THE COMPLETIONS OF METRIC ANR'S AND UNIFORM ANR'S

KATSURO SAKAI

Institute of Mathematics University of Tsukuba

A subset Y of a space X is said to be homotopy dense in X if there exists a homotopy $h: X \times [0,1] \to X$ such that $h_0 = \operatorname{id}$ and $h_t(X) \subset Y$ for t > 0. This concept is very important in ANR Theory and Infinite-Dimensional Topology. When X is an ANR, the concept of the homotopy denseness is dual to the one of local homotopy negligibility introduced by Toruńczyk in $[To_3]$, that is, $Y \subset X$ is homotopy dense in X if and only if the complement $X \setminus Y$ is locally homotopy negligible in X (cf. $[To_3]$, Theorem 2.4]). The following fact is well-known:

Fact. Every homotopy dense subset of an ANR is also an ANR and a metrizable space is an ANR if it contains an ANR as a homotopy dense subset.

The lack of the homotopy denseness of a metric ANR in its completion often destroys the ANR property of the completion. For instance, the $\sin \frac{1}{x}$ -curve in the plane \mathbb{R}^2 is an ANR but the completion of this curve (= the closure in \mathbb{R}^2) is not an ANR. Moreover, even if the completion is an ANR, it is very different from the original ANR. The circle \mathbf{S}^1 is the completion of the space $\mathbf{S}^1 \setminus \{\text{pt}\}$ and the both spaces are ANR but they are topologically very different from each other. It should be remarked that $\mathbf{S}^1 \setminus \{\text{pt}\}$ is not homotopy dense in \mathbf{S}^1 . In this note, we consider the following interesting problem:

Problem. When is a metric ANR homotopy dense in the metric completion?

1. A CHARACTERIZATION OF METRIC ANR'S

The nerve of an open cover \mathcal{V} of a space X is denoted by $N(\mathcal{V})$. A sequence $\mathcal{U} = (\mathcal{U}_n)_{n \in \mathbb{N}}$ of open covers of a metric space X is called a *zero-sequence* if $\lim_{n \to \infty} \operatorname{mesh} \mathcal{U}_n = 0$. For such a sequence, we define the simplicial complex

$$TN(\mathcal{U}) = \bigcup_{n \in \mathbb{N}} N(\mathcal{U}_n \cup \mathcal{U}_{n+1}),$$

¹The results mentioned in this note were obtained in [Sa]. Then, for details, one can refer to the paper [Sa].

where we regard $\mathcal{U}_n \cap \mathcal{U}_m = \emptyset$ $(n \neq m)$ as sets of vertices of $TN(\mathcal{U})$ even if $\mathcal{U}_n \cap \mathcal{U}_m \neq \emptyset$ as collections of open sets,² whence

$$N(\mathcal{U}_n \cup \mathcal{U}_{n+1}) \cap N(\mathcal{U}_{n+1} \cup \mathcal{U}_{n+2}) = N(\mathcal{U}_{n+1}).$$

Theorem 1. A metric space X = (X, d) is an ANR if and only if X has a zero-sequence $\mathcal{U} = (\mathcal{U}_n)_{n \in \mathbb{N}}$ of open covers with a map $f : |TN(\mathcal{U})| \to X$ satisfying the following conditions:

- (i) $f(U) \in U$ for each $U \in TN(\mathcal{U})^{(0)} = \bigcup_{n \in \mathbb{N}} \mathcal{U}_n$, and
- (ii) $\lim_{n\to\infty} \operatorname{mesh}\{f(\sigma) \mid \sigma \in N(\mathcal{U}_n \cup \mathcal{U}_{n+1})\} = 0.$

Under the above circumstances, if the image $f(|TN(\mathcal{U})|)$ is always contained in $Y \subset X$, then Y is homotopy dense in X.

This characterization of ANR's is due to Nguyen To Nhu [N] (cf. [NS]). By the alternative proof given in [Sa], the additional assertion was obtained. As a corollary, we have the following:

Corollary 1. Let X be an ANR (resp. an AR) contained in a metric space M. Then, there exists a G_{δ} -set $Z \subset M$ such that Z is an ANR (resp. an AR) and X is homotopy dense in Z.

We can also apply Theorem 1 to find conditions such that the metric completion of a metric space X is an ANR with X a homotopy dense subset. A subset D of a metric space X is said to be δ -dense in X if $\mathrm{dist}(x,D)<\delta$ for every $x\in X$.

