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Question: Why do you study SINGULARITIES?

Answer 1: Because it’s there.

Answer 2: Singularities appear everywhere. We can not avoid
singularities, for studying regular objects. So studying singular-
ities is indispensable in mathematics and other area.
Answer 3: Any information on an object concentrates on its
singularities. Thus studying singularities is one of fundamental
methods in mathematics and other area. We must face with
singularities positively.

Question: Are there any applications of singularity theory?

Answer: YES. I have collected below some of naive ques-
tions that I have faced during the usual study of applications of
singularity theory.

\S 1. Singularities of B\"acklund Transformations: Classical The-
ory and Problems.

\S 2. Rontal Surfaces: Genericity of Mappings to Singular
Spaces.
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\S 3. Plane-to-Plane Mappings: Global Configurations.

\S 4. Singularities in Projective Differential Geometry: Singu-
lar Surface Theory.

I would like to thank Satoshi Koike for his providing me the
opportunity to talk at the symposium and to write this survey
article.

1 Singularities of B\"acklund $\mathrm{R}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ :
Classical Theory and Problems

B\"acklund transformations are transformations of partial differ-
ential equations as well as their solutions. They are first intro-
duced around surface theory. See [3]. There are many references
on them, related to soliton theory [6]. Recently, B\"acklund trans-
formations have been $\mathrm{r}\mathrm{e}$-cast in the context of integrable systems
in differential geometry [9] [2].

In this note we recall the classical definition of B\"acklund

transformations following [3], and pose problems related to sin-
gularity theory.

A smooth function $z=f(x, y)$ , as is well-known, can be de-
scribed by the surface $\{(x, y, z)|z=f(x, y)\}$ , the graph of $f$ ,
in the $(x, y, z)$ -space, endowed with the projection $(x, y, z)\mapsto$

$(x, y)$ . If we forget the projection, namely, if we do not distin-
guish the variables $(x, y)$ and the value $z$ , then the study on
functions of two variables is reduced to the study of surfaces in
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the three space.

A tangent plane to a surface in $(x, y, z)$ -space can be repre-
sented by additional two parameters $p$ and $q$ . When the surface
is the graph of a function $f(x, y)$ , we take $p=f_{x},$ $q=f_{y}$ , the
partial derivatives. Thus a graphical surface $M=\{z=f(x, y)\}$

can be lifted naturally to a surface

$\tilde{M}=\{(x, y, f(x, y), f_{x}(x, y), fy(X, y)\}$

in the five dimensional space $\{(x, y, z,p, q)\}$ .

Consider the canonical one-form $\alpha=dz-_{\mathrm{P}}d_{X}-qdy$ . Then $\alpha$

is a contact one-form on this $\mathrm{R}^{5}$ . The canonical contact structure
on $\mathrm{R}^{5}$ is defined by the Pfaff equation $\alpha=0$ , namely by the
distribution $\{v\in T\mathrm{R}^{5}|\langle\alpha, v\rangle=0\}\subset T\mathrm{R}^{5}$ .

Then the lifting $\tilde{M}$ is a Legendre surface, namely $\alpha|_{\overline{M}}=0$

[1].

To treat non-graphical surfaces, it is natural to introduce the
manifold of contact elements of $\mathrm{R}^{3}$ . A contact element of $\mathrm{R}^{3}$

is, by definition, a linear (hyper)plane of the tangent space to
a point in $\mathrm{R}^{3}$ . Since a contact element is defined by a non-
zero cotangent vector up to non-zero scalar multiplication, the
manifold consisting of all contact elements of $\mathrm{R}^{3}$ is identified
with the fiber-wise projectification $PT^{*}\mathrm{R}^{3}$ .

