' : M x M’ — M' the
natural projections respectively. Then the contact structures on
M and M’ provide the distribution (pr,)"*D N (pr,) 1D’ of rank
8, which is locally defined by the Pfaft system

a=dz—pdzr —qdy=0, o =d—p'dx’—qdy =0.

A Backlund transformation is a submanifold B of codimen-
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sion 4 in M x M’ [3],[4].

Example 1 ([8]). Let N and N’ be surfaces in R3, and £ :
N — N’ a diffeomorphism. Write P’ = ¢(P), for P € N. £ is
called a Bécklund transformation if the secant PP’ is tangent
to N at P and N’ at P', and, the distance d(P, P’) = r and the
angle angle(vp, vp) = 0 of normals vp, vp is constant (P € N).
IfN:z=z2zy),N:2 =2y),and P = (z,y,2), P =
(«',y', 2'), then £ is described by

Fi: p@'—xz)+q(y —y) - (2 —2) =0,

Fy: plea—2)+dy—y)—-(z—2) =0,

By (@ —al+ -y =r?

Fy: pptgq +1 = cos 6,
\/p2+q2_|,_1\/p12_|_q12_|_1

in the (z,v, z,p,¢;2',y/, 2,1, ¢')-space.

Remark that a Bécklund transformation B C¢ M x M’ is
endowed with a Pfaff system o = 0, = 0 restricted to it. In
the language of tangent vectors, the system defines

E=TBnN(pr,)'Dn(pr,)"'D' Cc TB,
which is a distribution over B with singularities in general.

We impose, in what follows, on a Bécklund transformation B
the condition that '

the projections pr|p and pr'|g are submersions.

Then we see
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Proposition: An integral manifolds of F are at most of dimen-
sion 2.

Here is an ad hoc proof of the proposition: Let S C B be
an integral manifold of E. Since pr|z : B® — M?® is a sub-
mersion, the dimension of the kernel of the differential mapping
(pr|g)« is equal to one. Moreover the rank of (pr|g). must be
at most two, since the image satisfies &« = 0. Therefore dim S
is at most three. Furthermore if dim.S = 3, then the image of
(pr|s)s is of dimension two, and the inverse image of the image
of (pr|s). coincides with the tangent space to S. This leads to
that the dimension of the kernel of (pr'|s). is at least two, and
to a contradiction. a

Now let I C B be an integral submanifold of dimension 2 of
E:
CV|[ = 0, Oél|j = 0.

Then naturally posed questions are these:

Question: What are generic singularities of pr|; : I — M and
pr'|r : I — M’ 7 What are generic singularities of mopr|y: I —
R3and ' opr'|;: I - R3?

Remark that pr|; is an integral mapping, namely (pr|;)*a = 0,
and therefore the image pr(I) ¢ M = PT*R3 is a Legendre
variety, in other words, the regular part of pr() is an integral
manifold (Legendre submanifold) of the contact structure oo = 0.

Question: Are there generating families for this singularity
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problem, like in ordinary Legendre singularity theory?

Ideally we wish to find a function of type F(z,y, z;2',v/, ),
for a given I C B, which is a generating family (with param-
eter z,vy, z) of pr(I) with respect to 7, and at the same time,
is a generating family (with parameter 2’,v/, 2’) of pr'(I) with
respect to 7’. Since pr(I) and pr’(I) may have singularities, the
generating family may define other extra components than pr(/)
and pr'(7).

Consider the case that the system of 4 equations defining
a Bécklund transformation B contains z = z/,y = y’. Then
we regard B as a submanifold in the (z,y, 2, 2/, p, ¢, P/, ¢')-space
with equations

a=dz—pdr—qdy =0, o =d? —pldx — ¢'dy = 0,
of codimension two, locally defined by two equations, say:

flz,y,2,2,0,¢,0,¢) =0, g(z,9,2,7,p,q,0,¢) = 0.

Question: Are there any local characterizations of the class of
differential systems on (R®,0) realized as Biacklund transforma-
tions of above type.

If we eliminate 2/, 9, ¢’ using
dZ' =p'dz +ddy, f=0, g=0,

then we get a 2nd order differential equation of z = 2(z,y). If
we eliminate z, p, ¢ using

dz =pdz +qdy, f=0, ¢g=0,
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then we have a 2nd order differential equation of 2’ = 2/(z, y).
Thus a Biacklund transformation induces a transformation of
2nd order differential equations and solutions. (The graphs of
solutions are 7 o pr(I) and 7’ o pr'(I), in our notations.)

E.xample(Sine-Gordon equation): Let

/
= o —p—92sin Z +tz
f p—-p *l—%‘—
g = ¢ +q—2sin%F5=

Then we have

, Z+z\,, L
P, =Py + | co8 (¢ +q)=py,+sinz —sinz,

2
and
/
I Z — 2z ! . . I} .
Gy = —qz + (COS 5 ) (p —p) = —(y + SN2 + Sin 2.
Thus we have
p, —sinz =p, —sinz, ¢, —sinz = —¢, +sinz,

and two differential equations:

: / . /
Zgy = SINZ, 2 =sinz,

the same sine-Gordon equation. The transformation of solu-
tion, then, is closely related the transformation of surfaces with
negative curvature.