Corollary 2. Let X be a metric space which has a zero-sequence $\mathcal{U} = (\mathcal{U}_n)_{n \in \mathbb{N}}$ of open covers with a map $f : |TN(\mathcal{U})| \to X$ satisfying the conditions (i) and (ii) of Theorem 1, where suppose $\mathcal{U}_n = \{B_X(x, \gamma_n) \mid x \in D_n\}$ for some δ_n -dense subset $D_n \subset X$ and $0 < \delta_n < \gamma_n$. Then, any metric space Z containing X isometrically as a dense subset is an ANR and X is homotopy dense in Z. In particular, the metric completion \widetilde{X} of X is an ANR and X is homotopy dense in \widetilde{X} .

In the above, note that the γ_n -dense subset D_n of X may not be δ_n -dense in Z. For example, $D_n = \{i/n \mid 1 \le i < n\}$ is 1/n-dense in (0,1) but it is not 1/n-dense in [0,1].

Now, we consider the following extension property:

(e)_k There exist constants $\alpha > 0$ and $\beta > 1$ such that every map $f: |K^{(k)}| \to X$ of the k-skeleton of an arbitrary simplicial complex K with mesh $\{f(\sigma^{(k)}) \mid \sigma \in K\} < \alpha$ extends to a map $\tilde{f}: |K| \to X$ such that diam $\tilde{f}(\sigma) \leq \beta \operatorname{diam} f(\sigma^{(k)})$ for each $\sigma \in K$.

²In [NS], we did not regard like this. Considering the set $\bigcup_{n\in\mathbb{N}} \mathcal{U}_n \times \{n\}$ as the set of vertices of $NT(\mathcal{U})$, this is reasonable.

The following corollary is motivated by the proof of AR property of the hyperspaces (cf. [vM, §5.3]).

Corollary 3. Every LC^{k-1} metric space X with the property $(e)_k$ is an ANR. In particular, a metric space X with $(e)_0$ is an ANR (cf. Theorem 3).

Remark. In Theorem 1, X is an AR when $\mathcal{U}_1 = \{X\}$. Every C^{k-1} and LC^{k-1} metric space X is an AR if it has the following:

 $(\tilde{e})_k$ there exists a constant $\beta > 1$ such that every map $f: |K^{(k)}| \to X$ of the kskeleton of an arbitrary simplicial complex K extends to a map $\tilde{f}: |K| \to X$ such that diam $\tilde{f}(\sigma) \leq \beta \operatorname{diam} f(\sigma^{(k)})$ for each $\sigma \in K$.

2. Uniform ANR's

In [Mi₂], E. Michael introduced uniform AR's and uniform ANR's, and studied them. Let $X=(X,d_X)$ and $Y=(Y,d_Y)$ be metric spaces and $A\subset X$. A map $f\colon X\to Y$ is said to be uniformly continuous at A if, for any $\varepsilon>0$, there exists $\delta>0$ such that if $a\in A$, $x\in X$ and $d_X(a,x)<\delta$ then $d_Y(f(a),f(x))<\varepsilon$. A neighborhood U of A in X is called a uniform neighborhood if $\bigcup_{a\in A}B_X(a,\delta)\subset U$ for some $\delta>0$. A metric space Y is called a uniform ANR if, for an arbitrary metric space X and a closed set $A\subset X$, every uniformly continuous map $f\colon A\to Y$ extends to a map $\tilde{f}\colon U\to Y$ from some uniform neighborhood U of A in X which is uniformly continuous at A. When f always extends over X (i.e., U=X), Y is a uniform AR. By virtue of [Mi₂, Theorem 1.2], a metric space Y is a uniform ANR (resp. a uniform AR) if and only if, for an arbitrary metric space Y which contains Y isometrically as a closed subset, there exists a retraction $Y:U\to Y$ for some uniform neighborhood Y:U in Y:U in Y:U in Y:U is uniformly continuous at Y:U. The concept of uniform ANR's is useful since the metric completion of every uniform ANR is also a uniform ANR.

By using a zero-sequence of open covers in §1, we can prove the following version of Proposition 1.4 in [Mi₂]:

Theorem 2. For an arbitrary metric space X, the following are equivalent:

- (a) X is a uniform ANR;
- (b) Every metric space Z containing X isometrically as a dense subset is a uniform ANR and X is homotopy dense in Z;
- (c) X is isometrically embedded in some uniform ANR Z as a homotopy dense subset.