Let $\pi$ : $PT^{*}\mathrm{R}^{3}\underline{\backslash },\mathrm{R}^{3}$ be the natural projection, mapping a
contact element to its base point. Then each fiber is a projective
plane $\mathrm{R}P^{2}$ , which is a compactification of the $(p, q)$ -plane: If we
fix the decomposition $\mathrm{R}^{3}=\mathrm{R}^{2}\cross \mathrm{R}$, we have the natural embed-
ding $\mathrm{R}^{5}arrow PT^{*}\mathrm{R}^{3}$ , defined by $(x, y, z,p, q)\vdasharrow(x, y, z, [p, q, 1])$ .
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The canonical contact structure on $\mathrm{R}^{5}$ naturally extends to
a contact structure $D\subset TP\tau*\mathrm{R}^{3}$ on the manifold $PT^{*}\mathrm{R}^{3}$ of
contact elements: A tangent vector $u\in T_{c}PT^{*}\mathrm{R}^{3}$ to $PT^{*}R^{3}$ at
a contact element $c$ belongs to $D$ if and only if $\pi_{*}(u)\subset c(\subset$

$T_{\pi(C)}\mathrm{R}^{3})$ . Here $\pi_{*}$ : $TPT^{*}\mathrm{R}^{3}arrow T\mathrm{R}^{3}$ is the linearization of
$\pi$ : $PT^{*}\mathrm{R}^{3}arrow \mathrm{R}^{3}$ .

Any surface in $\mathrm{R}^{3}$ , then, lifts naturally to a Legendre surface
in $PT^{*}\mathrm{R}^{3}$ with respect to the contact structure $D$ defined above.

In what follows, we talk on $PT^{*}\mathrm{R}^{3}$ for the theoretical natu-
rality, but you may replace it by $\mathrm{R}^{5}$ without loss of significance
of the problem.

Now we consider a transformation of surfaces in $\mathrm{R}^{3}$ . We
regard the transformed surfaces lie in another $\mathrm{R}^{3}$ which is a
copy of $\mathrm{R}^{3}$ with coordinates $x’,$ $yz/,/$ . Set $M=PT^{*}\mathrm{R}P^{3}$ and
denote by $M’$ the corresponding copy of $M$ : This $M’$ has the
affine coordinate $x’,$ $y’,$ $z^{\prime//},p,$$q$ and the local contact form $\alpha’=$

$dz’-p’d_{X’}-qd/y’$ .

Consider the product manifold $M\cross M’$ of dimension 10. Thus
$M\cross M’$ has affine coordinates $x,$ $y,$ $z,p,$ $q,$ $x’,$ $y$ ) )

$///Zp,$ $q^{;}$ .

Denote by $\mathrm{p}\mathrm{r}$ : $M\cross M’arrow M$ and $\mathrm{p}\mathrm{r}’$ : $M\cross M’arrow M’$ the
natural projections respectively. Then the contact structures on
$M$ and $M’$ provide the distribution $(\mathrm{P}^{\mathrm{r}_{*}})-1D\cap(\mathrm{p}\mathrm{r}_{*})/-1D/$ of rank
8, which is locally defined by the Pfaff system

$\alpha=dz-pdx-qdy=0$ , $\alpha’=d_{Z’}-p’dx-/qd/=y’0$ .

A B\"acklund transformation is a submanifold $B$ of codimen-
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sion 4 in $M\cross M’[3],[4]$ .

Example 1 ([8]). Let $N$ and $N’$ be surfaces in $\mathrm{R}^{3}$ , and $l$ :
$Narrow N’$ a diffeomorphism. Write $P’=l(P)$ , for $P\in N.$ $\ell$ is
called a B\"acklund transformation if the secant $\overline{PP’}$ is tangent
to $N$ at $P$ and $N’$ at $P’$ , and, the distance $d(P, P’)=r$ and the
angle angle $(l\text{ノ}P, \iota \text{ノ_{}P}’)=\theta$ of normals $\nu_{P},$

$\iota/_{P}’$ is constant $(P\in N)$ .
If $N$ : $z=z(x, y),$ $N’$ : $z’=z’(x^{\prime/}, y)$ , and $P=(x, y, z),$ $P’=$

$(x’, y’, Z’)$ , then $p$ is described by
$F_{1}$ : $p(_{X’-X})+q(y’-y)-(_{Z}/-z)=0$ ,
$F_{2}$ : $p’(x-X’)+q(/y-y)/-(z-Z’)=0$ ,
$F_{3}$ : $(x’-x)^{2}+(y’-y)^{2}=r^{2}$ ,
$F_{4}$ : $\frac{pp’+qq’+1}{\sqrt{p^{2}+q^{2}+1}\sqrt{p^{2}+q^{\prime 2}+1}},=\cos\theta$ ,

in the $(x, y, z,p, q;X’, yzpq’)/,/,/$, -space.

