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MODULI OF SEXTICS AND ITS GEOMETRY

MUTSUO OKA

W BEnE  BRORUERSL RSB

1. INTRODUCTION

Let M be the moduli space of sextics with 6 cusps and 3 nodes. A sextic C is called
of (2,3)-torus type if its defining polynomial f has the expression f(z,y) = fo(z,y)? +
fs(z,y)? for some polynomials fs, fs of degree 2, 3 respectively. Hereafter we simply say
of torus type in the sense of (2,3)-torus type. We denote by Miorys the component of
M which consists of curves of torus type and by M., the curves of non-torus type. We

" denote the dual curve of C' by C*. In our previous paper [02], we have shown that the
dual curve operation C +— C* gives an involution on M and it preserves the type of the
curve in M, ie., C* € Moy if and only if C € Miorus. Let N3 be the moduli space of
sextics with 3 (3,4)-cusps as in [02]. For brevity, we denote Nz by A'. We have shown
that A is in the closure of M and the dual curve C* of a generic C € N is a sextic with
6 cusps and three nodes i.e., C* € M ([02]). Let G := PGL(3,C). The quotient moduli
spaces are by definition the quotient spaces of the moduli spaces by the action of G.

In §2, we will study the quotient moduli space M /G and we will show that there exists
an involution 7 on M/G such that 7 is different from the dual curve operation and I
preserves the types of the sextics (Theorem 2.3).

In §3, we study the quotient moduli space N'/G. We will show that N'/G is one
dimensional and consists of two components Niorus/G and Ny, /G consisting of sextics
of torus type and non-torus type respectively. Using their normal forms, we show that
Niorus/G contains a unique sextic which is self dual (Theorem 3.9).

2. INVOLUTION ON THE QUOTIENT MODULI M/G

Let M and M be the moduli space of sextics with three nodes and 6 cusps and the
~moduli space of irreducible plane curves of degree 12 with 24 cusps and 24 nodes respec-
tively. Note that the genus of a generic curve in M (respectively in Mv) is 1 (resp. 7).
By the class formula ([N] or [02]), it is easy to see that for a generic C € M, the dual
curve C* is also in M. We consider the mapping '

PP P? (X,Y,Z) - (X2, Y, 27
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which is a 4-fold covering branched along the coordinate axes {X = 0} U{Y = 0} U
{Z = 0}. Take a generic curve C € M and let F(X,Y, Z) be the defining homogeneous
polynomial of degree 6. As C* has three nodes, C has three bi-tangent lines. We denote
by M™™ the subset of M which consists of curves C € M whose three bitangent lines
are X = 0, Y = 0 and Z = 0. We define a mapping ¢ : M™™ — M as follows.
Let C € M™ and let F(X,Y,Z) be the defining homogeneous polynomial. We define
#(C) := 7~1(C). Note that 3(C) is defined by F(X,Y, Z) := F(X?Y?,2%). Each cusp
of C produces 4 cusps on #(C). Thus 9(C) has 24 cusps. Each node of C also gives 4
nodes on 1(C), thus we get 12 nodes on 9(C) which are mapped onto the nodes of C.
As the restriction of 7 to the affine chart {Z # 0} is the composition of double coverings
(z,y) — (z,9%) and (z,y) — (z%,y), each simple tangent on the coordinate axis X =0,
Y = 0 gives 2 nodes on t(C). This is the same for the simple tangents for Z = 0. Thus
there are 12 nodes on % (C) which are on the three coordinate axes and they are mapped
to simple tangents on coordinate axis by 7. Thus ¢(C) has 24 nodes. Thus %(C) € M.

Now for C € M, we define 9(C) as 1(C?) by choosing & g € G such that C? € M
The ambiguity for the choice of g € G are in the stabilizer Gpgnm: of M™ which is
a direct product of &3 (the permutations of coordinates) and C* x C* x C* (scalar
multiplications). Thus the polynomial F(X,Y,7) is also unique up to a Gpg=m action,

and therefore F(X,Y, Z) is also unique up to a G pm action. Thus ¥: M/G - M/G
is well-defined.

