Palais-Smale Condition for Some Semilinear Parabolic Equations

池畠 良

Ryo IKEHATA

Department of Mathematics, Faculty of School Education Hiroshima University, Higashi-Hiroshima 739-8524, Japan

1 Introduction

In this paper we are concerned with the following mixed problem to semilinear parabolic equation:

$$u_t(t,x) - \Delta u(t,x) = |u(t,x)|^{p-1} u(t,x), \ (t,x) \in (0,T) \times \Omega,$$
(1)

$$u(0,x) = u_0(x), \quad x \in \Omega, \tag{2}$$

$$u|_{\partial\Omega} = 0, \ t \in (0,T).$$
(3)

Here, $1 , <math>\Omega \subset \mathbb{R}^N (N \geq 3)$ is a bounded domain with smooth boundary $\partial\Omega$. In the case when 1 , of course, we can treat the low dimensional case <math>N = 1, 2, but for simplicity we restrict our attention to the above mentioned case. For large initial data u_0 in some sense, it is well-known that the solution u(t, x) to the problem (1)-(3) blows up in a finite time (see Ikehata-Suzuki[7], Ishii[9], Levine[10], Ôtani[11], Tsutsumi[16], and Payne-Sattinger[12]), meanwhile for small initial data, exponentially decaying solutions are obtained (see [7] and the references therein). In this paper, we have much interest in solutions to (1)-(3) which neither blowup nor decay. In that occasion, we proceed our argument based on the following local well-posedness theorem due to [7] (see also, Hoshino-Yamada[5]). In the following, $\|\cdot\|_q (1 \leq q \leq \infty)$ means the usual (real) $L^q(\Omega)$ norm.

Proposition 1.1 For each $u_0 \in H_0^1(\Omega)$, there exists a number $T_m > 0$ such that the problem (1.1)-(1.3) has a unique solution $u \in C([0, T_m); H_0^1(\Omega))$ which becomes classical on $(0, T_m)$. Furthermore, if $T_m < +\infty$, then

$$\lim_{t \upharpoonright T_m} \|u(t, \cdot)\|_{\infty} = +\infty,$$

and in particular, in the case when 1 one also has

$$\lim_{t\uparrow T_m} \|\nabla u(t,\cdot)\|_2 = +\infty.$$

Set

$$X = H^1_0(\Omega), \ I(u) = rac{1}{2} \|
abla u\|_2^2 - rac{1}{p+1} \|u\|_{p+1}^{p+1},$$

$$I(u) = \|\nabla u\|_{2}^{2} - \|u\|_{p+1}^{p+1},$$

$$\mathcal{N} = \{v \in X \setminus \{0\} | I(v) = 0\},$$

$$d_{p} = \inf_{v \in \mathcal{N}} J(v) = \inf\{\sup_{\lambda \ge 0} J(\lambda v) | v \in X \setminus \{0\}\}.$$

It is easy to show that the potential depth d_p (see Sattinger[13]) satisfies $d_p > 0$ because of the Sobolev continuous embedding $X \hookrightarrow L^{p+1}(\Omega)$ (1 . The stable andunstable sets are defined as usual:

$$W = \{ u \in X | J(u) < d_p, I(u) > 0 \} \cup \{ 0 \},$$
$$V = \{ u \in X | J(u) < d_p, I(u) < 0 \}.$$

Furthermore, for later use we define the following notations.

$$E = \{ u \in X | -\Delta u = |u|^{p-1}u \text{ in } \Omega, u|_{\partial\Omega} = 0 \},$$

$$E^* = \{ u \in D^{1,2}(\mathbb{R}^N) | -\Delta u = |u|^{p-1}u \text{ in } \mathbb{R}^N \},$$

$$E^*_+ = \{ u \in E^* | \ u \ge 0 \text{ in } \mathbb{R}^N \},$$

$$J_*(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u(x)|^2 dx - \frac{1}{p+1} \int_{\mathbb{R}^N} |u(x)|^{p+1} dx$$

Here $D^{1,2}(\mathbb{R}^N)$ denotes the closure of $C_0^{\infty}(\mathbb{R}^N)$ with respect to the norm $\|\nabla u\|_{L^2(\mathbb{R}^N)}$. In particular, in the case when $p = \frac{N+2}{N-2}$, because of the Sobolev embedding $S\|u\|_{L^{p+1}(\mathbb{R}^N)} \leq \|\nabla u\|_{L^2(\mathbb{R}^N)}$ for $u \in D^{1,2}(\mathbb{R}^N)$, one also has

$$d^* = \inf\{\sup_{\lambda \ge 0} J_*(\lambda v) | v \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}\} = \frac{1}{N}S^N > 0.$$

Note that $d^* = d_p$ with $p = \frac{N+2}{N-2}$.

