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1. INTRODUCTION

Let $\mathcal{M}$ be the moduli space of sextics with 6 cusps and 3 nodes. A sextic $C$ is called
of $(\mathit{2},\mathit{3})$-torus type if its defining polynomial $f$ has the expression $f(x, y)=f_{2}(x, y)^{3}+$

$f_{3}(x,y)^{2}$ for some polynomiak $f_{2},$ $f_{3}$ of degree 2, 3 respectively. Hereafter we simply say
of torus type in the sense of $(\mathit{2},\mathit{3})$ -torus type. We denote by $\mathcal{M}_{torus}$ the component of

$\mathcal{M}$ which consists of curves of torus type and by $\mathcal{M}_{gen}$ the curves of non-torus type. We
denote the dual curve of $C$ by $C^{*}$ . In our previous paper [O2], we have shown that the
dual curve operation $C\mapsto C^{*}$ gives an involution on $\mathcal{M}$ and it preserves the type of the
curve in $\mathcal{M}$ , i.e., $C^{*}\in \mathcal{M}_{t\sigma\Gamma us}$ if and only if $C\in \mathcal{M}_{t\sigma rus}$ . Let $N_{3}$ be the moduli space of
sextics with 3 $(3,4)$ -cusps as in [O2]. For brevity, we denote $N_{3}$ by $N$. We have shown
that $N$ is in the closure of $\overline{\mathcal{M}}$ and the dual curve $C^{*}$ of a generic $C\in N$ is a sextic with
6 cusps and three nodes i.e., $C^{*}\in \mathcal{M}([\mathrm{O}2])$ . Let $G:=\mathrm{P}\mathrm{G}\mathrm{L}(3, \mathrm{C})$ . The quotient moduli
spaces are by definition the quotient spaces of the moduli spaces by the action of $G$ .

In \S 2, we win study the quotient moduli space $\mathcal{M}/G$ and we will show that there exists
an involution $\overline{\iota}$ on $\mathcal{M}/G$ such that $\overline{\iota}$ is different from the dual curve operation and $\overline{\iota}$

preserves the types of the sextics (Theorem 2.3).
In \S 3, we study the quotient moduli space $N/G$ . We will show that $N/G$ is one

dimensional and consists of two components $N_{t\sigma ru}s/G$ and $N_{gen}/G$ consisting of sextics
of torus type and non-torus type respectively. Using their nornal forms, we show that
$N_{t\sigma rus}/G$ contains a unique sextic which is self dual (Theorem 3.9).

2. INVOLUTION ON THE QUOTIENT MODULI $\mathcal{M}/G$

Let $\mathcal{M}$ and $\overline{\mathcal{M}}$ be the moduli space of sextics with three nodes and 6 cusps and the
moduli space of irreducible plane curves of degree 12 with 24 cusps and 24 nodes respec-
tively. Note that the genus of a generic curve in $\mathcal{M}$ (respectively in $\overline{\mathcal{M}}$) $\mathrm{i}\mathrm{s}\underline{1}$ (resp. 7).
By the class $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\underline{\mathrm{a}}$ ([N] or [O2]), it is easy to see that for a generic $C\in \mathcal{M}$ , the dual
curve $C^{*}$ is also in $\mathcal{M}$ . We consider the mapping

$\pi:\mathrm{P}^{2}arrow \mathrm{P}^{2}$ , $(X, \mathrm{Y}, Z)\vdasharrow(X^{2}, \mathrm{Y}^{2}, Z^{2})$
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which is a 4-fold covering branched along the coordinate axes $\{X=0\}$ $\mathrm{U}\{\mathrm{Y}=0\}\cup$

$\{Z=0\}$ . Take a generic curve $C\in \mathcal{M}$ and let $F(X, Y, Z)$ be the defining homogeneous
polynomial of degree 6. As $C^{*}$ has three nodes, $C$ has three $\mathrm{b}\mathrm{i}$-tangent lines. We denote
by $\mathcal{M}^{nml}$ the subset of $\mathcal{M}$ which consists of curves $C\in \mathcal{M}$ whose three bitangent lines
are $X=0,$ $Y=0$ and $Z=0$. We define a mapping $\psi$ : $\mathcal{M}^{nml}arrow\overline{\mathcal{M}}$ as follows.
Let $C\in \mathcal{M}^{nml}$ and let $F(X, Y, Z)$ be the defining homogeneous polynomial. We define
$\psi(C):=\pi^{-1}(C)$ . Note that $\psi(C)$ is defined by $\overline{F}(X, Y, Z):=F(X^{2}, \mathrm{Y}^{2}, Z2)$ . Each cusp
of $C$ produces 4 cusps on $\psi(C)$ . Thus $\psi(C)$ has 24 cusps. Each node of $C$ also gives 4
nodes on $\psi(C)$ , thus we get 12 nodes on $\psi(C)$ which are mapped onto the nodes of $C$ .
As the restriction of $\pi$ to the affine chart $\{Z\neq 0\}$ is the composition of double coverings
$(x, y)rightarrow(x, .y^{2})$ and $(x, y)-\succ(x^{2}, y)$ , each simple tangent on the coordinate axis $X=0$ ,
$Y=0$ gives 2 nodes on $\psi(C)$ . This is the same for the simple tangents for $Z=0$ . Thus
there are 12 nodes on $\psi(C)$ which are on the three coordinate axes and they are $\mathrm{m}\mathrm{a}\mathrm{p}\underline{\mathrm{p}\mathrm{e}}\mathrm{d}$

