COHOMOLOGICAL DIMENSION AND RESOLUTION

横井 勝弥 (KATSUYA YOKOI) 島根大学 総合理工学部

In this note we introduce the joint work [Ko-Y2] with A. Koyama (Osaka Kyoiku University).

To investigate dimension theory from the view point of algebraic topology, P.S.Alexandroff $[Al_1]$ introduced cohomological dimension theory. It is really a powerful tool of analyzing dimension of product spaces and decomposition spaces, and has much connection with many areas of topology. Next the following Edwards theorem [Ed] was a turning point of recent development of the theory. The details can be found in [W].

Edwards Theorem. For a compactum X with c-dim_Z $X \leq n$ there exists an ndimensional compactum Z and a cell-like map $f: Z \to X$

We note that a map $f: Z \to X$ between compacta is *cell-like* if all point inverses $f^{-1}(x)$ have trivial shape. Edwards and Walsh clarified a relation between cohomological dimension and the topology of manifolds. Namely, the Edwards Theorem gives the exact connection between the *Alexandroff's long standing problem* [Al₂], of whether there exists an infinite-dimensional compactum whose integral cohomological dimension is finite, and the *cell-like mapping problem*, of whether a cell-like map on a finite-dimensional manifold can raise dimension. Although the Alexandroff problem was solved by Dranishnikov [Dr₁], their main idea, called *Edwards-Walsh resolution*, was also a key tool of the solution. In fact, he constructed an infinite-dimensional compactum X with c-dim_z X = 3. Hence we know that there is a cell-like map $f: I^7 \to Y$ with dim $Y = \infty$. Moreover, following Dranishnikov's idea and applying the Sullivan Conjecture [Mi], Dydak and Walsh [D-W₂] constructed an infinite-dimensional compactum X with c-dim_z X = 2. Hence there is a cell-like map $f: I^5 \to Y$ with dim $Y = \infty$.

¹⁹⁹¹ Mathematics Subject Classification. 55M10.

Key words and phrases. Cohomological dimension, cell-like resolution, Edwards-Walsh resolution.

Such compacta and their cell-like resolutions are applied to solve various problems. For example, existence of infinite-dimensional cohomology manifolds, $[Dr_1]$, $[Dr_2]$, existence of a linear metric space which is not an ANR [Ca], and etc.

On the other hand, Dranishnikov $[Dr_3]$ constructed a cell-like map $f: I^6 \to Y$ with $\dim Y = \infty$ by constructing an exotic compactum X with $\dim X = \infty$ and $\operatorname{c-dim}_{\mathbf{Z}/p} X \leq 2$ and $\operatorname{c-dim}_{\mathbf{Z}_{[\frac{1}{p}]}} X \leq 2$. Note that those inequalities imply the inequality $\operatorname{c-dim}_{\mathbf{Z}} X \leq 3$. Then he showed and essentially used the following cell-like resolution theorem:

Dranishnikov Cell-like Resolution Theorem. If a compactum X has cohomological dimension $\operatorname{c-dim}_{\mathbb{Z}/p} X \leq n, \operatorname{c-dim}_{\mathbb{Z}_{\lfloor \frac{1}{p} \rfloor}} X \leq n$ for some prime number p, where n > 1, then there exists an (n + 1)-dimensional compactum Z with $\operatorname{c-dim}_{\mathbb{Z}/p} Z \leq$ $n, \operatorname{c-dim}_{\mathbb{Z}_{\lfloor \frac{1}{p} \rfloor}} Z \leq n$ and a cell-like map $f : Z \to X$.

Testing constructions of acyclic resolutions in [Ko-Y], we can see that it is difficult to investigate acyclic resolutions for cohomological dimensions with respect to both a torsion group and a torsion free group. In that sense Dranishnikov Cell-like Resolution Theorem seems to be interesting.