³Such a retraction is called a regular retraction by H. Toruńczyk in [To₂].

Theorem 2 above means that a metric space X is a uniform ANR if and only if the metric completion of X is a uniform ANR with X a homotopy dense subset. However, in order that the metric completion of a metric ANR X is an ANR with X a homotopy dense subset, it is not necessary that X is a uniform ANR. In case X is totally bounded, X is a uniform ANR if and only if the metric completion of X is an ANR with X a homotopy dense subset.

A metric space Y is said to be uniformly LC^k if, for each $\varepsilon > 0$, there exists $\delta > 0$ such that any map $f : \mathbf{S}^i \to Y$ with diam $f(\mathbf{S}^i) < \delta$ extends to a map $\tilde{f} : \mathbf{B}^{i+1} \to Y$ with diam $\tilde{f}(\mathbf{B}^{i+1}) < \varepsilon$ for every $i \leq k$. In stead of "uniformly LC^0 ", we also say "uniformly locally path-connected". The subspace of \mathbb{R}^2 in the example above is not uniformly locally path-connected.

Theorem 3. Every uniformly LC^{k-1} metric space Y with the property $(e)_k$ is a uniform ANR. In particular, a metric space X with $(e)_0$ is a uniform ANR.

By Theorems 2 and 3, we have the following variation of Corollary 3 (cf. [SU, Lemma 2]):

Corollary 4. Let X be a metric space and Y a dense subset of X. If Y is uniformly LC^{k-1} and has the property $(e)_k$, then X and Y are uniformly ANR's and Y is homotopy dense in X.

Remark. In Theorem 3 and Corollary 4, by replacing the property $(e)_k$ with $(\tilde{e})_k$ and adding the condition that Y is C^{k-1} , "uniform ANR" can be "uniform AR". In particular, a metric space X with $(\tilde{e})_0$ is a uniform AR.

3. Dense (or uniform) local hyper-connectedness

By using the notion of (local) hyper-connectedness, C.R. Borges [Bo] and R. Cauty [Ca] characterized AR's and ANR's, respectively. Here is introduced a little weaker notion. By Δ^{n-1} , we denote the standard (n-1)-simplex in \mathbb{R}^n , that is,

$$\Delta^{n-1} = \{ (t_1, \dots, t_n) \in \mathbb{R}^n \mid t_i \ge 0, \ \sum_{i=1}^{n+1} t_i = 1 \}.$$

For an open cover \mathcal{U} of a space X and $Y \subset X$, we denote

$$Y^n(\mathcal{U}) = \{(y_1, \dots, y_n) \in Y^n \mid \exists U \in \mathcal{U} \text{ such that } \{y_1, \dots, y_n\} \subset U\}.$$

It is said that a space X is densely locally hyper-connected if X has an open cover \mathcal{W} , a dense subset D and functions $h_n \colon D^n(\mathcal{W}) \times \Delta^{n-1} \to X$, $n \in \mathbb{N}$, which satisfy the following conditions:

(i) if
$$t_i = 0$$
 then
$$h_n(y_1, \dots, y_n; t_1, \dots, t_n)$$
$$= h_{n-1}(y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n; t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n);$$

- (ii) $\Delta^{n-1} \ni (t_1, \ldots, t_n) \mapsto h_n(y_1, \ldots, y_n; t_1, \ldots, t_n) \in X$ is continuous for each $(y_1, \ldots, y_n) \in D^n(\mathcal{W})$;
- (iii) every open cover \mathcal{U} of X has an open refinement \mathcal{V} such that $\mathcal{V} \prec \mathcal{W}$ (hence $D^n(\mathcal{V}) \subset D^n(\mathcal{W})$) and

$$\{h_n((D \cap V)^n \times \Delta^{n-1}) \mid V \in \mathcal{V}\} \prec \mathcal{U} \text{ for each } n \in \mathbb{N}.$$

It should be noticed that each h_n need not be continuous. If W can be taken as $W = \{X\}$ (i.e., $D^n(W) = D^n$), we say that X is densely hyper-connected. In case D = X (resp. D = X and $W = \{X\}$), X is locally hyper-connected⁴ (resp. hyper-connected). This concept is very similar to Michael's convex structure in [Mi₁]. In [Bo] and [Ca], AR's and ANR's are characterized by the hyper-connectedness and the local hyper-connectedness, respectively. A similar characterization was obtained by Himmelberg [Hi] (cf. Curtis [Cu]). These characterizations can be generalized in terms of the dense hyper-connectedness as follows:

Theorem 4. A metrizable space X is an ANR if and only if X is densely locally hyper-connected. Moreover, X is an AR if and only if X is densely hyper-connected.