to simple tangents on coordinate axis by $\pi$ . Thus $\psi(C)$ has 24 nodes. Thus $\psi(C)\in \mathcal{M}$ .
Now for $C\in \mathcal{M}$ , we define $\overline{\psi}(C)$ as $\psi(c^{g})$ by choosing a $g\in G$ such that $C^{g}\in \mathcal{M}^{nml}$ .

The ambiguity for the choice of $g\in G$ are in the stabilizer $G_{\lambda 4^{nm}}\iota$ of $\mathcal{M}^{nml}$ which is
a direct product of $\mathfrak{S}_{3}$ (the permutations of coordinates) and $\mathrm{C}^{*}\cross \mathrm{C}^{*}\cross \mathrm{C}^{*}$ (scalar
$\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}\underline{)}$ . Thus the polynomial $\overline{F}(X, Y, Z)$ is also unique up to a $G_{\Lambda 4^{nm\mathrm{t}}}$ action,

and therefore $F(X, \mathrm{Y}, Z)$ is also unique up to a $G_{\mathrm{A}4}nm\downarrow$ action. Thus $\overline{\psi}$ : $\mathcal{M}/Garrow\overline{\mathcal{M}}/G$

is well-defined.
Recal that a polynomial $F(X, Y, Z)$ is called even in $X$ (respectively symmetric in

$X,$ $Y)$ if $F(-X, \mathrm{Y}, Z)=F(X, Y, Z)$ (resp. $F(Y,X,$ $Z)=F(X,$ $Y,$ $Z)$ ). Thus the polyno-
mial $F(X^{2}, Y^{2}, Z2)$ is even in $X,$ $Y,$ $Z$ .

Assume that $C\in \mathcal{M}$ is defined by $F(X, Y, Z)=0$. If $F$ is a even polynomial in the
variable $X$ (respectively a symmetric polynomial in $X,$ $Y$ ), then 6 cusps are stable by
the involution (X, $Y,$ $Z$) $\vdasharrow(-X, Y, z)$ (respectively (X, $Y,$ $Z)\mapsto(Y,$ $X,$ $z)$ ). Then there
exists a homogeneous polynomial $F_{2}(X, Y, Z)$ of degree 2 which is even in $X$ (respectively
symmetric in $X,$ $Y$ ) such that the conic $F_{2}(X, Y, Z)=0$ passes through the 6 cusps of $C$ .
By the criterion of Degtyarev [D], the sextic $F(X, Y, Z)=0$ is of torus type.

Now we take a generic $C\in \mathcal{M}^{nml}$ and consider the dual curve $\psi(.C)^{*}$ and let
$\tilde{G}(X^{*}, Y^{*,z*})$ be a defining homogeneous polynomial of degree 12, where $(X^{*}, \mathrm{Y}^{*}, z*)$ is
the dual coordinates of (X, $Y,$ $Z$ ). As $\overline{F}(X, Y, Z)$ is even in $X,$ $Y,$ $Z$ , so is $\tilde{G}(X^{*}, Y^{*,z*})$

in $X,$ $\mathrm{Y},$ $Z$

Proposition 2.1. $\psi(C)^{*}$ has 4 nodes on each coordinate axis $X^{*}=0_{;}\mathrm{Y}^{*}=0$ or $Z^{*}=0$ .

Proof. Let $C=\{F(X, Y, Z)=0\}$ and let us consider the discriminant polynomial
$\Delta_{\mathrm{Y}}F(X, Z)$ . This is a homogeneous polynomial of degree 30 $([\mathrm{O}1])$ . We assume that the
singularities of the sextic $F(X, Y, Z)=0$ are not on the coordinate axis. Assume that
$P:=(\alpha, \beta, \gamma)\in C$ is a singular point of $C$ with Milnor number $\mu$ and multiplicity $m$ .
Then $\Delta_{Y}F(X, Z)$ has a linear term $(\gamma X-\alpha Z)^{\rho}$ with $\rho\geq\mu+m-1$ and the equality
holds if the line $\gamma \mathrm{Y}-\beta Z=0$ is generic with respect to $C$ (see [O2]). Thus to each
cusp (respectively to each node), there is an associated linear term with multiplicity 3
(resp. with multiplicity 2). The factor $X=0$ and $Z=0$ has also multiplicity 2 in
$\Delta_{Y}F(X, Z)=0$ , as they are $\mathrm{b}\mathrm{i}$-tangent lines. Assume $C$ is generic in $\mathcal{M}$ . Then the
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sum of degrees is $18+6+4=28$ by the above consideration. Thus there exists two simple
tangent lines of the form $X-\eta_{1}Z=0$ and $X-\eta_{2}Z=0$ for some $\eta_{1},$ $\eta_{2}\neq 0$ . Then
four lines $X=\pm\sqrt{\eta_{i}}Z,$ $i=1,2$ are bitangent lines for the curve $\psi(C)$ . This implies that
$(1, 0, \pm\sqrt{\eta_{i}}),$ $i=1,2$ are nodes of the dual curve $\psi(C)^{*}$ . Thus the coordinate axis $\mathrm{Y}^{*}=0$