Recall that a polynomial F(X,Y,Z) is called even in X (respectively symmetric in
X,Y)if F(-X,Y,Z) = F(X,Y,Z) (resp. F(Y,X,Z) = F(X,Y,Z)). Thus the polyno-
mial F(X?,Y?, Z%) iseven in X,Y, Z. '

Assume that C € M is defined by F(X,Y,Z) = 0. If F is a even polynomial in the
variable X ( respectively a symmetric polynomial in X,Y’), then 6 cusps are stable by
the involution (X,Y, Z) — (=X,Y, Z) (respectively (X,Y,Z) ~ (Y, X, Z)). Then there
exists a homogeneous polynomial F»(X,Y, Z) of degree 2 which is even in X (respectively
symmetric in X,Y’) such that the conic F5(X,Y, Z) = 0 passes through the 6 cusps of C.
By the criterion of Degtyarev [D], the sextic F(X,Y, Z) = 0 is of torus type.

Now we take a generic C € M™™ and consider the dual curve %(C)* and let
é(X *.Y*, Z*) be a defining homogeneous polynomial of degree 12, where (X*, Y™, Z*) is
the dual coordinates of (X,Y,Z). As F(X,Y,Z) is even in X,Y, Z, so is G(X*,Y™, Z%)
in X,Y,Z :

Proposition 2.1. 9(C)* has 4 nodes on each coordinate azis X* =0, Y* =0 or 2* = 0.

Proof Let C = {F(X,Y,Z) = 0} and let us consider the discriminant polynomial
AyF(X,Z). This is a homogeneous polynomial of degree 30 ([O1]). We assume that the
singularities of the sextic F(X,Y,Z) = 0 are not on the coordinate axis. Assume that
P := (a,B,7) € C is a singular point of C with Milnor number p and multiplicity m.
Then AyF(X,Z) has a linear term (yX — aZ)? with p > p+m — 1 and the equality
holds if the line Y — BZ = 0 is generic with respect to C (see [02]). Thus to each
cusp (respectively to each node), there is an associated linear term with multiplicity 3
(resp. with multiplicity 2). The factor X = 0 and Z = 0 has also multiplicity 2 in
AyF(X,Z) = 0, as they are bi-tangent lines. Assume C is generic in M. Then the
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sum of degrees is 18-6+4=28 by the above consideration. Thus there exists two simple
tangent lines of the form X —mZ = 0 and X — 7:Z = 0 for some 71,72 # 0. Then
four lines X = =+,/7m;Z,4 = 1,2 are bitangent lines for the curve 4(C). This implies that
(1,0,%£/m), i = 1,2 are nodes of the dual curve ¥(C)*. Thus the coordinate axis Y* = 0
contains 4 nodes of ¥(C)*. By the same argument, X* = 0 and Z* = 0 contains also 4
nodes respectively. O

Definition 2.2. For C € M™™, we define a polynomial of degree 6 by G(X*,Y*, Z*) :=
G(VX*,V/Y*,/Z*) and we define t(C) by the sextics defined by G(X*,Y*, Z*) = 0. For
C € M, take g € G so that C9 € M™™ and we define an involution 7 : .M/G - M/G
by UC) = «(C?).

Claim 1. 7(C) € M for a generic C € M and 7 is an involution which preserves the type
of sextics, that is we have the commutative diagram:

M/G -:‘“> -M/G Mtarus/G "'_) Mtorus/G

Joo b v

MG 2L MIG Mious/G 23 Miopus/G

Proof. We may assume that C € M™™. By the above consideration, we have seen
that the dual curve ¥(C)* of 1(C) is defined by a polynomial G(X*,Y*, Z*) of degree 12
which is even in each of the three variables and it has 24 cusps and 12 nodes outside of
coordinate axis and 4 nodes on each coordinate axis. Thus ¢+(C) has 6 cusps and 3 nodes.
Note that nodes of ¢/(C)* on the coordinate axes are mapped on simple tangents on the
corresponding coordinate axes of ¢(C). Thus the curve «(C), defined by g(v/z*, v/5*) = 0,
belongs to M™™. Finally we will show that ¢ keeps the type of the curve. As the
curves {I(C); C € Morus/G} are topologically equivalent, the image is contained in a
connected component. Thus it is enough to show that there exists a C' € Miorus/G such
that 7(C) € Miorus/G. To see this, it is enough to take C € MP™  whose defining
polynomial F(X,Y, Z) is symmetric in each of X,Y. Then F(X,Y, Z) is also symmetric
in X,Y. This implies also that G(X*,Y*, Z*) and G(X*,Y*, Z*) symmetric in X*,Y*.
By the Degtyarev’s criterion, this implies that ¢(C) is a sextic of torus type. The following
example shows that (C) # C* in general. O

Thus we have proved the following:

Theorem 2.3. There exists an involution T on the quotient moduli space M /G such that
U 1s different from the dual curve operation and T preserves the types of the sextics, that
iS Z(C) E MtO'I"U,S/G @ O E Mtorvu,s/G.

