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A subset Y of a space X is said to be homotopy dense in X if there exists
a homotopy h: X x [0,1] — X such that hy = id and hy(X) C Y for t > 0.
This concept is very important in ANR Theory and Infinite-Dimensional Topology.
When X is an ANR, the concept of the homotopy denseness is dual to the one
of local homotopy negligibility introduced by Torutczyk in [Tos], that is, ¥ C X
is homotopy dense in X if and only if the complement X \ Y is locally homotopy
negligible in X (cf. [Tos, Theorem 2.4]). The following fact is well-known:

Fact. Every homotopy dense subset of an ANR is also an ANR and a metrizable

space is an ANR if it contains an ANR as a homotopy dense subset.

The lack of the homotopy denseness of a metric ANR in its completion often
destroys the ANR property of the completion. For instance, the sin i—-curve in the
plane R? is an ANR but the completion of this curve (= the closure in R?) is not
an ANR. Moreover, even if the completion is an ANR, it is very different from the
original ANR. The circle S! is the completion of the space S\ {pt} and the both
spaces are ANR but they are topologically very different from each other. It should
be remarked that S' \ {pt} is not homotopy dense in S'. In this note,! we consider

the following interesting problem:

Problem. When is a metric ANR homotopy dense in the metric completion?

1. A CHARACTERIZATION OF METRIC ANR’S

The nerve of an open cover V of a space X is denoted by N(V). A sequence
U = (Un)nen of open covers of a metric space X is called a zero-sequence if
limy, . oo mesh U, = 0. For such a sequéence, we define the simplicial complex

TNU) = | Nt Ulhn41),
neEN :

! The results mentioned in this note were obtained in [Sa]. Then, for details, one can refer to
the paper [Sa].
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where we regard Uy, U = 0 (n # m) as sets of vertices of TN (U) even if Uy NUn, #

0 as collections of open sets,? whence
N(Z/{n U Z/{n+1) N N(Z/{n_H U Un+2) = N(Un.{.],).

Theorem 1. A metric space X = (X,d) is an ANR if and only if X has a zero-
sequence U = (Up)nen of open covers with a map f: |[TN(U)| — X satisfying the

following conditions:

(i) f(U) € U for each U € TN(U) = J,,enyUn, and

(ii) lim,— oo mesh{f(c) | 0 € N(Upn UlUnt1)} = 0.
Under the above circumstances, if the image f(|TN(U)|) is always contained in
Y C X, thenY is homotopy dense in X.

This characterization of ANR’s is due to Nguyen To Nhu [N] (cf. [NS]). By the
alternative proof given in [Sa], the additional assertion was obtained. As a corollary,

we have the following:

Corollary 1. Let X be an ANR (resp. an AR) contained in a metric space M.
Then, there exists a Gs-set Z C M such that Z is an ANR (resp. an AR) and X is

homotopy dense in Z.

We can also apply Theorem 1 to find conditions such that the metric completion
of a metric space X is an ANR with X a homotopy dense subset. A subset D of a
metric space X is said to be §-dense in X if dist(x, D) < 6 for every z € X.

Corollary 2. Let X be a metric space which has a zero-sequence U = (Up)nen of
open covers with a map f: [TN(U)| — X satisfying the conditions (i) and (ii) of
Theorem 1, where suppose Un, = {Bx(z,7n) | # € Dyn} for some ,-dense subset
D,, C X and 0 < é,, < vn. Then, any metric space Z containing X isometrically as
a dense subset is an ANR and X is homotopy dense in Z. In particular, the metric

completion X of X is an ANR and X is homotopy dense in X.

Tn the above, note that the v,-dense subset D,, of X may not be é,-dense in Z.
For example, D, = {i/n |1 <i < n} is 1/n-dense in (0,1) but it is not 1/n-dense
in [0, 1].

Now, we consider the following extension property:

(e)r There exist constants a > 0 and 8 > 1 such that every map f: IK®| — X
of the k-skeleton of an arbitrary simplicial complex K with mesh{f(c(®) |
o € K} < «a extends to a map f:|K| — X such that diam f(o) <
B diam f(o®) for each o € K.