Remark. In the definition of densely local hyper-connectedness, if the images of functions h_n are contained in Y, then Y is homotopy dense in X. In fact, if the images of functions h_n are contained in Y, then $f(|TN(\mathcal{U})|) \subset Y$, hence Y is homotopy dense in X by the additional statement of Theorem 1.

For a metric space X and $\eta > 0$, we denote

$$X^{n}(\eta) = \{(x_{1}, \dots, x_{n}) \in X^{n} \mid \text{diam}\{x_{1}, \dots, x_{n}\} < \eta\}.$$

A metric space X is said to be uniformly locally hyper-connected if there are $\eta > 0$ and functions $h_n: X^n(\eta) \times \Delta^{n-1} \to X$, $n \in \mathbb{N}$, which satisfy the same conditions as (i) and (ii) above, and the following (iii') instead of (iii):

(iii') for each $\varepsilon > 0$, there is $0 < \delta < \varepsilon$ such that

diam
$$h_n(\{x\} \times \Delta^{n-1}) < \varepsilon$$
 for every $n \in \mathbb{N}$ and $x \in X^n(\delta)$.

When every h_n is defined on the whole space $X^n \times \Delta^{n-1}$, it is said that X is uniformly hyper-connected.

Now, we give a characterization of uniform ANR's and uniform AR's.

⁴The local hyper-connectedness is in the sense of [Ca] but not in the sense of [Bo].

Theorem 5. A metric space X = (X, d) is a uniform ANR if and only if X is uniformly locally hyper-connected. Moreover, X is a uniform AR if and only if X is uniformly hyper-connected.

The following is a combination of Theorems 2 and 5:

Corollary 5. Let X be a uniformly (locally) hyper-connected metric space and Z a metric space which contains X isometrically as a dense subset. Then, X and Z are uniform AR's (uniform ANR's) and X is homotopy dense in Z. In particular, the metric completion \tilde{X} of X is a uniform AR (uniform ANR) and X is homotopy dense in \tilde{X} .

REFERENCES

- [AE] R. Arens and J. Eells, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403.
- [Bo] C.R. Borges, A study of absolute extensor spaces, Pacific J. Math. 31 (1969), 609-617; A correction and an answer, ibid. 50 (1974), 29-30.
- [Ca] R. Cauty, Rétraction dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129–149.
- [Cu] D.W. Curtis, Some theorem and examples on local equiconnectedness and its specializations, Fund. Math. 72 (1971), 101-113.
- [Hi] C.J. Himmelberg, Some theorems on equiconnected and locally equiconnected spaces, Trans. Amer. Math. Soc. 115 (1965), 43-53.
- [Mi₁] E.A. Michael, Convex structures and continuous selections, Canad. J. Math. 11 (1959), 556–575.
- [Mi₂] _____, *Uniform AR's and ANR's*, Compositio Math. **39** (1979), 129–139.
- [vM] J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland Math. Library 43, Elsevier Sci. Publ. B.V., Amsterdam, 1989.
- [N] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 243–254; Corrections, ibid. 141 (1992), 297.
- [NS] and K. Sakai, The compact neighborhood extension property and local equi-connectedness, Proc. Amer. Math. Soc. 121 (1994), 259–265.
- [Sa] K. Sakai, The completions of metric ANR's and homotopy dense subsets, J. Math. Soc. Japan (to appear).
- [SU] and S. Uehara, A Hilbert cube compactification of the Banach space of continuous functions, Topology Appl. 92 (1999), 107-118.
- [To₁] H. Toruńczyk, A short proof of Hausdorff's theorem on extending metrics, Fund. Math. 77 (1972), 191–193.
- [To₂] _____, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53-67.
- [To₃] _____, Concerning locally homotopy negligible sets and characterization of ℓ_2 -manifolds, Fund. Math. 101 (1978), 93-110.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, 305-8571 JAPAN *E-mail address*: sakaiktr@sakura.cc.tsukuba.ac.jp