contains 4 nodes of $\psi(C)^{*}$ . By the same argument, $X^{*}=0$ and $Z^{*}=0$ contains also 4
nodes respectively.
Definition 2.2. For $C\in \mathcal{M}^{nml}$ , we define a polynomial of degree 6 by $G(X^{*}, Y*, Z^{*})$ $:=$

$\tilde{G}(\sqrt{x*}, \sqrt{\mathrm{Y}^{*}}, \sqrt{z*})$ and we define $\iota(C)$ by the sextics defined by $G(X^{*},$ $Y^{*,z^{*})=0}$ . For
$C\in \mathcal{M}$ , take $g\in G$ so that $C^{g}\in \mathcal{M}^{nml}$ and we define an involution $\overline{\iota}:\mathcal{M}/Garrow \mathcal{M}/G$

by $\overline{\iota}(c)=b(c^{g})$ .
Claim 1. $\overline{\iota}(C)\in \mathcal{M}$ for a generic $C\in \mathcal{M}$ and $\overline{\iota}$ is an involution which preserves the type
of sextics, that is we have the commutative diagram:

$\mathcal{M}/G$ $arrow\overline{\iota}\mathcal{M}/G$ $\mathcal{M}_{t\sigma\Gamma\tau lS}/G$ $arrow\overline{\iota}\mathcal{M}_{t\sigma ru}s/G$

$\lrcorner\overline{\psi}$ $\cdot\lrcorner\overline{\psi}$ $–\downarrow\overline{\psi}$ $–\downarrow\overline{\psi}$

$\mathcal{M}/G$ $arrow dud\mathcal{M}/G$ $\mathcal{M}_{t\sigma\Gamma \mathfrak{U}s}/G$ $arrow dud\mathcal{M}_{t\sigma rus}/c$

Proof. We may assume that $C\in \mathcal{M}^{nml}$ . By the above consideration, we have seen
that the dual curve $\psi(C)^{*}$ of $\psi(C)$ is defined by a polynomial $G(X^{*}, Y^{*}, z^{*})$ of degree 12
which is even in each of the three variables and it has 24 cusps and 12 nodes outside of
coordinate axis and 4 nodes on each coordinate axis. Thus $\iota(C)$ has 6 cusps and 3 nodes.
Note that nodes of $\psi(C)^{*}$ on the coordinate axes are mapped on simple tangents on the
corresponding coordinate axes of $\iota(C)$ . Thus the curve $\iota(C)$ , defined by $g(\sqrt{x^{*}},$ $\sqrt y\neg^{*}=0$ ,
belongs to $\mathcal{M}^{nml}$ . Finally we will show that $\iota$ keeps the type of the curve. As the
curves $\{\overline{\iota}(C);C\in \mathcal{M}_{torus}/G\}$ are topologically equivalent, the image is contained in a
connected component. Thus it is enough to show that there exists a $C\in \mathcal{M}_{t\circ\Gamma us}/G$ such
that $\overline{\iota}(C)\in \mathcal{M}_{t\sigma\Gamma us}/G$. To see this, it is enough to take $C\in \mathcal{M}_{tuS}^{nm_{\Gamma}l}\sigma$ whose defining
polynomial $F(X, Y, Z)$ is symmetric in each of $X,$ $Y$ . Then $\tilde{F}(X, \mathrm{Y}, Z)$ is also symnetric
in $X,$ $Y$ . This implies also that $\overline{G}(X^{*}, Y^{*}, z*)$ and $G(X^{*}, \mathrm{Y}^{*,z*})$ symmetric in $X^{*},$ $Y^{*}$ .
By the Degtyarev’s criterion, this implies that $\iota(C)$ is a sextic of torus type. The following
example shows that $\overline{b}(c)\neq C^{*}$ in general. $\square$

Thus we have proved the following:
Theorem 2.3. There exists an involution $\overline{\iota}$ on the quotient moduli $\mathit{8}pace\mathcal{M}/G$ such that
$\overline{\iota}$ is different from the dual curue operation and $\overline{\iota}pre\mathit{8}erve\mathit{8}$ the type8 of the sextics, that
is $\overline{\iota}(C)\in \mathcal{M}_{ts}\sigma ru/G\Leftrightarrow C\in \mathcal{M}_{t\sigma\Gamma us}/G$ .
Example 2.4. Let $C\in \mathcal{M}_{t\eta lS}^{nm}\sigma rl$ be the sextic defined by the symmetric polynomial:

$\frac{1767f}{16}(_{X^{42}}.\cdot y+x^{2}y)=-684(x_{4}^{3}y+3)+\frac{881xy}{8}yx+3\frac{4055}{16}3^{-}(x^{6}\dagger y)105(_{X}3+y^{3})6^{+25(y}-\frac{87323}{8}(_{X^{5}}+y^{5})x^{2}+)2-78(_{X}+\frac{2\mathrm{t}\mathrm{K}\int 121}{4}(x^{4}+y)4-(Xy+y)+\frac{819}{\frac{97116}{8}}(x_{4}^{5}y+yx+xy)4)\mathrm{s}+-$

$\frac{6947}{2}y^{2}x^{2}+2268+1038(x^{2}y+xy^{2})-4883yx-\frac{375}{2}(X^{2}y^{3}+x^{3}y^{2})$ .
Then $\psi(C)$

. is defined by $f(x^{2}, y^{2})$ and $\psi(C)^{*}\mathrm{i}_{\mathrm{S}}$ defined by $g(x^{*2},y)*2=0$ and $\iota(C)$ is
the sextic defined by the symmetric polynomial

$g(x^{*}, y^{*}):=908294_{X}*2*2-3y54000(X*y+x^{*2*}*2y)+302745(y+*4*4)X+529284(xy^{*2}+*4$

$y^{*4}x^{*2})-396458(X^{*}y+y^{*}x*4*4)-722148(xy+*3*2*3x^{*}y)2+11340(y+X)*\epsilon*6-109170(X^{*\mathrm{s}_{+}}$
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$y^{*5})+86296Xy+4**82724(X^{*}y+yX)3**3*-158508(y^{*}X^{*}+y)5*5_{X}*+103096y^{*}X-2223*330(X^{*}+$

$y^{*})-203920(y*3+x^{*3})+90570(y^{\mathrm{s}2}+x^{*2})+2025$

The dual curve $C^{*}$ of $C$ is defined by the following symmetric polynomial and we can
$\mathrm{e}\mathrm{a}s$ily check that $\overline{\iota}(C)\neq C^{*}$ .

$h(X^{*},y^{*}):=3(_{X^{*4}+}y^{*}4)+14(X^{*^{3}}+y)*33(+X^{*2}+y^{*})2+4(yX+xy)**4**4+36(y^{*}X+*3$

$x^{*}y^{*})3+6(yx^{*2}+*x^{*}y*2)-2y^{*}x^{*}+12(y^{*}x+*x^{*}y)242*4+84(y+Xy*2_{X}*3*2*3)+14y*2*2X+$

$88y^{*3}x^{*3}+4y^{*}x4*$

3. NORMAL FORMS OF THE MODULI $N$

We consider the submoduli $N^{(1)}$ of the sextics whose cusps are at $O:=(\mathrm{O}, 0),$ $A:=(1,1)$

and $B:=(1, -1)$ . Under the action of $G$ , every sextic in $N$ can be represented by a curve
in $N^{(1)}$ . Consider the stabilizer group $G^{(1\rangle}:=\{g\in G;g(N(1))=N^{(1)}\}$ . By an easy
computation, we see that $G^{(1)}$ is the semi-direct product of the group $G_{0}^{(1)}$ and and a
finite group $\mathcal{K}$ where $\mathcal{K}$ is a finite linear subgroup of $G$ , isomorphic to the permutation
group $S_{3}$ , and $G_{0}^{(1)}$ is defined by

$G_{0}^{(1)}:=\{M=\in G;a3(a^{2}1-a2)2\neq 0\}$

which fix singular points pointwise. Note thet $G_{0}^{(1)}$ is normal in $G^{(1)}$ . The isomorphism
$\mathcal{K}\cong S_{3}$ is given by identifying $g\in \mathcal{K}$ as the permutation of three singular locus $O,$ $A,$ $B$ .
We will study the normal forms of the quotient moduli $N/G\cong N^{(1)}/G^{(1)}$ .

Lemma 3.1. For a given line $L:=\{y=bx\}$ with $b^{2}-1\neq 0$ , there exists $M\in G_{0}^{(1)}$ such
that $L^{M}$ is given by $x=0$ .

Proof. By an easy computation, the image of $L$ by the action of $M^{-1}$ , where $M$ is
as above, is defined by $(a_{1}-ba_{2})y+(a_{2}-ba_{1})_{X}=0$ . Thus we take $a_{1}=ba_{2}$ . Then
$a_{1}^{2}-a_{2}^{2}=a_{2}^{2}(b^{2}-1)\neq 0$ by the assumption. $\square$

Lemma 3.2. The tangent cone at $O$ is not $y\pm x=0$ for $C\in N^{(1)}$ .