2In [NS], we did not regard like this. Considering the set |J, ¢y Un X {n} as the set of vertices
of NT(U), this is reasonable.



The following corollary is motivated by the proof of AR property of the hyperspaces
(cf. [vM, §5.3]).

Corollary 3. Every LC*~! metric space X with the property ()i is an ANR. In
particular, a metric space X with (e)o is an ANR (cf. Theorem 3).

Remark. In Theorem 1, X is an AR when Uy = {X}. Every C*! and LC*!
metric space X is an AR if it has the following:

(é)r there exists a constant # > 1 such that every map f: |[K®)| - X of the k-

skeleton of an arbitrary simplicial complex K extends to a map F |K| — X
‘such that diam f(o) < diam f(c™®) for each o € K.

2. UnmrorM ANR'’s

In [Miy], E. Michael introduced uniform AR’s and uniform ANR'’s, and studied
them. Let X = (X,dx) and ¥ = (Y,dy) be metric spaces and A C X. A map
f: X — Y is said to be uniformly continuous at A if, for any ¢ > 0, there exists
6 > 0 such that if a € A, z € X and dx(a,z) < é then dy(f(a), f(z)) < e. A
neighborhood U of A in X is called a uniform neighborhood if | J,. 4 Bx(a,8) CU
for some 6§ > 0. A metric space Y is called a uniform ANR if, for an arbitrary
metric space X and a closed set A C X, every uniformly continuous map f: A - Y
extends to a map f: U — Y from some uniform neighborhood U of 4 in X which
is uniformly continuous at A. When f always extends over X (ie.,U=X),Yisa
uniform AR. By virtue of [Mi;, Theorem 1.2], a metric space Y is a uniform ANR
(resp. a uniform AR) if and only if, for an arbitrary metric space Z which contains
Y isometrically as a closed subset, there exists a retraction r: U — Y for some
uniform neighborhood U inY in Z (resp.r: Z — Y) which is uniformly continuous
at Y. The concept of uniform ANR’s is useful since the metric completion of every
uniform ANR is also a uniform ANR.

By using a zero-sequence of open covers in §1, we can prove the following version

of Proposition 1.4 in [Mi,]:

Theorem 2. For an arbitrary metric space X, the following are equivalent:

(a) X is a uniform ANR; .

(b) Every metric space Z containing X isometrically as a dense subset is a
uniform ANR and X is homotopy dense in Z;

(c) X is isometrically embedded in some uniform ANR Z as a homotopy dense

subset.

3Such a retraction is called a regular retraction by H. Toruniczyk in [Toz].
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Theorem 2 above means that a metric space X is a uniform ANR if and only if
the metric completion of X is a uniform ANR with X a homotopy dense subset.
However, in order that the metric completion of a metric ANR X is an ANR with
X a homotopy dense subset, it is not necessary that X is a uniform ANR. In case
X is totally bounded, X is a uniform ANR if and only if the metric completion of
X is an ANR with X a homotopy dense subset.

A metric space Y is said to be uniformly LC* if, for each ¢ > 0, there exists § > 0
such that any map f: St — Y with diam f(S?) < 6 extends to amap f: B! -V
with diam f(BH”l) < ¢ for every i < k. In stead of “uniformly LC®”, we also say
“yniformly locally path-connected”. The subspace of R? in the example above is

not uniformly locally path-connected.

Theorem 3. Every uniformly LC*~! metric space Y with the property (e)y is a

uniform ANR. In particular, a metric space X with (e)o is a uniform ANR.

By Theorems 2 and 3, we have the following variation of Corollary 3 (cf. [SU,
Lemma 2]):

Corollary 4. Let X be a metric space and Y a dense subset of X. If'Y is uniformly
LC*=1 and has the property (e)i, then X and Y are uniformly ANR’s and Y is

homotopy dense in X .

