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K-APPROXIMATIONS AND INFINITE DIMENSIONAL SPACES

BRAHEHET MR#BFE (Yasunao Hattori)

1. INTRODUCTION

Throughout the present note, by the dimension we mean the covering dimen-
sion dim. We shall consider characterizations of classes of infinite dimensional
‘spaces in terms of K-approximations and discuss some questions related to the
characterizations. In [DMS], Dydak-Mishra-Shukla introduced a concept of a K-
approximation of a mapping to a metric simplicial complex and characterized n-
dimensional spaces and finitistic spaces in terms of K-approximations. Let X be
a space, K a metric simplicial complex and f : X — K a continuous mapping. A
mapping g : X — K is said to be a K-approxzimation of f if for each simplex 0 € K
and each z € X, f(z) € o implies g(x) € 0. A K-approximation g : X — K of f is
called an n-dimensional K-approzimation if g(X) c K™ and a finite dimensional
K-approzimation if g(X) ¢ K™ for some natural number m, where K(™ denotes
the m-skelton of K. :

The concept of finitistic spaces was introduced by Swan [Sw] for working in fixed
point theory and is applied to the theory of transformation groups by using the
cohomological structures (cf. [AP]). For a family U/ of a space X the order ordU
of U is defined as follows: ord, U = {U € U : x € U} for each x € X and
ordU = sup{ord, U : x € X}. We say a family U has finite order if ordUd = n for
some natural number n. A space X is said to be finitistic if every open cover of X
has an open refinement with finite order. We notice that finitistic spaces are also
called boundedly metacompact spaces (cf. [FMS]). It is obvious that all compact
spaces and all finite dimensional paracompact spaces are finitistic spaces. More
precisely, we have a useful characterization of finitistic spaces.

Proposition A [H2|, [DMS]. A paracompact space X is finitistic if and only if
there is a compact subspace C of X such that dim F' < oo for every closed subspace
F with FNC = 0. '

- The dimension-theoretic properties of finitistic spaces are investigated by several
authors (cf. [DP], [DS], [DT], [DMS] [H2] and [H6]). In particular, Dydak-Mishra-
Shukla ([DMS]) proved the following.

Theorem A [DMS]. For a paracompact space X the following are equivalent.

(a) dim X < n.
(b) For every metric simplicial complez K and every continuous mapping f :
X — K there is an n-dimensional K-approrimation g of f.
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(c) For every metric simplicial complex K and every continuous mapping f :
X — K there is an n-dimensional K-approrimation g of f such that

glf T (E™) = fIf~HEM).

Theorem B [DMS]. For a paracompact space X the following are equivalent.
(a) X is a finitistic space.
(b) For every metric simplicial complex K and every continuous mapping f :
X — K there is a finite dimensional K -approzimation g of f.
(c) For every integer m > —1, every metric simplicial complex K and every con-
tinuous mapping f : X — K there is a finite dimensional K -approzimation
g of f such that g|f~*(K™) = f|f~1(K(™). |

In §2, we extend Theorem A to a class of metrizable spaces that have strong large
transfinite dimension. In §3, we shall discuss some questions related to strongly
countable-dimensional spaces and finitistic spaces. We denote the set of natural
numbers by N. We refer the reader to [E] and [N] for basic results in dimension
theory.

2. CHARACTERIZATIONS OF INIFINITE-DIMENSIONAL
SPACES BY MEANS OF K-APPROXIMATIONS

We begin with the definition of strong small transfinite dimension introduced by
Borst [B]. For each ordinal number a, we write o = A(a) + n(a), where A(a) is a
limit ordinal and n(«) is a finite ordinal. For a normal space X and a non-negative
integer n, we put

P (X) = U{U : U is an open set of X such that diimU < n}.

Let X be a normal space and « be either an ordinal number or the integer —1.
The strong small transfinite dimension sind of X is defined as follows ([B]):

(i) sind X = —1 if and only if X = 0.

(i) sind X < o if X is expresed in the form X = {P: : £ < a}, where
Pe = Poey (X \U{Py : n < A&

If sind X < o for some a, we say that X has 3tfong small transfinite dimension.