Example 2.4. Let C € M™% be the sextic defined by the symmetric polynomial:

fi= —684(3: y -+ zy®) — 1055(2® + ) + 2235(x? + y?) — 2178(a:+y)+ 8 (z5y + y°z) +
1967 (492 4 2y) 4 88Ly3p0 4 40506 | o6y 81355 1 )+2oo1( ) — 971($ Y+ zyt) —
-6947y2x2 + 2268 + 1038(z%y + zyz) — 4883yz — 3 (z%y® + x3y2).

Then 4(C) is defined by f(z?,y?) and ¥(C)* is defined by g(z*?,3**) = 0 a.nd t(C) is
the sextic defined by the symmetric polynomial

g(z*,y*) := 908294z*2y*2 — 354000(z*y*2 + z*2y*) + 302745(y** + £**) + 529284 (z*4y*2 +
y*43*?) — 396458 (z* y* 4 +yr ) — 722148 (2* y* 2 +y*32*2) + 11340(y* S +2*6) — 109170(z*5 +
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y*5)+862967" y*+482724(z*y* +1*31*) — 158508 (y* *°+y*°2*)+103096y* 2** — 22230 (z* +
y*) — 203920(y*2 + 2*°) + 90570(y** + z*%) + 2025
The dual curve C* of C is defined by the following symmetric polynomial and we can
easily check that 7(C) # C*.

h(.’E*,'y* i 3($*4+y*4)+14($*3+y*3)+3($*2 +y*2) +4(y*$*4+$*y*4)+36(y*$*3+
m*y*3) + 6(y*.’1,'*2 +x*y*2) _ 2y*$* + 12(,9*21:*4 +$*2y*4) +84(y*2$*3 +$*2y*3) + 14y*2x*2 +
88‘y*3$*3 +4’y*433*

3. NORMAL FORMS OF THE MODULI N

We consider the submoduli N'® of the sextics whose cusps are at O := (0,0), A := (1,1)
and B := (1, —1). Under the action of G, every sextic in A" can be represented by a curve
in N®. Consider the stabilizer group GO := {g € G;gN®) = NV}, By an easy
computation, we see that G is the semi-direct product of the group Gf,l) and and a
finite group K where K is a finite linear subgroup of G, isomorphic to the permutation
group Ss, and G((,l) is defined by

ai (15)) 0

GV = {M= ( az o 0) € G;as(a? — a3) # 0}

a;—az a2 as

which fix singular points pointwise. Note thet Gf)l) is normal in G®. The isomorphism
K = 8s is given by identifying g € K as the permutation of three singular locus O, A, B.
We will study the normal forms of the quotient moduli N'/G = NV /G®.

Lemma 3.1. For a given line L := {y = bz} with b* — 1 # 0, there exists M € Gf,l) such
that LM is given by z = 0.

Proof. By an easy computation, the image of L by the action of M~!, where M is
as above, is defined by (a; — bas)y + (a2 — ba1)z = 0. Thus we take a; = baz. Then
a? — a2 = ai(b* — 1) # 0 by the assumption. O

Lemma 3.2. The tangent cone at O is noty £x =0 for C € NO,

Proof. Assume for example that y — z = 0 is the tangent cone of C at O The
intersection multiplicity of the line L; := {y —2z =0} and C at O is 4 and thus L,-C > 7,
an obvious contradiction to Bezout theorem. a

Let N@ be the subspace of NV consisting of curves whose tangent cone at O is given
by z = 0. Let G® be the stabilizer of N@. By Lemma 3.1 and Lemma 3.2, we have the
isomorphism : :

Corollary 3.3. NO /GO 2 N® /GO,



91

It is easy to see that G? is generated by the group ng) =GOn G’((,l) and an element
T of order two defined by 7(z,y) = (z, —y). Note that

aq 0 0
CP={M=| 0 a 0]ecGP auas#0}

ay — as 0 a3z

For C € N®, we associate complex numbers b(C),c(C) € C which are the direc-
tiections of the tangent cones of C at A, B respectively. This implies that the lines
y—1=0bC)(z—1) and y +1 = ¢(C)(xz — 1) are the tangent cones of C at A and B
respectively. We have shown that C € A@{f)m if and only if b(C) + ¢(C) = 0 and C is not
of torus type if and only if ¢(C)? + 3¢(C) — b(C)c(C) + 3 — 3b(C) + b(C)* = 0 (84, [02]).