Remark. In Theorem 3 and Corollary 4, by replacing the property (e)r with (&)
and adding the condition that ¥ is C*~!, “uniform ANR” can be “uniform AR”.

In particular, a metric space X with (€), is a uniform AR.

3. DENSE (OR UNIFORM) LOCAL HYPER-CONNECTEDNESS

By using the notion of (local) hyper-connectedness, C.R. Borges [Bo] and R.
Cauty [Ca] characterized AR’s and ANR’s, respectively. Here is introduced a little

weaker notion. By A"™!, we denote the standard (n — 1)-simplex in R™, that is,
A = (. t) ERY 820, S0 4 =1
For an open cover U of a space X and Y C X, we denote
Y"U) = {(y1,---,yn) €Y | U €U such that {y1,...,yn} CU}.

It is said that a space X is densely locally hyper-connected if X has an open cover
W, a dense subset D and functions h,: D*(W) x A"™! — X | n € N, which satisfy

the following conditions:
(i) if t; = 0 then
(Y1, Ynitiy . o tn)

= hn-—1<y17---yyi~1,yi+1a---,yn;t1,---,ti—-hti—}-l;---,tn);



(1) A™ 15 (B1,...,t0) = hn(Y1,- - Ynjt1,- - -, tn) € X is continuous for each
(y17" 7'yn) € Dn(W):

(iii) every open cover U of X has an open refinement V such that ¥V < W (hence
D™(V) C D™(W)) and

{ha(DNV)™ x A" 1) ] V eV} <U foreachncN.

It should be noticed that each h, need not be continuous. If W can be taken as
W = {X} (ie., D*(W) = D"), we say that X is densely hyper-connected. In case
D =X (resp. D = X and W = {X}), X is locally hyper-connected* (vesp. hyper-
connected). This concept is very similar to Michael’s convex structure in [Miy]. In
[Bo] and [Ca], AR’s and ANR’s are characterized by the hyper-connectedness and
the local hyper-connectedness, respectively. A similar characterization was obtained
by Himmelberg [Hi] (cf. Curtis [Cu]). These characterizations can be generalized

in terms of the dense hyper-connectedness as follows:

Theorem 4. A metrizable space X is an ANR if and only if X is densely locally
hyper-connected. Moreover, X is an AR if and only if X is densely hyper-connected.

Remark. In the definition of densely local hyper-connectedness, if the images of
functions h, are contained in Y, then Y is Lamotopy dense in X. In fact, if the
images of functions h, are contained in ¥ then f(|[TN(U)|) C Y, hence Y is

homotopy dense in X by the additions) statement of Theorem 1.

For a metric space X and n > 1, we denote
X™(n) = {(;i.l7 oy Zg) €XT ' diam{zy,...,z,} < r;}

A metric space X is said to be uniformly locally hyper-connected if there are n > 0
and functions h,, : X™(n) x A"™! = X, n € N, which satisfy the same conditions

as (i) and (i} above, and the following (iii’) instead of (iii):

(iii") for each e > 0, there is 0 < § < ¢ such that

diam ki, ({z} x A" ') < & for every n € N and z € X"(6).

When every h, is defined on the whole space X™ x A™ 1, it is said that X is
uniformly hyper-connected.

 Now, we give a characterization of uniform ANR’s and uniform AR’s.

% The local hyper-connectedness is in the sense of [Ca] but not in the sense of [Bo].
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Theorem 5. A metric space X = (X,d) is a uniform ANR if and only if X is
uniformly locally hyper-connected. Moreover, X is a uniform AR if and only if X

~ is uniformly hyper-connected.
The following is a combination of Theorems 2 and 5:

Corollary 5. Let X be a uniformly (locally) hyper-connected metric space and Z
a metric space which contains X isometrically as a dense subset. Then, X and Z
are uniform AR’s (uniform ANR’s) and X is homotopy dense in Z, In particular,
the metric completion X of X is a uniform AR (uniform ANR) and X is homotopy

dense in X.
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