I believe it is necessary to give the rigorous foundation to the
elimination process:
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Question: Are there any theory of elimination for partial dif-
ferential equations, like in algebraic and analytic geometry.

I am very grateful to Toshizumi Fukui for his turning my at-

tention to Backlund transformations and for the encouragement.
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Frontal Surfaces: Genericity of Mappings
to Singular Spaces.

A surface in R30rC? is called frontalif it has “smooth” Nash lift-
ing in PT*R3. Exactly, if we give the surface by a parametriza-
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tion f: M — R? from a C™ surface M, then f is called frontal
if it has a unique frontal lifting f : M — PT*R3. If the surface
is an analytic surface in C3, then, the surface is called frontal if
the projection from the Nash lifting of the surface to the surface
itself is finite to one. ’

Similarly we define the notion of frontal hypersurfaces in R"
or C" and more generally in C* or complex manifolds.

Since the behaivior of tangent spaces to a frontal surfaces is
very restrictive, we expect we can apply the stratification theory
to studying families of frontal surfaces.

I have applied the stratification theory to verifying the topo-
logical triviality of families of tangent developables [5]

Question: Is there any simple criteria for topological triviality
of families of frontal (hyper)surfaces?

Remark that frontal surfaces have only non-isolated singu-
larities “generically”. However there are examples of frontal
surfaces having isolated singularities: 22 = % + y*.

Also, the following questin should be naturally posed:

Question: Are there any algebraic (ring theoretical) character-

ization of frontal (hyper)surfaces?

The study on frontal surfaces is closely related to the study
on integral mappings.

Givental’ conjecture [1]: Generic singularities of integral
mappings R? — R’ are contact equivalent to the Nash lifting
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of folded umbrella |
(’U,, ?)) = (SE’, Y,pq, Z) = (u, 02/2, UB/B, uv, ’U/US/S).
The corank one case of Givental’ conjecture is proved by

Givental’ [1][2]. The higher dimensional generalization of corank
one case is solved by me [3].

Question: How do we describe the generic conditions for inte-
gral mappings of corank > 1.

Here, let us recall the notion of integral jet spaces [4]. In the
ordinary jet space J"(R2, R?), consider

I":={j"h(z) | z € R?,h: R? z — R’ integral}.

If f : R* — RP is integral, then the jet extension ;7 f is regarded
as a mapping to I": j°f : R* 0 — I", that we call the integral
jet extension: (j7f)(z) := 7" f(x), the r-jet of f at z.

Then a difficulty arises from the fact that the isotropic jet
space I" has quadratic singularities

Sing(I") = {j"h(z) | h: integral of corank > 2}.

Then the natural and important question is this:

Question: Do any transversality theorems exist, for mappings
to singular spaces? '
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3 Plane-to-Plane Mappings: Global Config-
urations.

Let f : R?2 — PT*R3 be a proper generic integral mapping.
Consider the projection IT : PT*R® — R2, (z,v,2,p,q) — (z,v)
and the composition ITo f : R? — R?2, which is called a Lagrange
mapping. The critical value set of Il o f is called the caustic.

Question: (The Question on the Topology of Caustics.) Are
there any differences on the topology of generic Lagrange map-
pings and the topology of generic mappings R? — R2.

If we pose the condition that f is a Legendre immersion, then
the question is classical:

Question: (The Classical Question on the Topology of Caus-
tics.) Are there any differences on the topology of generic La-
grange mappings of Legendre immersions and the topology of
generic mappings R? — R?.

The topology of generic mappings R? — R2? itself is also
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interesting problem. See [1][2] for the characterization of the
discriminant set. Even it seems to be not so clearly understood.

The problem should be treated again elsewhere.

I am grateful to Osamu Saeki for his informing me the related
references. I would like to thank Kazuhiko Aomoto and Toru
Ohmoto for the important questions and comment.
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4 Singularities in Projective Differential Ge-
ometry: Singular Surface Theory.

Let f, f': (R? 0) — RP? be map-germs to the projective three
space. f and f' are called projectively equivalent if there exist a

projective transformation 7 : RP? — R.P? and a diffeomorphism-
germ o : (R%,0) — (R2,0) such that 7o f = f' o 0.

Classical theory treats the projective classification of immer-
sions: There exist relations of classical surface theory to the
study on integrable systems, Backlund transformations and so
on [1].

Question: Are there any generalization of classical theory of
projective differential geometry to singular surfaces?
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I believe that the projective differential geometry of singular-
ities of ruled surfaces, developable surfaces, and frontal surfaces
~is a fruitful and promising area for studying; as the manifesta-
tion of the “contact nature” of projective geometry.
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