We consider the subspaces:

Ny ={C e N2,;b(0) =1}, NO, :={C e N&;b(C) = ¢(C) = v/=3)

and we put N® = N&. UNE).

Remark . The common solution of the both equations: b+c¢ = c2+3c—bc+3—3b+b% =0
is (b,c¢) = (1, —1) and in this case, C' degenerates into two non-reduced lines (y%—22)2 = 0
and a conic.

Lemma 3.4. Assume that C € N®. Then there exists ¢! € N® and an element
g € G® such that C9 = C' and such a C' is unique. This implies that

Nicrus/G = Nighis/ G 2= Nighsyy  Noen/G =2 NEJGD 2 N
Proof. Assume that C € N{2. . b+ c=0. Consider an element g€ G(l)

torus’

' 1 0 0
g'= 0o 1 0
1—-(13 0 as

The image L7, is given by y — & + zas — az — bras + bas = 0. Thus we can solve the
equation az(1 — b) — 1 = 0 in a3 uniquely as a3 = 1/(1 —b) as b# 1. Thus g € G’( ) is
unique if it fixes the smgular points pointwise and thus C’ is also unique. It is easy to
see that the stabilizer of .N;,ms is the cyclic group of order two generated by 7, as C’ is
even in y (see the normal form below) and C'" = C’ for any C' € N;(o,)us Thus we have
NG = NED,

Consider the case C € f\/’éf,), Then the images of the tangent cones at A, B by the action
of g are given by y—z+za3—az—braz+bas = 0 and y+z—zas+as—crastcas respectively.
Assume that b(C?) = ¢(C?). Then we need to have as(1 —b) — 1 = az(—1 —¢) + 1, which
has a unique solution in a3, if (x) b—c—2# 0. Assume that 2 +3c—bc+3—3b+ b2 =
and b—c~2 = 0. Then we get (b,c) = (1, —1) which is excluded as it corresponds to non-
reduced sextic. Thus the condition (x) is always satisfied. Put (¥,c) := (b(C9), c(C9)).
They satisfy the equality ¢’ + 3¢ —bd+3—3Y +b*=0and ¥ = . Thus we have
either b = ¢ = /=3 or ¥ = ¢ = —/=3. However in the second case, we can take the
automorphism (z,y) — (z, —y) to change into the first case. Thus b’ = ¢ = /=3 and
C9¢ ./\/;,(632, as desired. | O
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3.1. Normal forms of curves of torus type. In [02], we have shown that a curve in
N is defined by a polynomial f(z,y) which is defined by a sum fa(z,y)° + s fa(z,y)?
where f(z,y) is a smooth conic passing through O, A, B, fs(z,y) = (y* — 2*)(z — 1) and
s e C". :

Proposition 3.5. The direction of the tangent cones at O, A and B are the same with
the tangent line of the conic fo(z,y) = 0 at those poinis.

This is immediate as the multiplicity of fa(z,y)? at O, A, B are 4. See also Lemma 23
of [02]. Assume that C € N, ®  that is, the tangent cones of C at O, A and B are

torus?
given by £ = 0, y — 1 = 0 and y + 1 = 0 respectively. Thus the conic fa(z,y) = 0 is also
uniquely determined as fa(z,y) = y* + 2 — 2z. This is the circle with radius 1, centered

at (1,0). Therefore /\/;f’,)us is one-dimensional and it has the representaion

(3.6) Cs: frorus(,y,8) == fZ(xay)3 + 5f3(a77y)2 =0

For s # 0,27, C, is a sextic with three (3,4) cusps, while Cy7 obtains a node. As is easy
to see, if ¢ € G fixes the tangent lines y = 1 = 0, then g = e or 7 and C] = C,. Thus
C,#£Ciif s#t. .