We direct our attention to properties which the Dranishnikov infinite-dimensional compactum X in [Dr₃, Theorem 1] has. Namely, it satisfies inequalities c-dim_{\mathbb{Z}/p} $X \leq 2$ and c-dim $\mathbf{z}_{(q)} X \leq 2$ for all prime numbers $q \neq p$. For any integers $1 \leq m_p, m_q < n$, by [Dr₂], there exists an *n*-dimensional compactum Z such that c-dim_{\mathbf{Z}/p} Z = m_p and c-dim $\mathbf{z}_{(q)} Z = m_q$. Hence, if $m_p, m_q \ge 2$, we can obtain the infinite-dimensional compactum $X \vee Z$ having the property that c-dim_{**Z**} $X \vee Z = n$, c-dim_{**Z**/p} $X \vee Z = m_p$ and c-dim $\mathbf{z}_{(q)} X \vee Z = m_q$. On the other hand, Dydak-Walsh, [D-W₂, Theorem 2] constructed an infinite-dimensional compactum Y such that c-dim_z Y = 2 and c-dim_{**Q**} $Y = \text{c-dim}_{\mathbf{Z}/p} Y = 1$ for every prime number p. Hence, if $m_q \ge 2$, we also have the infinite-dimensional compactum $Y \lor Z$ having the property that c-dim_Z $Y \lor Z$ = $n, \operatorname{c-dim}_{\mathbf{Z}/p} Y \lor Z = 1$ and $\operatorname{c-dim}_{\mathbf{Z}_{(q)}} Y \lor Z = m_q$. However, since one of key tools of Dranishnikov's construction is the fact that $\widetilde{K}^*_{\mathbf{C}}(K(\mathbf{Z}/p,2);\mathbf{Z}/p) = \widetilde{K}^*_{\mathbf{C}}(K(\mathbf{Z}_{\lfloor\frac{1}{p}\rfloor},2);\mathbf{Z}/p) = 0$, and for the Dydak-Walsh compactum Y, by Bockstein theorem, c-dim $_{\mathbf{Z}_{(q)}}Y = 2$ for at least one prime number q, both compacts cannot help to construct an infinitedimensional compactum W such that c-dim $_{\mathbf{Z}}W < \infty$ and c-dim $_{\mathbf{Z}_{(q)}}W = 1$ for some prime number q. Note that we cannot decide the prime number q so that c-dim $\mathbf{z}_{(q)} = 2$.

In [Ko-Y2], giving a localized version of Dydak-Walsh's idea, we construct the fol-

lowing infinite-dimensional compactum:

Theorem 1. For each pair p, q of distinct prime numbers there exists an infinitedimensional compactum X such that $\operatorname{c-dim}_{\mathbf{Z}} X = 2$ and $\operatorname{c-dim}_{\mathbf{Z}/p} X = \operatorname{c-dim}_{\mathbf{Z}_{(q)}} X$ = 1

Hence we have the following formulation of exotic compacta:

Corollary. For given prime numbers $p \neq q$ and given integers $1 \leq m_p, m_q < n$, there exists an infinite-dimensional compactum $X(p,q;m_p,m_q,n) = X$ such that c-dim_{**Z**}X = n, c-dim_{**Z**/p} $X = m_p$ and c-dim_{**Z**(q)} $X = m_q$.

We call such a compactum type $(p,q;m_p,m_q,n)$.

Then related to the Edwards Theorem and the Dranishnikov Cell-like Resolution Theorem we naturally pose the following problem:

Cell-like Resolution Problem of type $(p,q;m_p,m_q,n)$. Let p,q, be distinct prime numbers and let $1 \le m_p, m_q < n$ be integers. For a compactum X of type $(p,q;m_p,m_q,n)$ does there exist an n-dimensional compactum Z with c-dim $_{\mathbf{Z}/p} Z \le m_p$ and c-dim $_{\mathbf{Z}(q)} Z \le$ m_q and a cell-like map $f: Z \to X$?

We do not know its general answer. However, applying our calculation in [Ko-Y] to the Dranishnikov Cell-like Resolution Theorem, we shall give a detailed proof of the theorem and affirmatively answer the problem of type (p,q;n,n,n+1), where n > 1, as follows:

Theorem 2. Let p, q be distinct prime numbers and let n be an integer > 1. Then for a compactum X of type (p,q;n,n,n+1), there exists an (n+1)-dimensional compactum Z with c-dim_{Z/p} $Z \le n$, c-dim_{Z(q)} $Z \le n$ and a cell-like map $f: Z \to X$.

