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We consider the equation which describes the motion of compressible viscous fluid.
The equation is given by the following system of four equations for the density $\rho$ and
the velocity $\mathrm{v}=T(v_{1}, v_{2,3}v)$ :

(1.1) $\{$

$\rho_{t}+\mathrm{d}\mathrm{i}\mathrm{V}(\rho \mathrm{v})=0$,
$\rho(\mathrm{v}_{t}+(\mathrm{v}\cdot\nabla)\mathrm{V})-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(\mathrm{v},p)=0$,

where $T(v_{1}, v_{2}, V3)$ is the transposed $(v_{1}, v_{2}, v_{3})$ and $p=p(\rho)$ the pressure. By $\mathrm{T}(\mathrm{v},p)$

denote the stress tensor of the form

$\mathbb{T}(\mathrm{v},p)=\{\mu(\partial xjv_{j}+\partial xjjv)+(\nu-\mu)\delta ij\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v}-\delta ijp\}_{i},j=1,2,\mathrm{s}$ ,

where $\mu$ and $\nu(\nu>\frac{1}{3}\mu>0.)$ are constant viscosity coefficients.
We consider the initial boundary value problem (IBVP) of (1.1) in the region $t\geqq$

$0,$ $x\in\Omega$ where $\Omega$ is an domain in $\mathbb{R}^{3}$ with compact smooth boundary $\partial\Omega$ . The boundary
condition is supposed by

(1.2) $\mathrm{v}|_{\partial\Omega}=0$ ,

and the initial condition is given by

(1.3) $(\rho, \mathrm{v})(\mathrm{O}, x)=(\rho_{0}, \mathrm{V}\mathrm{o})(X)$ in $\Omega$ .

I. Global in time existence theorem.

The first results concerning the global in time existence for the Cauchy problem
for the equations of viscous compressible and heat conducting fiuids were obtained
by Matsumura and Nishida [11]. The corresponding results for an initial boundary
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value problem for the same equations was also showed by Matsumura and Nishida [12].
They considered a half space and an exterior domain, and they assumed that initial
density, velocity and temperature are from $H^{3}(\Omega)$ . Valli in [15] improved the results
for barotropic case showing global in time existence for an arbitrary bounded domain
$\Omega\subseteq \mathbb{R}^{3}$ , for initial density and velocity from $H^{2}(\Omega)$ . Recently, Kawashita [6] considered
the Cauchy problem in $\mathbb{R}^{3}$ and proved the unique existence of the solutions for initial
data from $H^{2}(\mathbb{R}^{3})$ . The global in time existence results from [6,11,12,15] follows $\mathrm{h}\mathrm{o}\mathrm{m}$

some a priori estimate which proof depends heavily on the $L_{2}$ approach. However, the
results are not sharp in the $L_{2}$ hamework, where by sharp we mean that the existence
results can not be proved with less regularity imposed on the data.

The following result is joint work with prof. W.Zajaczkowski1. Our result is sharp
for the $L_{2}$-approach and this is the reason why the fractional derivatives spaces have
not been used. However this pressured us to use the Lagrangian coordinates which are
not appropriate for problems in fixed domains.

Let $\Omega$ be an bounded domain with smooth compact boundary $\partial\Omega$ . From (1.1) and
(1.3) it follows that the total mass of the fluid in $\Omega$ is conserved,

$\int_{\Omega}\rho dx=M=\int_{\Omega}\rho_{0}dx$ .

We give the existence of global in time solutions which are close to the equilibrium
solution,

$\mathrm{v}_{e}=0,$ $\rho_{e}=\frac{M}{|\Omega|}$ ,

where $|\Omega|=\mathrm{v}\mathrm{o}\mathrm{l}\Omega$. The proof basis on a local existence result from [1] and on the
prolongation technique from [14]. To recall the result from [1] we have to introduce the
Lagrangian coordinates which are initial data to the following Cauchy problem

$\frac{\partial \mathrm{x}}{\partial t}=\mathrm{v}(t, X),$ $\mathrm{x}|_{t=0}=\xi\in\Omega$ .