Proof. Assume for example that $y-x=0$ is the tangent cone of $C$ at $O$ . The
intersection multiplicity of the line $L_{1}:=\{y-x=0\}$ and $C$ at $O$ is 4 and thus $L_{1}\cdot C\geq 7$ ,
an obvious contradiction to Bezout theorem. $\square$

Let $N^{(2)}$ be the subspace of $N^{(1)}$ consisting of curves whose tangent cone at $O$ is given
by $x=0$ . Let $G^{(2)}$ be the stabilizer of $N^{(2)}$ . By Lemma 3.1 and Lemma 3.2, we have the
isomorphism:

Corollary 3.3. $N^{(1)}/G^{(1)}\cong N(2)/G^{(2)}$ .
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It is easy to see that $G^{(2)}$ is generated by the group $G_{0}^{(2}$
) $:=G^{(2}$) $\cap G_{0^{1}}^{()}$ and an element

$\tau$ of order two defined by $\tau(x, y)=(x, -y)$ . Note that

$G_{0}^{(2)}=\{M=\in G_{0}^{()};1 a_{1}a_{3}\neq 0\}$

For $C\in N^{(2)}$ , we associate complex numbers $b(C),$ $c(C)\in \mathrm{C}$ which are the direc-
tiections of the tangent cones of $C$ at $A,$ $B$ respectively. This implies that the lines
$y-1=b(C)(x-1)$ and $y+1=c(C)(X-1)$ are the tangent cones of $C$ at $A$ and $B$

respectively. We have shown that $C\in N_{t_{or}s}^{(2)}u$ if and only if $b(C)+c(C)=0$ and $C$ is not
of torus type if and only if $c(C)^{2}+3c(c)-b(C)_{C}(C)+3-3b(c)+b(C)^{2}=0$ (\S 4, [O2]).

We consider the subspaces:
$N_{torus}^{(3})\{c:=\in Nt\sigma\Gamma us;b(2)(C)=1\}$ , $N_{gen}^{(s)}:=\mathrm{f}C\in N_{g}^{(}e2)n;b(c)=c(C)=\sqrt{-3}\}$

and we put $N^{(3)}:=N_{tuS}^{()}\sigma\Gamma 3\cup N_{g\mathrm{e}n}^{(\rangle}3$ .
Remark. The common solution of the both equations: $b+c=c^{2}+3_{C}-bc+3-3b+b^{2}=0$
is $(b, c)=(1, -1)$ and in this case, $C$ degenerates into two non-reduced lines $(y^{2}-X^{2})2=0$

and a conic.
Lemma 3.4. $A_{\mathit{8}Su}me$ that $C\in N^{(2)}$ . Then there exists $C’\in N^{(3)}$ and an element
$g\in G^{(2)}$ such that $C^{g}=C’$ and such a $C’$ is unique. This implies that

$N_{torus}/G\cong N^{(2}tor\tau\iota s/))G^{(2}\cong N_{t\tau}(\mathrm{O}3)rls$

’
$N_{gen}/c\cong N(2\rangle/genG(2)\cong N_{gn}(e3)$

Proof. Assume that $C\in N_{ts}^{(1)}\rho_{\Gamma}u’ b+c=0$ . Consider an element $g\in G_{0}^{(1)}$ ,

$g^{-1}=$
The image $L_{A}^{g}$ is given by $y-x+xa_{3}-a_{3}-bxa_{3}+ba_{3}=0$. Thus we can solve the
equation $a_{3}(1-b)-1=0$ in $a_{3}$ uniquely as $a_{3}=1/(1-b)$ as $b\neq 1$ . Thus $g\in G_{0}^{(1\rangle}$ is
unique if it fixes the singular points pointwise and thus $C’$ is also unique. It is easy to
see that the stabilizer of $N_{tu}^{(3)}\sigma\Gamma S$ is the cyclic group of order two generated by $\tau$ , as $C’$ is
even in $y$ (see the normal form below) and $C^{\prime \mathcal{T}}=C’$ for any $C’\in N_{t_{\mathit{0}}ru}^{(3}$

)
$S^{\cdot}$ Thus we have

$N_{t\circ r}^{()}2/us(G2\rangle\cong N_{tu}^{(}\mathrm{o}r3)s$ .
Consider the case $C\in N_{gen}^{(2)}$ . Then the images of the tangent cones at $A,$ $B$ by the action