Remark 1.1 In the case when $p = \frac{N+2}{N-2}$, it is well-known (Struwe[14]) that the family $\{u_{\varepsilon}^{*}(x)\}$ such as

$$u_{\varepsilon}^{*}(x) = \frac{[N(N-2)\varepsilon^{2}]^{\frac{N-2}{4}}}{[\varepsilon^{2}+|x|^{2}]^{\frac{N-2}{2}}}, \quad \varepsilon > 0$$

satisfies

$$-\Delta u = |u|^{p-1}u \text{ in } \mathbb{R}^N,$$

so that $E_+^* \setminus \{0\} \neq \emptyset$.

By the way, quite recently, in [7] the following result has been shown with regard to the singularity of a global solution to the problem (1)-(3) under the assumptions below: let u(t, x) be a solution to (1.1)-(1.3) as in Proposition 1.1. Furthermore, one assumes that

(A.1)
$$u_0 \ge 0.$$

(A.2) $p = \frac{N+2}{N-2}.$
(A.3) $\Omega = \{x \in \mathbb{R}^N | |x| < 1\}.$

(A.4) $u(t,x) = u(t,|x|), u_r(t,r) < 0 \text{ on } 0 < r \le 1 \text{ with } r = |x|.$

Finally, assume $T_m = +\infty$. For 1 set

$$C_0 = \frac{2(p+1)}{p-1} \lim_{t \to +\infty} J(u(t, \cdot)).$$
(4)

Note that $C_0 \ge 0$ if $T_m = +\infty$ (see [10]). Then, their results read as follows.

Theorem 1.1 ([7]) Assume (A.1)-(A.4). Let u(t,x) be a solution to (1)-(3) on $[0,T_m)$ as in Proposition 1.1. Suppose $T_m = +\infty$ and $C_0 > 0$. Then, there exists a sequence $\{t_n\}$ with $t_n \to +\infty$ as $n \to +\infty$ such that

(1) $|\nabla u(t_n, x)|^2 \to C_0 \delta_0$ (weakly-*) in $C_0(\Omega)^*$, (2) $u(t_n, x)^{p+1} \to C_0 \delta_0$ (weakly-*) in $C_0(\Omega)^*$,

as $n \to +\infty$. Here, δ_0 means the usual Dirac measure having a unit mass at the origin.

Since $C_0 > 0$ if and only if $u(t, \cdot) \notin (W \cup V)$ for all $t \ge 0$, their theorem states that a global orbit $u(t, \cdot)$ which neither decay nor blowup (if this kind of solution can be constructed!) have a strong singularity at the origin. In connection with this result, we have just noticed that for such a sequence $\{t_n\}$ constructed in Theorem 1.1 above, $\{u(t_n, \cdot)\}$ becomes a Palais-Smale sequence so that the global compactness result due to Struwe[15] can be applied to this functional sequence. Our first result reads as follows:

Theorem 1.2 Let $\{u(t_n, \cdot)\}$ be a sequence as in Theorem 1.1. Under the same assumptions as in Theorem 1.1, there exist an integer $k \in N$, a sequence of radii $\{R_n^i\}$ with $\lim_{n \to +\infty} R_n^i = +\infty$, a sequence $\{x_n^i\} \in \Omega$, and $u^i \in E_+^* \setminus \{0\} (1 \le i \le k)$ such that (taking a subsequence)

$$\lim_{n \to +\infty} \|\nabla(u(t_n, \cdot) - \sum_{i=1}^k u_n^i)\|_{L^2(\mathbb{R}^N)} = 0,$$
$$\lim_{t \to +\infty} J(u(t, \cdot)) = \lim_{n \to +\infty} J(u(t_n, \cdot)) = kd^*,$$
$$\lim_{n \to +\infty} \|\nabla u(t_n, \cdot)\|_2^2 = \sum_{i=1}^k \|\nabla u^i\|_{L^2(\mathbb{R}^N)}^2 = kS^N,$$

where

$$u_n^i(x) = (R_n^i)^{\frac{N-2}{2}} u^i (R_n^i(x - x_n^i)) \ (1 \le i \le k), \ n = 1, 2, \cdots.$$

Remark 1.2 By considering scaling and translation, one finds that the compactness of $\{u(t_n, \cdot)\}$ destroyed in Theorem 1.1 is restored once more. On the other hand, for the proof of this Theorem, we have to notice the following fact (see [14]) that each u^i is of the form $u^i(x) = u^*_{\varepsilon}(x)$ (see Remark 1.1) with some ε and satisfies $J_*(u^i) = d^*$ (least energy level).