Remark that a B\"acklund transformation $B\subset M\cross M’$ is
endowed with a Pfaff system $\alpha=0,$ $\alpha’=0$ restricted to it. In
the language of tangent vectors, the system defines

$E=TB\cap(\mathrm{P}^{\mathrm{r}_{*}})^{-1}D\cap(\mathrm{p}\mathrm{r}_{*}’)-1D’\subset TB$ ,

which is a distribution over $B$ with $\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\backslash \mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}$ in general.

We impose, in what follows, on a B\"acklund transformation $B$

the condition that

the projections $\mathrm{p}\mathrm{r}|_{B}$ and $\mathrm{p}\mathrm{r}’|_{B}$ are submersions.

Then we see
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Proposition: An integral manifolds of $E$ are at most of dimen-
sion 2.

Here is an ad hoc proof of the proposition: Let $S\subset B$ be
an integral manifold of $E$ . Since $\mathrm{p}\mathrm{r}|_{B}$ : $B^{6}arrow M^{5}$ is a sub-
mersion, the dimension of the kernel of the differential mapping
$(\mathrm{p}\mathrm{r}|_{B})_{*}$ is equal to one. Moreover the rank of $(\mathrm{p}\mathrm{r}|_{S})*\mathrm{m}\mathrm{u}\mathrm{s}\mathrm{t}$ be
at most two, since the image satisfies $\alpha=0$ . Therefore $\dim S$

is at most three. Furthermore if $\dim S=3$ , then the image of
$(\mathrm{p}\mathrm{r}|s)*\mathrm{i}\mathrm{s}$ of dimension two, and the inverse image of the image
of $(\mathrm{p}\mathrm{r}|_{S})*\mathrm{c}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{S}$ with the tangent space to $S$ . This leads to
that the dimension of the kernel of ( $\mathrm{p}\mathrm{r}’|_{s)_{*}}$ is at least two, and
to a contradiction. $\square$

Now let $I\subset B$ be an integral submanifold of dimension 2 of
$\mathrm{E}$ :

$\alpha|_{I}=0$ , $\alpha’|_{I}=0$ .

Then naturally posed questions are these:

Question: What are generic singularities of $\mathrm{p}\mathrm{r}|_{I}$ : $Iarrow M$ and
$\mathrm{p}\mathrm{r}’|_{I}$ : $Iarrow M’$ ? What are generic singularities of $\pi\circ \mathrm{p}\mathrm{r}|_{I}$ : $Iarrow$

$\mathrm{R}^{3}$ and $\pi^{\prime_{\circ}}\mathrm{p}\mathrm{r}’|_{I}$ : $Iarrow \mathrm{R}^{3}$ ?

Remark that $\mathrm{p}\mathrm{r}|_{I}$ is an integral mapping, namely $(\mathrm{p}\mathrm{r}|_{I})*\alpha=0$ ,
and therefore the image $\mathrm{p}\mathrm{r}(I)\subset M=PT^{*}\mathrm{R}^{3}$ is a Legendre
variety, in other words, the regular part of $\mathrm{p}\mathrm{r}(I)$ is an integral
manifold (Legendre submanifold) of the contact structure $\alpha=0$ .

Question: Are there generating families for this singularity
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problem, like in ordinary Legendre singularity theory?

Ideally we wish to find a function of type $F(x, y, z;X’, yZ’)/,$ ,
for a given $I\subset B$ , which is a generating family (with param-
eter $x,$ $y,$ $z$ ) of $\mathrm{p}\mathrm{r}(I)$ with respect to $\pi$ , and at the same time,
is a generating family (with parameter $x’,$ $y’,$ $z’$ ) of $\mathrm{p}\mathrm{r}’(I)$ with
respect to $\pi’$ . Since $\mathrm{p}\mathrm{r}(I)$ and $\mathrm{p}\mathrm{r}’(I)$ may have singularities, the
generating family may define other extra components than $\mathrm{p}\mathrm{r}(I)$

and $\mathrm{p}\mathrm{r}’(I)$ .

Consider the case that the system of 4 equations defining
a B\"acklund transformation $B$ contains $x=x’,$ $y=y’$ . Then
we regard $B$ as a submanifold in the $(x, y, z, z’,p, q,p’)q’)$-space
with equations

$\alpha=dz-pdx-qdy=0$ , $\alpha’=d_{Z’}-p’dx-qd/y=0$ ,

of codimension two, locally defined by two equations, say:

$f(x, y, z, z’,p, q,pq)/,/=0$, $g(x, y, z, z/,p, q,p^{\prime/}, q)=0$ .