of $g$ are given by $y-x+xa3-a_{3}-b_{Xa}3+ba_{3}=0$ and $y+x-Xa3+a_{3}-cxa_{3}+Ca_{3}$ respectively.
Assume that $b(C^{g})=C(c^{g})$ . Then we need to have $a_{3}(1-b)-1=a_{3}(-1-c)+1$ , which
has a unique solution in $a_{3}$ , if $(\star)b-c-2\neq 0$ . Assume that $c^{2}+3c-bc+3-3b+b^{2}=0$
and $b-c-2=0$. Then we get $(b, c)=(1, -1)$ which is excluded as it corresponds to non-
reduced sextic. Thus the condition $(\star)$ is always satisfied. Put $(b’, d):=(b(C^{g}), C(c^{g}))$ .
They satisfy the equality $d^{2}+3c’-b’d+3-3b’+b^{\prime 2}=0$ and $b’=d$ . Thus we have
either $b’=d=\sqrt{-3}$ or $b’=d=-\sqrt{-3}$. However in the second case, we can take the
automorphism $(x, y)arrow(x, -y)$ to change into the first case. Thus $b’=c’=\sqrt{-3}$ and
$C^{g}\in N_{gen}^{()}3$ as desired.
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3.1. Normal forms of curves of torus type. In [02], we have shown that a curve in
$N_{t_{\mathit{0}}r}^{(1)}us$ is defined by a polynomial $f(x,y)$ which is defined by a sum $f_{2}(x,y)^{3}+sf_{3}(x,y)^{2}$

where $f_{2}(x,y)$ is a smooth conic passing through $O,$ $A,$ $B,$ $f_{3}(x, y)=(y^{2}-X^{2})(x-1)$ and
$s\in \mathrm{C}^{*}$ .

Proposition 3.5. The direction of the tangent cones at $O_{y}$ $A$ and $B$ are the same vrith
the tangent line of the conic $f_{2}(x,y)=0$ at those points.

This is immediate as the multiplicity of $f_{3}(x,y)^{2}$ at $O,$ $A,$ $B$ are 4. See also Lemma 23
of [O2]. Assume that $C\in N_{t\circ}^{(3)}r\mathfrak{U}s$

’ that is, the tangent cones of $C$ at $O,$ $A$ and $B$ are
given by $x=0,$ $y-1=0$ and $y+1=0$ respectively. Thus the conic $f_{2}(x, y)=0$ is also
uniquely determined as $f_{2}(x, y)=y2+x^{2}-2X$ . This is the circle with radius 1, centered
at $(1,0)$ . Therefore $N_{torus}^{(3)}$ is one-dimensional and it has the representaion

(3.6) $C_{s}$ : $ft\sigma\Gamma us(_{X},y, S):=f2(x,y)^{3}+Sf3(x,y)2=0$

For $s\neq 0,27,$ $C_{s}$ is a sextic with three $(3,4)$ cusps, while $C_{27}$ obtains a node. As is easy
to see, if $g\in G^{(2)}$ fixes the tangent lines $y\pm 1=0$ , then $g=e$ or $\tau$ and $C_{s}^{\prime r}=c_{s}$ . Thus
$C_{s}\neq C_{t}$ if $s\neq t$ .

3.2. Normal form of sextics of non-torus type. For the moduli of non-torus type
sextic $N_{gen}$ , we start from the expression given in \S 4.1, [O2]. We may assume $b=c=$
$\sqrt{-3}$. Then the parametrization is given by

$f_{gen}(_{X}, y, s):=f_{\mathit{0}}(x, y)+Sf3(x,y)^{2}$ , $f_{3}(x, y)=(y-x^{2})2(x-1)$

where $s$ is equal to $a_{06}$ in [O2] and $f_{0}$ is the sextic given by

(3.7) $f_{0}(x, y):=y^{6}+y^{5}(6\sqrt{-3}-6\sqrt{-3}X)+y^{4}(35-76X+38x^{2})$

$+y^{3}(-24\sqrt{-3}x+36\sqrt{-3}x^{2}-12\wedge\sqrt{-3}x^{3})+y^{2}(-94_{X}2+200x^{3}-103x^{4})$

$+y(24\sqrt{-3}x^{3}-42\sqrt{-3}x4+18\sqrt{-3}x^{5})+64x^{3}-133X^{4}+68x^{5}$

Let $D_{s}:=\{f_{gen}(X, y, s)=0\}$ for each $s\in$ C. Observe that $D_{0}=\{f_{0}(x,y)=0\}$ is a sextic
with three $(3,4)$-cusps and of non-torus type. For the computational reason, we take the
substitution $y\mapsto y\sqrt{-3}$ to make the equationto be defined over rational numbers: Then
$f_{0}(x, y)$ and $f_{3}(x, y)$ change into:

(3.8) $f_{0}(x, y)$ $:=-27y^{6}+(-162+162x)y^{5}+(315-684_{X}+342x^{2})y4$

$+(-216_{X}+324x^{2}-108_{X^{3})y}3+(282X2-600X^{3}+309_{X^{4}})y^{2}$

$+(-54x5+126x^{4}-72x^{3})y+68x^{5}+64x^{3}-133_{X^{4}}$

$f_{3}(x,y):=-(x-1)(3.y+x^{2})3$

Summerizing the discussion, we have

Theorem 3.9. The quotient moduli space $N/G$ is one dimensional and $consi\mathit{8}ts$ of two
component8.
(1) The component $N_{toru}s/G$ has the normal form8 represented by the family of sextics
$C_{s}=\{f(x, y, S)=0\}$ where $f(x,y, s)=f_{2}(x,y)^{3}+sf_{3}(x,y)^{2}$ for $s\in \mathrm{C}^{*}$ and $s\neq 0,27$

where
$f_{2}(x,y)=y+X^{2}-22x$ , $f_{3}(x, y)=(y^{2}-x)2(x-1)$
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The curue $C_{54}$ is a unique curve in $N/G$ which $i_{\mathit{8}}$ self-dual.
(2) The $componentN_{gen}/G$ of sextics of non-torus type $ha\mathit{8}$ the normal form: $f_{gen}(x,y, s)=$