Integrating above equation, we obtain the relation between the Eulerian $\mathrm{x}$ and the
Lagrangian $\xi$ coordinates

$\mathrm{x}=\xi+\int_{0}^{t}\mathrm{u}(\xi, \tau)d_{\mathcal{T}}\equiv \mathrm{x}_{\mathrm{u}}(\xi, t)\equiv \mathrm{X}(\xi, t)$ ,

where $\mathrm{u}(\xi, t)=\mathrm{v}(\mathrm{x}(\xi, t),$ $t)$ . Moreover, we introduce $\eta(\xi, t)=p(\mathrm{x}(\xi, t),$ $t),$ $q(\xi, t)=$

$p(\eta(\xi, t))$ . To prove global existence we have to control a variation of the solution in a
neighborhood of the equilibrium solution. For this purpose we introduce

$\rho_{\sigma}=\rho-\rho_{e},$ $p_{\sigma}=p-p_{e}$ ,
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where $p_{e}=p(p_{e})$ . Then (1.1) implies

where $q_{\sigma}=q-p_{e}$ , and

$\eta_{t}+\eta \mathrm{d}\mathrm{i}\mathrm{v}_{\mathrm{u}}\mathrm{u}=0$ in $\Omega^{T}$ ,
$\eta|_{t=0}=\mathrm{v}0$ in $\Omega$ ,

where $\nabla_{\mathrm{u}}=\xi_{ix}\partial_{\xi_{i}},$ $\mathbb{T}_{\mathrm{u}}(\mathrm{u}, q_{\sigma})=-q_{\sigma}I+\mathrm{D}_{\mathrm{u}}(\mathrm{u}),$ $I$ is the unit matrix and the operator
$\mathrm{D}_{\mathrm{u}},$ $\mathrm{d}\mathrm{i}\mathrm{v}_{\mathrm{u}}$ are obtained from $\mathrm{D}(\mathrm{v})=\{\mu(\partial_{x_{j}j}v+\partial_{x_{j}}v_{j})+(\nu-\mu)\delta_{i}j\mathrm{d}\mathrm{i}_{\mathrm{V}\mathrm{V}\}_{i}},j=1,2,\mathrm{s}$ and $\mathrm{d}\mathrm{i}\mathrm{v}$

replacing $\nabla$ by $\nabla_{\mathrm{u}}$ .
Finally we introduce the notation and spaces in this section. By $H^{k+\alpha,k/+}2\alpha/2(\Omega^{\tau})$ ,

we denote a Hilbert space with the norm

$||u||^{2}H^{k+} \alpha,k/2+\alpha/2(\Omega^{\tau})=\sum_{i|\beta|+2\leq k}||\partial\beta\partial_{t}^{i}u|x|_{L}2)2(\Omega^{\tau}$

$+ \sum_{|\beta|=k}\int_{0}\tau\int_{\Omega}\int\Omega\frac{|\partial_{x}^{\beta}u(t,x)-\partial\beta(x\prime ut,X’)|2}{|x-x’|3+2\alpha}dxdxd/t$

$+ \int_{\Omega}\int_{0}^{T}\int_{0}^{T}\frac{|\partial_{t}^{[k/2}]u(t,X)-\partial_{t}[k/2]u(t’,x)|2}{|t-t|1+\alpha+k-2[k/2]},’ dXdtdt’$,

where $k\in \mathrm{N}\cup\{0\},$ $\alpha\in(1/2,1)$ and $[n]$ the integer parts of $n$ . Similarly we can introduce
the norm $H^{k+\alpha}(\Omega)$ . Then we have

Theorem 1. Assume that the bounded domain $\Omega$ is not rotationally symmetric, $\rho_{0}$ ,
$\mathrm{v}_{0}\in H^{1+\alpha}(\Omega),$ $\frac{1}{\rho_{0}}\in L_{\infty}(\Omega),$ $p\in C^{2},$ $\alpha\in(\frac{1}{2},1)$ and $\mathrm{x}=\mathrm{x}_{\mathrm{u}}(\xi, t)$ determines the trans-
formation between the Eulerian and Lagrangian coordinates. Assume that $||\mathrm{v}0||_{H(\zeta\iota}1+\alpha$) $f$

$||\rho 0-\rho_{e}||H1+\alpha(\Omega)$ are sufficiently small. Then there exists a global solution to the problem
$(1.1),(1.2)$ and (1.3) such that

$\mathrm{u}\in H^{2\alpha,1\alpha}++/2(\Omega^{t})$ , $\eta\in H^{1+}\alpha,1/2+\alpha/2(\Omega^{t}),$ $t\in \mathbb{R}^{+}$ ,

where $\mathrm{u}(\xi, t)=\mathrm{v}(\mathrm{X}_{\mathrm{u}}(\xi, t),$ $t)$ , and $\eta(\xi, t)=\rho(\mathrm{x}_{\mathrm{u}}(\xi, t),$ $t)$ .