Remark 1.3 Under the assumptions $\Omega = \text{star-shaped}$ and $u_0(x) \ge 0$, one can get the quite same results as in the radial case above. In the case when u_0 changes sign, however, even if Ω is star-shaped, one needs a few modifications of the results above (see [14]).

The next result is concerned with the case when 1 . It seems not to be known that any global solutions to (1)-(3) naturally contain a subsequence which is relatively compact in X in the subcritical case. Our second result reads as follows:

Theorem 1.3 Let 1 and <math>u(t,x) be a solution on $[0,T_m)$ as in Proposition 1.1. If $T_m = +\infty$, then there exists a sequence $\{t_n\}$ with $t_n \to +\infty$ as $n \to +\infty$ such that $\{u(t_n,\cdot)\}$ becomes relatively compact in X so that there exists an element $u_{\infty} \in E$ such that $u(t_n,\cdot) \to u_{\infty}$ in X as $n \to +\infty$ along a subsequence.

Remark 1.4 In Theorem 1.3, if, in particular, $C_0 > 0$, then one has $u_{\infty} \in E \setminus \{0\}$. Furthermore, the construction of such a sequence $\{t_n\}$ is in the same way as in Theorem 1.2.

2 Palais-Smale sequence

In this section, reviewing some results concerning Theorem 1.1 due to [7] we shall construct some Palais-Smale sequences of a global solution to the problem (1)-(3).

First, suppose $1 and <math>T_m = +\infty$ in Proposition 1.1. Since its solution satisfies the energy identity:

$$J(u(t,\cdot)) + \int_0^t \|u_t(s,\cdot)\|_2^2 ds = J(u_0)$$
(5)

for all $t \ge 0$, this implies that the function $t \mapsto J(u(t, \cdot))$ is monotone decreasing so that $C_0 \ge 0$ (see (4)) is meaningfull. Letting $t \to +\infty$ in (5), the improper integral $\int_0^\infty ||u_t(s, \cdot)||_2^2 ds$ is finite determined. Therefore, there exists a sequence $\{t_n\}$ with $t_n \to +\infty$ as $n \to +\infty$ such that

$$\lim_{n \to +\infty} \|u_t(t_n, \cdot)\|_2^2 = 0.$$

Note that this sequence $\{t_n\}$ coincides with the one in Theorem 1.1.

Next, multiplying the both sides of (1) by u(t, x) and integrating it over Ω , we have

$$(u_t(t,\cdot),u(t,\cdot)) = -I(u(t,\cdot)), \tag{6}$$

where $(f,g) = \int_{\Omega} f(x)g(x)dx$. Because of [2], it holds true that $||u(t,\cdot)||_2 \leq C$ for all $t \geq 0$ with some constant C > 0. Therefore, one has

$$|I(u(t_n, \cdot))| \le C ||u_t(t_n, \cdot)||_2$$

for all $n \in N$. Letting $n \to +\infty$, it follows that

$$\lim_{n \to +\infty} I(u(t_n, \cdot)) = 0.$$
(7)

On the other hand, the identity holds good:

$$J(u) = \frac{p-1}{2(p+1)} \|\nabla u\|_2^2 + \frac{1}{p+1} I(u).$$
(8)

So, from (8) with $u = u(t_n, \cdot)$ and (6)-(7) we find that

80

Lemma 2.1 Let $u(t, \cdot)$ be as in Proposition 1.1. If $T_m = +\infty$, then there exists a sequence $\{t_n\}$ with $t_n \to +\infty$ as $n \to \infty$ such that

$$\lim_{n \to +\infty} \|u_t(t_n, \cdot)\|_2 = 0,$$
$$\lim_{n \to +\infty} \|\nabla u(t_n, \cdot)\|_2^2 = C_0,$$
$$\lim_{n \to +\infty} \|u(t_n, \cdot)\|_{p+1}^{p+1} = C_0.$$

From this lemma, one obtains the next ones:

Lemma 2.2 Let u(t,x) be a local solution constructed in Proposition 1.1. If $T_m = +\infty$, then there exists a Palais-Smale sequence to the problem (1)-(3).