Question: Are there any local characterizations of the class of
differential systems on $(\mathrm{R}^{6},0)$ realized as B\"acklund transforma-
tions of above type.

If we eliminate $zpq/,/,/_{\mathrm{u}}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$

$d_{Z’=}p’dx+q’dy$ , $f=0$ , $g=0$ ,

then we get a 2nd order differential equation of $z=z(x, y)$ . If
we eliminate $z,p,$ $q$ using

$dz=pd_{X+}qdy$ , $f=0$ , $g=0$ ,
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then we have a 2nd order differential equation of $z’=z’(x, y)$ .
Thus a B\"acklund transformation induces a transformation of
2nd order differential equations and solutions. (The graphs of
solutions are $\pi\circ \mathrm{p}\mathrm{r}(I)$ and $\pi’\circ \mathrm{p}\mathrm{r}’(I)$ , in our notations.)

Example(Sine-Gordon equation): Let

$f=p’-p-2\sin^{z’},B+z$

$g=q’+q-2\sin^{\frac{z-z}{2}}$ .

Then we have

$p_{y}’=p_{y}+( \cos\frac{z’+z}{2})(q’+q)=py+\sin Z’-\sin z$,

and

$q_{x}’=-q_{x}+( \cos\frac{z’-z}{2})(p’-p)=-qx+\sin z+\mathrm{s}\mathrm{i}/Z\mathrm{n}$.

Thus we have

$p_{y}’-\sin z’=p_{y}-\sin z$ , $q_{x}’-\sin z’=-q_{x}+\sin z$ ,

and two differential equations:

$z_{xy}=\sin z$ , $z_{xy}’=\sin Z’$ ,

the same sine-Gordon equation. The transformation of solu-
tion, then, is closely related the transformation of surfaces with
negative curvature.

I believe it is necessary to give the rigorous foundation to the
elimination process:
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Question: Are there any theory of elimination for partial dif-
ferential equations, like in algebraic and analytic geometry.

1 am very grateful to Toshizumi Fukui for his turning my at-
tention to B\"acklund transformations and for the encouragement.
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2 FYontal Surfaces: Genericity of Mappings
to Singular Spaces.

A surface in $\mathrm{R}^{3}$or$\mathrm{C}^{3}$ is called frontal if it has ((
$\mathrm{s}\mathrm{m}\mathrm{o}\mathrm{o}\mathrm{t}\mathrm{h}$

” Nash lift-
ing in $PT^{*}\mathrm{R}^{3}$ . Exactly, if we give the surface by a parametriza-
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tion $f$ : $Marrow \mathrm{R}^{3}$ from a $C^{\infty}$ surface $M$ , then $f$ is called frontal
if it has a unique front,al lifting $\tilde{f}:Marrow PT^{*}\mathrm{R}^{3}$ . If the surface
is an analytic surface in $\mathrm{C}^{3}$ , then, the surface is called frontal if
$\mathrm{t}_{J}\mathrm{h}\mathrm{e}$ projection from the Nash lifting of the surface to the surface
itself is finite to one.

Similarly we define the notion of frontal hypersurfaces in $\mathrm{R}^{n}$

or $\mathrm{C}^{n}$ and more generally in $C^{\infty}$ or complex manifolds.

Since the behaivior of tangent spaces to a frontal surfaces is
very restrictive, we expect we can apply the stratification theory
to studying families of frontal surfaces.

I have applied the stratification theory to verifying the topo-
logical triviality of families of tangent developables [5]

Question: Is there any simple criteria for topological triviality
of families of frontal (hyper)surfaces?

Remark that frontal surfaces have only non-isolated singu-
larities “generically” However there are examples of frontal
surfaces having isolated singularities: $z^{2}=x^{4}+y^{4}$ .

Also, the following questin should be naturally posed:

Question: Are there any algebraic (ring theoretical) character-
ization of frontal (hyper)surfaces?

The study on frontal surfaces is closely related to the study
on integral mappings.