II. Asymptotic behavior for solutions.

Concerning the decay rate of solutions in the Caucy problem case, Matsumura and
Nishida [11] showed that if the $L_{1}(\mathbb{R}^{3})\cap H^{4}(\mathbb{R}^{\mathrm{s}})$ -norm of the initial data are sufficiently
small, then

$||(p-\overline{\rho}_{0}, \mathrm{V})||_{H^{2}()}\mathbb{R}^{3}=O(t^{-\frac{3}{4})}$ as $tarrow\infty$ .
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Also Ponce [13] showed that if the $W_{1}^{s_{\mathrm{O}}}(\mathbb{R}3)\cap H^{s_{0}}(\mathbb{R}^{3})$ -norm ( $s_{()}\geqq 4$ , integer) of the
initial data are sufficiently small, then

$|| \partial_{x}^{\alpha}(p-\overline{p}0, \mathrm{v})||_{L_{p}}(\mathbb{R}^{3})=O(t^{-}\frac{3}{2q}-\frac{|\alpha|}{2})$ as $tarrow\infty$

where $p\geqq 2,1/p+1/q=1$ and $|\alpha|\leqq 2$ . Recently, Hoff and Zumbrun $[4,5]$ , Liu and Wang
[10] they showed that if the $L_{1}(\mathbb{R}^{3})\cap H^{4}(\mathbb{R}^{3})$-norm of the initial data are sufficiently
small, then

$||(\rho-\overline{\rho}_{0}, \mathrm{V})||_{L}p(\mathbb{R}^{3})=\{$

$O(t^{-\frac{3}{2}()}- \frac{1}{p})1$ $2\leqq p\leqq\infty$ ,
$O(t^{-\frac{3}{2}(-}1 \frac{1}{p})+\frac{1}{2}(\frac{2}{\mathrm{p}}-1))$ $1\leqq p\leqq 2$ ,

as $tarrow\infty$ . As was already stated, the case of half-space or exterior domain has been
studied by Matsumura and Nishida [12]. They proved the global in time existence
theorem for small initial data in $H^{3}(\Omega)$ and showed that the $L_{\infty}$-norm of solutions
vanishes as $tarrow\infty$ . Deckelnick $[2,3]$ proved the following decay rate:

$||\partial_{x}^{1}(p, \mathrm{v})||_{L_{2(\Omega)}}=O(t^{-\frac{1}{4}})$ as $tarrow\infty$ ,

$||\rho-\overline{\beta}_{0}||_{L_{\infty}(\Omega)}=O(t^{-\frac{1}{8})}$ as $tarrow\infty$ ,

$||\mathrm{v}||_{L_{\infty}()}\Omega=O(t^{-\frac{1}{4})}$ as $tarrow\infty$ .

But this rate is weaker compared with the decay rate obtained by Matsumura and
Nishida [11] and Ponce [13] in Cauchy problem case, because the initial data are assumed
to be in $H^{3}(\Omega)$ only.

The following result is joint work with Prof. Y.Shibata2. Our result gives an optimal
rate in the case that the initial data belong to $L_{1}(\Omega)$ , which is corresponding $\lrcorner\iota \mathrm{O}$ the rate
in the Cauchy problem case which was obtained by Matsumura and Nishida [11], Ponce
[13], Hoff and Zumbrun $[4,5]$ and Liu and Wang [10]. Moreover, Theorem 2 is slightly
better than [11], [13] and $[4,5]$ because we do not assume the smallness of $L_{1}(\Omega)$ norm
of the initial data.

Theorem 2. Let $\Omega$ be an exterior domain with $\mathit{8}mooth$ compact boundary. Assume
that $\frac{\partial}{\partial\rho}p>0$ near $\overline{\rho}_{0}$ . $A_{\mathit{8}}sume$ that $(p_{0}, \mathrm{v}_{0})$ satisfies the suitable compatibility condition
and $(p_{0}-\overline{\rho}_{0}, \mathrm{v}_{0})\in L_{1}(\Omega)\cap H^{4}(\Omega)$ . Then, there exists an $\epsilon>0$ such that if $||(\rho_{0}-$

$\overline{\rho}_{0},$ $\mathrm{V}_{0})||_{H(\Omega}4)\leqq\epsilon$ then the solution $(\rho, \mathrm{v})$ of (IBVP) : $(1.1)j(1.2)$ and (1.3) has the
following asymptotic behavior as $tarrow\infty$ :

$||(\rho-\overline{p}0, \mathrm{V})(t)||L2(\Omega)=O(\mathrm{t}^{-\frac{3}{4}})$ ;