$f_{0}(x,y)+sf_{3}(x, y)^{2}$ where $f_{3}$ is $a\mathit{8}$ above and the $\mathit{8}exticf\mathrm{o}(x,y)=0$ is contained in $N_{gm}$ .
This component has no self-dual cume.

Proof of Theorem 3.9. We need only prove the assertion for the dual curves. The
proof will be done by a direct computation of dual curves using the method of \S 2, [O2]
and the above parametrizations. We use Maple V for the practical computation. Here
is the recipe of the proof. Let $X^{*},$ $Y^{*},$ $z*$ be the dual coordinates of $X,\mathrm{Y},$ $Z$ and let
$(x^{*}, y^{*}):=(X^{*}/Z^{*}, Y^{*}/Z^{*})$ be the dual affine coordinates.

(1) Compute the defining polynomials of the dual curves $C_{s}^{*}$ and $D_{s}^{*}$ respectively, us-
ing the method of Lemma 2.4, [O2]. Put gtorus $(X^{*}, ys)*,$ and $g_{gen}(xys)*,*$, the defining
polynomials.

(2) Let $G_{\epsilon}(X^{*}, \mathrm{Y}*, Z^{*}, S)$ be the homogenization of $g_{\epsilon}(xyS)*,*,,$ $\epsilon=$ torus or gen.
Compute the discriminant polynomials $\triangle_{Y}\cdot(G)$ which is a homogeneous polynomial in
$X^{*},$ $Z^{*}$ of degree 30 (cf. Lemma 2.8, [O1]). Recall that the multiplicity of the pencil
$X^{*}-\eta z^{*}=0$ passing through a singular point is generically given by $\mu+m-1$ where
$\mu,$ $m$ are the Milnor number and the multiplicity of the singularity $([\mathrm{O}2])$ . Thus the
contribution from a $(2,3)$ -cusp (respectively from a (3,4)-cusp) is 3 (resp. 8). Thus if
$C_{s}^{*}$ has three $(3,4)$ cusps, it is necessary that $\triangle_{Y^{*}}(G)=0$ has three linear factors with
multiplicity at least 8.

(3-1) For the non-torus curves, it is not possible to get a degeneration into 3 $(3,4)-$

cuspidal sextic.
(3-2) For the torus curves, we can see that $s=54$ is the only possible parameter. Thus

it is enough to show that $C_{54}^{*}\cong C_{5}4$ .
(4) The dual curve $C_{54}^{*}$ of $C_{54}$ is defined by the $\mathrm{h}\mathrm{o}\mathrm{m}o$geneous polynomlial

$G(X^{*}, Y^{*}, Z^{*})$ $:=$ $128X^{*5}z*+1376X^{*4}z^{*}2-192x^{*}3Y*z2*+4664X*3z*3-2x*2\mathrm{Y}*4$

$-1584x^{*2}Y^{*}2Z^{*2}+7090x^{*2*4}Z+58x^{*}\mathrm{Y}*4z*-3060x^{*}\mathrm{Y}*2Z*3$

$+5050x*z^{*5}+\mathrm{Y}^{*6}+349Y^{*4*}Z2-1725\mathrm{Y}^{*}2Z^{*4}+1375Z^{*6}$

We can see that $C_{54}^{*}$ has also 3 $(3,4)$-cusps. Moreover we can see that $C_{54^{*}}$ is isomorphic
to $C_{54}$ as $(C_{54}^{*})^{A}=C_{54}$ where

$A=$
3.3. Involution $\tau$ on $C_{54}$ . For the later purpose, we change the coordinates of $G$ so that
the three cusps of $C_{s}$ are at $O_{Z}:=(0,0,1),$ $\mathit{0}_{Y}:=(0,1,0),$ $O\mathrm{x}:=(1,0,1)$ . New normal
form in affine spce is given by $f(X, y, S)=f2(x, y)^{3}+sf_{3}(x, y)^{2}$ where

(3.10) $f_{2}(x,y):=xy-X+y$ , $f_{3}(x, y):=-xy$
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and $C_{54}$ is defined by $f(x, y)=(xy-x+y)^{3}-54X^{3}y^{3}=0$. In this coordinate, $C_{54}^{*}$ is
defined by

$-28y^{3}-17_{X^{4}}y^{2}-17Xy^{4}-228x^{33}y-2y5+1788x^{3}y+1788x^{2}\mathrm{y}-17y^{4}-17_{X^{4}}$