Givental’ conjecture [1]: Generic singularities of integral
mappings $\mathrm{R}^{2}arrow \mathrm{R}^{5}$ are contact equivalent to the Nash lifting
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of folded umbrella

$(u, v)\vdasharrow(x, y,p)q,$ $z)=(u, v^{2}/2, v^{3}/3, uv, uv^{3}/3)$ .

The corank one case of Givental’ conjecture is proved by
Givental’ [1] [2]. The higher dimensional generalization of corank
one case is solved by me [3].

Question: How do we describe the generic conditions for inte-
gral mappings of corank $>1$ .

Here, let us recall the notion of integral jet spaces [4]. In the
ordinary jet space $J^{r}(\mathrm{R}^{2}, \mathrm{R}^{5})$ , consider

$I^{r}:=$ {$j^{r}h(x)|x\in \mathrm{R}^{2},$ $h:\mathrm{R}^{2},$ $xarrow \mathrm{R}^{5}$ integral}.

If $f$ : $\mathrm{R}^{2}arrow \mathrm{R}^{5}$ is integral, then the jet extension $j^{r}f$ is regarded
as a mapping to $I^{r}:j^{r}f$ : $\mathrm{R}^{2},0arrow I^{r}$ , that we call the integral
jet extension: $(j^{r}f)(x):=j^{r}f(x)$ , the $r$-jet of $f$ at $x$ .

Then a difficulty arises from the fact that the isotropic jet
space $I^{r}$ has quadratic singularities

Sing$(I^{r})=$ {$j^{r}h(x)|h$ : integral of corank $\geq 2$ }.

Then the natural and important question is this:

Question: Do any transversality theorems exist, for mappings
to singular spaces?
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3 $\mathrm{P}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{e}-\mathrm{t}\mathrm{o}$-Plane Mappings: Global Config-
urations.

Let f : $\mathrm{R}^{2}arrow PT^{*}\mathrm{R}^{3}$ be a proper generic integral mapping.
Consider the projection II: $PT^{*}\mathrm{R}^{3}arrow \mathrm{R}^{2},$ (x, y, z,p,$q)\mapsto(x,$y)
and the composition $\Pi\circ f$ : $\mathrm{R}^{2}arrow \mathrm{R}^{2}$ , which is called a Lagrange
mapping. The critical value set of $\Pi\circ f$ is called the caustic.

Question: (The Question on the Topology of Caustics.) Are
there any differences on the topology of generic Lagrange map-
pings and the topology of generic mappings $\mathrm{R}^{2}arrow \mathrm{R}^{2}$ .

If we pose the condition that $f$ is a Legendre immersion, then
the question is classical:

Question: (The Classical Question on the Topology of Caus-
tics.) Are there any differences on the topology of generic La-
grange mappings of Legendre immersions and the topology of
generic mappings $\mathrm{R}^{2}arrow \mathrm{R}^{2}$ .

The topology of generic mappings $\mathrm{R}^{2}arrow \mathrm{R}^{2}$ itself is also
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interesting problem. See $[1][2]$ for the characterization of the
discriminant set. Even it seems to be not so clearly understood.

The problem should be treated again elsewhere.

I am grateful to Osamu Saeki for his informing me the related
references. I would like to thank Kazuhiko Aomoto and Toru
Ohmoto for the important questions and comment.
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4 Singularities in Projective Differential Ge-
ometry: Singular Surface Theory.

Let f, $f’$ : $(\mathrm{R}^{2}, \mathrm{O})arrow \mathrm{R}P^{3}$ be map-germs to the projective three
space. f and $f’$ are called projectively equivalent if there exist a
projective transformation $\tau$ : $\mathrm{R}P^{3}arrow \mathrm{R}P^{3}$ and a diffeomorphism-
germ a : $(\mathrm{R}^{2}0)iarrow(\mathrm{R}^{2},0)$ such that $\tau$ of $=f’\mathrm{o}\sigma$ .

Classical theory treats the projective classification of immer-
sions: There exist relations of classical surface theory to the
study on integrable systems, B\"acklund transformations and so
on [1].

Question: Are there any generalization of classical theory of
projective differential geometry to singular surfaces?
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I believe that the projective differential geometry of singular-
ities of ruled surfaces, developable surfaces, and frontal surfaces
is a fruitful and promising area for studying; as the manifesta-
tion of the $\zeta$‘contact nature” of projective geometry.
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