3.2. Normal form of sextics of non-torus type. For the moduli of non-torus type
sextic Nyen, we start from the expression given in §4.1, [02]. We may assume b = ¢ =
v/—3. Then the parametrization is given by

foen(,,8) = fo(@,y) + sfa(z,)’s  falz,9) = (" —2*)(@—1)
where s is equal to age in [O2] and fy is the sextic given by
(3.7) folz,y) ==y + y3(6v/—3 — 6/=3z) + y*(35 — 76z + 382?)
+y3(—=24v/ =3z + 36v/=32% — 12/=37°%) + y*(—942® + 200z° — 103z*)
+y(24v/=3z% — 42¢/=3z* 4 18y/=32°) + 642° — 1332* + 68°
Let D, := {fyen(x,y,s) =0} for each s € C. Observe that Do = {fo(z,y) = 0} is a sextic
with three (3,4)-cusps and of non-torus type. For the computational reason, we take the

substitution y — y+/—3 to make the equationto be defined over rational numbers: Then
fo(z,y) and f3(z,y) change into: ,

(3.8)  folz,y) = —27y5 + (~162 + 162z)y® + (315 — 684x + 3422%)y*
+(—216z + 3242 — 1082%)y® + (28222 — 600z + 309z*)y?
+(—54a° + 1262* — 722%)y + 682° + 642 — 133z*
fa(z,y) = —(z - 1)(3y* + 2?)
Summerizing the discussion, we have

Theorem 3.9. The quotient moduli space N'/G 1is one dimensional and consists of two
components.

(1) The component Niorus/G has the normal forms represented by the family of setics
C, = {f(z,y,8) = 0} where f(z,y,5) = fa(x,9)* + sfs(z,y)* for s € C* and 5 # 0,27
where

falay) =+ =2, falz,y) = (1 — )z - 1)
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The curve Csq is a unique curve in N'/G which is self- dual

(2) The component ./Vgen /G of sextics of non-torus type has the normal form: foen(z,y, s)
fo(z,y) + sfs(z,y)? where f3 is as above and the sextic fo(@,y) = 0 is contained in Nyen
This component has no self-dual curve.

Proof of Theorem 3.9. We need only prove the assertion for the dual curves. The
proof will be done by a direct computation of dual curves using the method of §2, [02]
and the above parametrizations. We use Maple V for the practical computation. Here
is the recipe of the proof. Let X*,Y™* Z* be the dual coordinates of X,Y,Z and let
(z*,y*) := (X*/Z*,Y*/Z*) be the dual affine coordinates.

(1) Compute the defining polynomials of the dual curves C* and D respectively, us-
ing the method of Lemma 2.4, [02]. Put giorus(z*, 4", s) and ggen(z*,7*, ) the defining
polynomials.

(2) Let Ge(X*,Y*,Z*,s) be the homogenization of g.(z* y* ), € = torus or gen.
Compute the dlscnmmant polynomials Ay«(G) which is a homogeneous polynomial in
X*,Z* of degree 30 (cf. Lemma 2.8, [O1]). Recall that the multiplicity of the pencil
X X nZ* = 0 passing through a singular point is generically given by u + m — 1 where
p,m are the Milnor number and the multiplicity of the singularity ([02]). Thus the
contribution from a (2,3)-cusp (respectively from a (3,4)-cusp ) is 3 (resp. 8). Thus if
C7 has three (3,4) cusps, it is necessary that Ay»(G) = 0 has three linear factors with
multlphmty at least 8.

(8-1) For the non-torus curves, it is not possible to get a degeneration into 3 (3,4)-
cuspidal sextic.

(3-2) For the torus curves, we can see that s = 54 is the only possible parameter. Thus
it is enough to show that C¥, = Cs,.