Proof. Let $\{t_n\}$ be as in Lemma 2.1. Then, it follows that

$$J(u_0) \ge J(u(t_n, \cdot)) \longrightarrow \frac{p-1}{2(p+1)} C_0 \ge 0 \quad as \quad n \to +\infty.$$

$$\tag{9}$$

Furthermore, for such sequence, since $J \in C^1(X, R)$, by equation (1) we have

$$J'(u(t_n,\cdot))[v] = -(u_t(t_n,\cdot),v)$$

for each $v \in X$, where $J'(u) \in X^*$ means the usual Fréchet-derivative of J at $u \in X$. By this equality and the Schwarz inequality together with the Poincaré inequality one gets:

$$|J'(u(t_n, \cdot))[v]| \le C_1 ||u_t(t_n, \cdot)||_2 ||\nabla v||_2$$

which implies

$$\|J'(u(t_n,\cdot))\|_{H^{-1}(\Omega)} \to 0 (n \to +\infty), \tag{10}$$

where $C_1 > 0$ is a Poincaré constant. We find that $\{u(t_n, \cdot)\}$ becomes a Palais-Smale sequence because of (9) and (10).

In particular, in the case when $p \in (1, \frac{N+2}{N-2})$ one gets the following compactness result. For the detailed proof, see the forthcoming paper [8].

Lemma 2.3 Suppose $p \in (1, \frac{N+2}{N-2})$. Let u(t, x) be a global (i.e., $T_m = +\infty$) solution to (1)-(3) as in Proposition 1.1. Then, the sequence $\{u(t_n, \cdot)\}$ constructed in Lemma 2.1 becomes relatively compact in X.

Now, we are in a position to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. This result is a direct consequence of [14] (Theorem 3.1, p.184) and Lemma 2.2 and so, we shall omitt the details. But, since $\Omega = ball$, note that $E = \{0\}$ holds true in the present case.

Proof of Theorem 1.3. The first half is a direct consequence of Lemma 2.3. In order to prove $u_{\infty} \in E$, note that the following estimates are proven:

$$\|f(u) - f(v)\|_{1+\frac{1}{n}} \le p(\|u\|_{p+1} + \|v\|_{p+1})^{p-1} \|u - v\|_{p+1}$$

for all $u, v \in L^{p+1}(\Omega)$, and

$$|(f(u(t_n, \cdot)) - f(u_{\infty}), \phi)| \le ||f(u(t_n, \cdot)) - f(u_{\infty})||_{1+\frac{1}{n}} ||\phi||_{p+1}$$

for each $\phi \in C_0^{\infty}(\Omega)$, where $\{u(t_n, \cdot)\}$ is a sequence constructed in the first half. By combining these estimates with Lemma 2.1 and the Sobolev embedding $X \hookrightarrow L^{p+1}(\Omega)$, one obtains the desired statement.

From Lemma 2.1 one has a result reviewed from the view point of the Palais-Smale condition.

Corollary 2.1 Let 1 and <math>u(t,x) be a global solution constructed in Proposition 1.1, i.e., $T_m = +\infty$. If $C_0 = 0$, then the sequence $\{u(t_n, \cdot)\}$ stated in Lemma 2.1 becomes relatively compact, and in fact, $u(t, \cdot) \to 0$ in X as $t \to +\infty$.

From Theorem 1.1 and Corollary 2.1 with $p = \frac{N+2}{N-2}$, one can say that it depends on the least energy level $\frac{p-1}{2(p+1)}C_0$ whether the Palais-Smale condition holds good or not to the sequence $\{u(t_n, \cdot)\}$ as in Lemma 2.1.

Finally in this section, we shall apply Theorem 1.3 and Lemma 2.2 for the finite time blowup problem concerning (1)-(3). First, as a consequence of [14] one obtains the following lemma.

Lemma 2. 4 Let Ω be a bounded smooth domain and $p = \frac{N+2}{N-2}$. Then, for all $v \in E$, one has $J(v) \in \{0\} \cup (d^*, +\infty)$, and also, for each $w \in E^* \setminus \{0\}$, one has $J_*(w) \in \{d^*\} \cup (2d^*, +\infty)$.

The following result gives a kind of alternative proof of [11] concerning blowup problem. **Proposition 2.1** Let 1 and <math>u(t,x) be a local solution of (1)-(3) on $[0,T_m)$ constructed in Proposition 1.1. If $u(t_0, \cdot) \in V$ for some $t_0 \in [0, T_m)$, then $T_m < +\infty$.