Recall from [H4] that a normal space X has strong large transfinite dimension if
X has both large transfinite dimension and strong small transfinite dimension. (See
[E] and [N] for the definition of large transfinite dimension.) We use the following
characterization of spaces that have strong large transfinite dimension. A normal
space X is said to be strongly countable-dimensional if X is a union of countably
many finite dimensional closed subsets.

Lemma 1 [H3, Propositions 2.2 and 2.3]. Let X be a metrizable space. Then X
has strong large transfinite dimension if and only if X is finitistic and strongly
countable-dimensional. '



The following is a main result. For a space X we denote
D(X) ={D: D is a closed discrete subset of X}.

Theorem 1. For a metrizable space X the following are equivalent.

(a) X has strong large transfinite dimension.

(b) There is a function ¢ : D(X) — w such that for every metric simplicial
complex K and every continuous mapping f : X — K there is a K-
approzimation g of f such that g(D) C K@) for each D € D(X).

(c) For every integer m > —1 there is a function ¢ : D(X) — w such that
for every metric simplicial complex K and every continuous mapping [ :
X — K there is a finite dimensional K-approzimation g of f such that
g(D) ¢ KWD)) for each D € D(X) and g|f~H(K™) = f|f~1(Km).

Corollary 1. For a paracompact space X the following are equivalent.

(a) X is a strongly countable-dimensional space.

(b) There is a function ¢ : X — w such that for every metric simplicial complex
K and every continuous mapping f : X — K there is a K -approximation g
of f such that g(z) € K°®) for each z € X.

(c) For every integer m > —1 there is a function v : X — w such that for every
metric simplicial complex K and every continuous mapping f : X — K
there is a K-approzimation g of f such that g(z) € K@) for each x € X
and g|f~H(K™) = f|f (K ™).

See [H5] for the proof of the theorem.

3. QUESTIONS RELATED TO THEOREM 1

Concerning the theorem in the previous section, we can ask the following.

Question 1. Are the conditions (a) and (b) in the theorem equivalent for para-
compact spaces? :

We have an easy answer the question, i.e., the implication (b) = (a) does not
hold. In fact, for each m,n € N with m < n, Vopénka [Vo] constructed a compact
space Xy, , such that dim X, , = m and Ind X,, , = n. Let X be the topological
sum @fle X1, of X1, n € N. Then X does not have large transfinite dimension
" (and hence X does not satisfy (a)). Since dim X = 1, it follows from Theorem
A that for every metric simplicial complex K and every continuous mapping f :
X — K there is a 1-dimensional K-approximation g of f. Hence X satisfies the
condition (b).

Now, we consider the following condition which is weaker than (a).

(a’) X is a strongly countable-dimensional space satisfying the following condition

- (K) (cf. [P]): o

(K) There is a compact subspace C of X such that dim F' < oo for every closed
subspace F of X with FNC = 0.
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We consider the relations between (a), (b) in Theorem 1 and (a’) for normal
(paracompact) spaces.

In [E, §7.3], Engelking reformulated the class of spaces that have strong small
transfinite dimension by use of a new dimension function transfinite dimensional
kernel trker. He called a space that has transfinite dimensional kernel as a shallow
space. One should notice that a normal space X is a shallow space if and only if
X has strong small trandfinite dimension and sind X = trker X if sind X is a limit
ordinal and sind X = trker X + 1 otherwise.

We shall consider four implications separately.

I. (a) = (a’).

Fact 1 ([E, Theorem 7.1.23]). If a weakly paracompact, strongly hereditarily normal
space X has large transfinite dimension Ind X, then X satisfies the condition (K).

Fact 2 ([E, Theorem 7.3.13]; [H1, Theorem 1.2] for metrizable spa,ces).' If a weakly
paracompact perfectly normal shallow space X, then X is a strongly countable-
dimensional space.

We can ask the following.
Question 2. Can we drop the perfectness in Fact 27
We have a partial answer the question.

Theorem 2. Let X be a hereditarily weakly paracompact and hereditarily normal
space. If X is a shallow space, then X is a strongly countable-dimensional space.

Proof. We show by the transfinite induction on sind X = a.