$+262xy+1788x^{23}y-1788Xy-262xy^{4}2+1788xy^{3}-1788X^{32}y-8166Xy^{2}2+28x^{3}$

$+262_{X^{4}}y-2_{X}5-y2xy^{5}+1-17y^{2}-17x2+2x^{5}+2x-2y+x^{6}+y^{6}=0$

It is easy to see that $(C_{54}^{*})^{A_{1}}=C_{54}$ where

$A_{1}:=(_{-1^{/}}^{-1}7/3/33$ $-1/37/31/3-1/3-7/31/3\mathrm{I}$

Let $F(X, Y, Z)$ be the homogenization of $f(x, y)$ . Then the Gauss map induces an au-
tomorphism dualc : $C_{54}arrow C_{54}^{*}$ which is defined by (X, $Y,$ $Z$) $\mapsto(F_{X}, F_{Y}, F_{Z})$ , where
$F_{X},$ $F_{Y},$ $F_{Z}$ are partial derivatives. We define an isomorphism $\tau$ : $C_{54}arrow C_{54}$ by the
composition of $\mathrm{d}\mathrm{u}\mathrm{a}1_{c_{5}}4$ and the linear map $\varphi_{A_{1}}$ : $C_{54}^{*}arrow C_{54}$ which is defined by the mul-
tiplication by $A_{1}$ from the right. $\tau$ is given by the restriction of the rational mapping:
$\Psi$ : $\mathrm{C}^{2}arrow \mathrm{C}^{2}$ . $(x.v)\mapsto \mathrm{r}_{x_{d}.\lrcorner_{d}}\prime 1$ and

Observe that $\mathcal{T}1\mathrm{S}$ derlned over $\mathrm{q}$ . $\mathrm{C}_{54}’$ has tllree tlexes 01 oraer $\angle$ at $F_{\dot{1}}:=(\perp, -\perp/4,1),$ $F_{2}$ $:=$

$(1/4, -1,1),$ $F_{3}.--(4, -4,1)$ and $\tau$ exchanges flexes and cusps:

(3.11) $\{$

$\tau(O_{X})=F_{1},$ $\tau(O_{Y})=F_{2},$ $\tau(O_{Z})=F_{3}$ ,
$\tau(F_{1})=o_{x,\tau}(F_{2})=O_{Y},$ $\tau(F_{3})=Oz$

Furthermore we assert that

Proposition 3.12. The morphism $\tau$ is an involution $C_{54}$ .

For the proof, we prepare a lemma. Let $C$ be a given irreducible curve in $\mathrm{P}^{2}$ defined
by a homogeneous polynomial $F(X, Y, Z)$ and let $B\in \mathrm{G}\mathrm{L}(3, \mathrm{C})$ . Then $C^{B}$ is defined by
$G(X,\mathrm{Y}, Z):=F((X, Y, Z)B-1)$ . Let dualc: $Carrow C^{*}$ be the Gauss map which is defined
by (X, $Y,$ $Z$ ) $\mapsto(F_{x}(x, Y, Z), FY(X, Y, z), F_{Z}(X, Y, z))$ .

Lemma 3.13. Two curve8 $(C^{B})^{*}$ and $(C^{*})^{t}B^{-1}$ coincide and the following diagram com-
mutes.

$carrow Carrow\iota_{B}\varphi_{B}l_{C^{B}}duaduab$

$(c)c*\mathrm{g}^{\varphi_{t}-}|B1*$

Proof. This is essentially the same as Lemma 2, [02]. The assertion follows from the
following equalities. Let $(a, b, c)\in C$ .

$\mathrm{d}\mathrm{u}\mathrm{a}1_{c}B(\varphi B(a, b, C))=(Gx(\varphi B(a, b, C)), G_{Y}(\varphi B(a, b, C)), c_{z}(\varphi B(a, b, C)))$

$=(F_{X}(a, b, c), F_{Y}(a, b, c), Fy(a, b, c))tB^{-}1=\varphi \mathrm{r}B-1(\mathrm{d}\mathrm{u}\mathrm{a}1c(a, b, c)$ $\square$
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Proof of Proposition 3.12. By the definition of $\tau$ , we have $(C:=C_{54})$ :
$\tau\circ\tau=$ ( $\varphi_{t}A_{1}^{-1\circ}$ dualc)2 $=(\mathrm{d}\mathrm{u}\mathrm{a}1_{c^{A}1}\circ\varphi_{A_{1}})\circ$ ( $\varphi_{t}A_{1}^{-1\circ}$ dualc) $=\mathrm{i}\mathrm{d}$

as $A_{1}$ is a symmetric matrix.
Of course, the same assertion is true for $C_{54}$ in the old normal form. $C_{54}$ has another

obvious involution $\iota$ : $C_{54}arrow C_{54}$ which is defined by $(x, y)\mapsto(x, -y)$ in the old normal
form. For the application to arithmetic prop.erty of cubic curves, see [O3].
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