(4) The dual curve CZ, of Cs4 is defined by the homogeneous polynomial

G(X*,Y*, Z*) = 128X*°Z* + 1376 X**Z*%2 — 192X*3Y+2Z* + 4664X*3Z*3 — 2 X*2y*4
—1584X*2Y*2 7*2 4 7090X*27** + 58 X*Y*4Z* — 3060X*Y*2Z*3
+5050X*Z*° + Y* + 349}/*42*2 — 1725Y*2Z** + 13752*8

We can see that CZ, has also 3 (3,4)-cusps. Moreover we can see that C54" is isomorphic
to 054 as (O ) = 054 where

—4/3 0 -5/3
A= 0o 1 o0
~5/3 0 —13/3

3.3. Involution 7 on Cs. For the later purpdse, we change the coordinates of G so that
the three cusps of C, are at Oz := (0,0, 1), Oy := (0,1,0),Ox := (1,0,1). New normal
form in affine spce is given by f(x,y,s) = fo(z,y)% + s fg(a'; y)? where

(310) f2(may) = my—x+y: f3(xay) =Y
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and Cs4 is defined by f(z,y) = (zy — = + y)® — 542343 = 0. In this coordinate, C2, is
defined by
—28y® — 17z%y? — 172%y* — 28a%y® — 2y + 17882y + 17882y — 17y* — 17z
+262xy + 178822y° — 1788xzy* — 262zy* + 1788zy° — 17882%y? — 816622y + 281°
+262z%y — 200y — 2zy® + 1 — 1Ty2 — 1722 + 225 + 22 — 2y + 2+ 95 = 0

It is easy to see that (C%,)4* = Cs4 where

-1/3 7/3 -1/3

A =1 7/3 -1/3 1/3

~1/3 1/3 -7/3
Let F(X,Y,Z) be the homogenization of f(z,y). Then the Gauss map induces an au-
tomorphism dualc : Cs4 — C¥, which is defined by (X,Y,Z) — (Fx, Fy, Fz), where
Fx, Fy, Fy are partial derivatives. We define an isomorphism 7 : Cs4 — Csq4 by the
composition of dualg,, and the linear map @4, : C5, — Cs4 which is defined by the mul-
tiplication by A; from the right. 7 is given by the restriction of the rational mapping:
¥:C? - C? (z,9) = (z4,ys) and

Lo = (—-y3+4m2—m2y3+433y2—-8z3y—4z2y2—8:cy—4zy2——2:::y3+109:r:2y+4y2+423)
d = (—4y3+x? —4z2y3 +423y% — 803 y—109x2y? — 2y —dzy? —Szy3 +z2yty? +4a3)

 —(—4P 422 —dx? B aBy? — 223y~ 422y? —8xy—109zy? —8zy® +4x2y+4y° +3)
Ya += (—4y3 42?2 —4x2y3 +4a3y2 —823y—10922y2 —2zy—dxy? —8zy> +4x2y+y? +4x3)

Observe that 7 is defined over Q. Cs4 has three flexes of order 2 at Fy := (1,—1/4,1), Fp :=
(1/4,-1,1), F3:= (4,—4,1) and 7 exchanges flexes and cusps:
T(OX) - Fl’T(OY) - F27T(OZ) - FS)
7(F1) = Ox,7(Fy) = Oy, 7(F3) = Oz

Furthermore we assert that

(3.11)

Proposition 3.12. The morphism T is an involution Cs,.

For the proof, we prepare a lemma. Let C be a given irreducible curve in P? defined
by a homogeneous polynomial F(X,Y, Z) and let B € GL(3,C). Then C? is defined by
G(X,Y,Z) = F((X,Y,Z)B™). Let dualg : C — C* be the Gauss map which is defined
by (X,Y, %) — (Fx(X,Y, 2), Fy(X,Y, Z), Fz(X.Y, 7)).

Lemma 3.13. Two curves (CB)* and (C*)'B™" coincide and the following diagram com-
mutes. ‘

duale
l#5,, Lo
CB 1i9_)3 (CB)*

Proof. This is essentially the same as Lemma 2, [O2]. The assertion follows from the
following equalities. Let (a,b,c) € C. '
dualgs (SOB(Q, b, C)) = (GX((»OB(G': b, C))7 GY(SOB((% b, C)), GZ((PB(G, b, C)))
= (Fx(a,b,c), Fy(a,b,c), Fy(a,b,c))B™! = ptp-1(duale(a,b,c) O
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Proof of Proposition 8.12. By the definition of 7, we have (C := Csy):
ToT = (pry-1 0 dualc)? = (dualga; © wa,) 0 (peg-1 0 duale) = id

as A; is a symmetric matrix. O

Of course, the same assertion is true for Cs4 in the old normal form. Cs, has another
obvious involution ¢ : Cs4 — Cs4 which is defined by (z,y) + (z,—y) in the old normal
form. For the application to arithmetic property of cubic curves, see [03].
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