Case 1. Suppose that a is a limit ordinal number. We notice that X is expresed
in the form X = J{P : £ < o}, where Pz = Poe)(X \U{Py : n < A(§)}). We
put Ge = U{P, : 7 < £} for £ < a. Then {G¢ : £ < a} is an open covering of
X and sind G¢ < £ < a. By the inductive assumption, G¢ is strongly countable-
dimensional for each £ < a. Hence it follows from [E, Theorem 5.2.17] that X is
strongly countable-dimensional.

Case 2. Suppose that a = 4+ 1. Let Y = X \U{F: : £ < AM0)}). Then
sindY < B < a. By the inductive assumption, Y is strongly countable-dimensional.
Hence there is a countable cover {Fy, Fa, ...} of Y by finite dimensional closed sets.
Since P, is a closed set of X such that X = Y U P, and dim P, = n(a) < oo.
We put E; = F; U P, for each ¢ € N. Then it follows that E; closed in X and
dim E; < max{dim F;, dim P, }. Hence X is strongly countable-dimensional. [

Corollary 2. Let X be a hereditarily weakly paracompact, strongly hereditarily
normal space. Then the implication (a) = (a’) holds.

Question 2°. Do Theorem 2 and the corollary hold for weakly paracompact normal
spaces?

II. (a’) = (a).



It is known that a normal space X is a shallow space if and only if every non-
empty closed subspace F' of X contains a non-empty normal open subspace U of F’
such that dimU < oo ([E, Problem 7.3.A]). Hence, by the Baire category theorem,
it follows that every normal Cech-complete, strongly countable-dimensional space
is a shallow space. This implies the following.

Proposition 1. Let X be a normal space satisfying the condition (K). If X is a
strongly countable-dimensional space, then X is a shallow space.

Proof. Let C be a compact subspace of X such that dim F < oo for every closed
subspace F of X with FNC = (). Then C is a compact strongly countable-
dimensional space. Hence C is shallow and hence X is a shallow space by [E,
Problem 7.3.H|. O

As we mentioned above, there is a paracompact space X such that dim X =1,
but X does not have large transfinite dimension. This example leads the Ind-
version of the condition (a’). A normal space X is strongly contable-dimensional
with respect to Ind (shortly s.c.d.-Ind) if X is a union of countably many closed
subspaces X,,, n € N such that Ind X,, < oo for each n € N. Further, we introduce
a notion similar to the condition (K). '

(K-Ind) There is a compact subspace C of X such that Ind F' < oo for every closed
subspace F of X with FNC = {.

We consider the following.
(a”) X is an s.c.d-Ind space satisfying the condition (K-Ind).
Then we have

Proposition 2. Let X be a hereditarily normal space. If X is an s.c.d.-Ind space
satisfying the condition (K-Ind), then X has large transfinite dimension Ind X.

Proof. Let C be a compact subspace of X such that Ind F' < oo for every closed
subspace F of X with FNC = (). Since C is an s.c.d.-Ind compact space, by [F,
Theroems 1, 3], C has large transfinite dimension. Then it follows from [E, Lemma
7.1.24] that X has large transfinite dimension and Ind X < wp+IndC. O

Question 3. Does Proposition 2 hold for normal spaces?

Question 4 [F, Problem 3]. Does every compact space which can be represented
as the union of countably many subspaces which all have large transfinite dimension
have itrself large transfinite dimension? :

If Question 4 has an affirmative answer, then Question 3 does.

IIL. (a’) = (b). »
By the proof of Theorem 1 (see [H5]), we have the following.
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Proposition 3. Let X be a strongly countable-dimensional paracompact space. If
there is a compact subspace C of X such that C has a countable character and
Ind F < oo for every closed subspace F of X with FNC = 0, then X satisfies the
condition (b).

We do not know the proposition above holds for every s.c.d. paracompact space
satisfying the condition (K).

IV. (b) = (a).

The proof of (b) = (a) of Theorem 1 works well for paracompact spaces and it
shows that the condition (b) implies the condition (a’) ([H5]). (The metrizability is
used for the eqivalence between (a) and (a’) in Theroem 1). Hence the implication
(b) = (a’) holds for every paracompact space X.
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