$||\partial_{x}(p, \mathrm{v})(t)||H1(\Omega)\mathrm{x}H^{2}(\Omega)+||\partial t(\rho, \mathrm{V})(t)||H1(\Omega)\cross H^{2}(\Omega)=O(t^{-\frac{5}{4}})$ ;

$||(\rho-\overline{p}_{0}, \mathrm{v})(t)||_{L_{\infty}(\Omega})=O(t^{-\frac{3}{2}})$ ;

$||\partial_{x}(\rho, \mathrm{v})(t)||Lp(\Omega)=O(t^{-\frac{3}{2})},$ $3<p<\infty$ ;
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$||(p- \overline{\rho}0, \mathrm{V})(t)||L1(\Omega)=\mathit{0}_{(’t}\frac{1}{2})$.
Moreover; if $p_{0}-\overline{p}_{0}\in W_{1}^{1}(\Omega)$ , then

$||\partial_{x}(p-\overline{p}0, \mathrm{v})(t)||L1(\Omega)=O(1)$ as $tarrow\infty$ .
Here $\epsilon$ depends on $p$ .

In order to prove Theorem 2, we shall use the decay property of solutions to the
corresponding linearized problem. If we linearize the equation (1.1) at the constant
state $(\overline{p}_{0},0)$ and we make some linear transformation of the unknown function, then we
have the following initial boundary value problem of the linear operators :

where $\alpha,$ $\kappa,$ $\gamma$ and $\omega$ are positive constants and $\beta$ is a nonnegative constant. Let A be
the $4\cross 4$ matrix of the differential operators of the form :

$\mathrm{A}=$
with the domain :

$D_{p}(\mathrm{A})=\{\mathrm{u}=(\rho, \mathrm{v})\in W_{p}^{1}(\Omega)\mathrm{x}W_{p}^{2}(\Omega)|\mathrm{v}|_{\partial\Omega}=0\}$

for $1<p<\infty$ . Then, above equations are written in the form $\sim$

.
$\mathrm{U}_{t}+\mathrm{A}\mathrm{U}=0$ for $t>0$ , $\mathrm{U}|_{t=0}=\mathrm{U}_{0}$ ,

where $\mathrm{U}_{0}=(\rho_{0}, \mathrm{v}_{0})$ and $\mathrm{U}=(\rho, \mathrm{v})$ .
Moreover, if we apply some linear transformation to $(p-\overline{p}_{0}, \mathrm{v})$ (the resulting vector

of functions being denoted by $\tilde{\mathrm{U}}=(\tilde{\rho},\tilde{\mathrm{v}})$ , then we can reduce IBVP : (1.1), (1.2) and
(1.3) to the problem:

$\tilde{\mathrm{U}}_{t}+\mathrm{A}\tilde{\mathrm{U}}=\mathrm{F}(\tilde{\mathrm{U}})$ for $t>0$ , $\tilde{\mathrm{U}}|_{t=0}=\tilde{\mathrm{U}}_{0}$

with suitable nonlinear term $\mathrm{F}(\tilde{\mathrm{U}})$ . Therefore, in order to prove Theorem 2, we have to
obtain the suitable decay property of solutions to the above linearized equations. We
show that A generates an analytic semigroup $\{e^{-t\mathrm{A}}\}_{t\geqq 0}$ on $W_{p}^{1}(\Omega)\cross L_{p}(\Omega),$ $1<p<\infty$

(cf. [7,8,.9]). Then we show the $L_{p}-L_{q}$ type estimate concerning the decay rate of
$\{e^{-t\mathrm{A}}\}_{t\geqq 0}$ . These $L_{p}-L_{q}$ type estimate is proved by combination of the $L_{p}-L_{q}$ type
estimate in the $\mathbb{R}^{3}$ case and the local energy decay estimate of $\{e^{-t\mathrm{A}}\}_{t\geqq 0}$ , via cut-off
technique. To prove Theorem 2, we reduce IBVP: (1.1), (1.2) and (1.3) to the integral
equation:

$\tilde{\mathrm{U}}(t)=e^{-t}\tilde{\mathrm{U}}_{0}\mathrm{A}-\int_{0}^{t}e^{-(t-s)\mathrm{A}}\mathrm{F}(\tilde{\mathrm{U}}(s))dS$ .

Applying $L_{p}-L_{q}$ type estimate and using the fact that the $H^{4}(\Omega)$-norm of solutions
are bounded which were proved by Matsumura and Nishida [12], we have Theorem 2.
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