Proof. First, we shall deal with the case when $1 . Suppose <math>T_m = +\infty$. Then, it follows from Theorem 1.3 that there exist a Palais-Smale sequence $\{u(t_n, \cdot)\}$ to the problem (1)-(3) and $u_{\infty} \in E$ such that $u(t_n, \cdot) \to u_{\infty}$ in X along a subsequence. On the other hand, it is well-known (see [6]) that $u(t, \cdot) \in V$ for all $t \in [t_0, \infty)$. Since W is a neighbourhood of 0 in X, if $u_{\infty} = 0$, then $u(t_m, \cdot) \in W$ holds with some t_m and this contradicts the fact that $W \cap V = \emptyset$. Thus, $u_{\infty} \in E \setminus \{0\}$. Because of the monotone decreasingness of a function $t \mapsto J(u(t, \cdot))$, one obtains $J(u(t_n, \cdot)) \geq J(u_{\infty}) \geq d_p$ which contradicts $u(t_n, \cdot) \in V$ with large t_n .

Next, we are concerned with the critical case $p = \frac{N+2}{N-2}$. Suppose $T_m = +\infty$. Obviously, $C_0 > 0$ holds true. Then, from Lemma 2.2 and Theorem 3.1 of [14], p.184 that there exist a Palais-Smale sequence $\{u(t_n, \cdot)\}, k \in N, u^0 \in E$, and $u^i \in E^* \setminus \{0\}$ $(1 \le i \le k)$ such that

$$\lim_{n \to +\infty} J(u(t_n, \cdot)) = \lim_{t \to +\infty} J(u(t, \cdot)) = J(u^0) + \sum_{i=1}^k J_*(u^i).$$

By Lemma 2.4 and the monotone decreasingness of a function $t \mapsto J(u(t, \cdot))$, one finds that

$$J(u(t,\cdot)) \ge d^*$$

for all $t \ge 0$. This contradicts also $u(t, \cdot) \in V$ for all $t \ge t_0$.

References

- [1] H. Brezis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. **36**(1983), 437–477.
- [2] T. Cazenave and P. L. Lions. Solutions globales d'equations de la chaleur semi lineaires. Comm. Partial Differential Equations 9(1984), 955–978.
- [3] Y. Giga. A bound for global solutions of semilinear heat equations. Comm. Math. Phys. 103(1986),415-421.
- [4] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer-Verlag, 1981.
- [5] H. Hoshino and Y. Yamada. Solvability and smoothing effect for semilinear parabolic equations. Funk. Ekva. **34**(1991), 475–494.
- [6] R. Ikehata and T. Suzuki. Stable and unstable sets for evolution equations of parabolic and hyperbolic type. Hiroshima Math. J. **26**(1996), 475–491.
- [7] R. Ikehata and T. Suzuki. Semilinear parabolic equations involving critical Sobolev exponent: local and asymptotic behavior of solutions. to appear in Diff. Int. Equations.
- [8] R. Ikehata. Remarks on the Palais-Smale condition for some semilinear parabolic equations. preprint(1998).
- [9] H. Ishii. Asymptotic stability and blowing-up of solutions of some nonlinear equations. J. Diff. Eq. 26(1977), 291-319.
- [10] H. A. Levine. Some nonexistence and instability theorems of solutions of formally parabolic equations of the form $Pu_t = -Au + F(u)$. Arch. Rat. Mech. Math. **51**(1973), 371–386.
- [11] M. Otani. Existence and asymptotic stability of strong solutions of nonlinear evolution equations with a difference term of subdifferentials. Colloq. Math. Soc. Janos Bolyai, Qualitative Theory of Differential Equations 30, North-Holland, Amsterdam, 1980.
- [12] L. E. Payne and D. H. Sattinger. Saddle points and unstability of nonlinear hyperbolic equations. Israel J. Math. 22(1975), 273–303.
- [13] D. H. Sattinger. On global solution of nonlinear hyperbolic equations. Arch. Rat. Mech. Math. 30(1968), 148-172.
- [14] M. Struwe. Variational Methods A Series of Modern Surveys in Mathematics 34, Springer-Verlag, 1996.
- [15] M. Struwe. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(1984), 511–517.
- [16] M. Tsutsumi. On solutions of semilinear differential equations in a Hilbert space. Math. Japon. 17(1972), 173–193.