On the other hand, a theorem of Daverman [Da] essentially implies that for any subset Q of prime numbers an infinite-dimensional compactum X with c-dim_Z X = 2 and c-dim_{Z(Q)} X = 1 cannot be a cell-like image of any 2-dimensional compactum Z with c-dim_{Z(Q)} Z = 1. Thus, Theorem 1 gives a negative answer to the Cell-like Resolution Problem of type (p,q;1,1,2) for any distinct prime numbers p,q.

In [Ko-Y] we discussed several types of acyclic resolutions. Related to those results we shall pose the following problem:

Problem 1. Let p, q be distinct prime numbers. For a compactum X with

c-dim_{**Z**/p} $X \leq n$ and c-dim_{**Z**(q)} $X \leq n$, then does there exist an (n + 1)-dimensional compactum Z and a **Z**/p- and **Z**(q)- acyclic resolution ?

Comparing our results the following problem seems to be interesting:

Problem 2. If a compactum X has c-dim_Z $X \le n+1$ and c-dim_{Z/p[∞]} $X \le k$, where p is a prime number and $n \ge k \ge 1$, then does there exist an (n+1)-dimensional compactum Z with c-dim_{Z/p[∞]} $Z \le k$ and a cell-like map $f : Z \to X$?

For basic results of cohomological dimension and a brief history of the theory we refer [D], $[Dr_5]$, [K] and [Ku] to readers.

References

- [Al₁] P.S.Alexandroff, Dimensionstheorie. Ein Beitrag zur Geomerie der abgeschlossenen Mengen, Math. Ann. **106** (1932), 161–238.
- [Al₂] _____, Einige Problemstellungen in der mengentheorestischen Topologie, Math. Sbor. 43 (1936), 619-634.
- [Br] M.Brown, Some applications of approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483.
- [Ca] R.Cauty, Un espace métrique linéaire qui n'est pas un rétracte absolu, Fund. Math. 146 (1994), 85-99.
- [Da] R.J.Daverman, Hereditarily aspherical compacta and cell-like maps, Topology and its Appl 41 (1991), 247-254.
- [Dr₁] A.N.Dranishnikov, On a problem of P.S.Alexandroff, Math. USSR Sbornik 63:2 (1988), 412–426.
- $[Dr_2]$ _____, Homological dimension theory, Russian Math. Surveys 43:4 (1988), 11-63.
- [Dr₃] _____, K-theory of Eilenberg-MacLane spaces and cell-like mapping problem, Trans. Amer. Math. Soc. **335** (1993), 91–103.
- $[Dr_4]$ _____, Rational homology manifolds and rational resolutions, preprint (1997).
- $[Dr_5]$ _____, Basic elements of the cohomological dimension theory of compact metric spaces, preprint (1998).
- [D] J. Dydak, Cohomological Dimension Theory, Handbook of Geometric Topology, 1997 (to appear).
- [D-W1] _____ and J.Walsh, Complexes that arise in cohomological dimension theory: a unified approach, J. of London Math. Soc. 48 (1993), 329-347.
- [D-W₂] _____, Infinite dimensional compacta having cohomological dimension two: An application of the Sullivan Conjecture, Topology **32** (1993), 93–104.
- [Ed] R. D. Edwards, A theorem and a question related to cohomological dimension and cell-like map, Notice Amer. Math. Soc. 25 (1978), A-259.
- [K] Y.Kodama, Cohomological dimension theory, Appendix: K.Nagami, Dimension Theory, Academic Press, New York, 1970.
- [Ko-Y] A.Koyama and K.Yokoi, Cohomological dimension and acyclic resolutions, Topology and its Appl. (to appear).
- [Ko-Y2] _____, On Dranishnikov's cell-like resolution, Topology and its Appl. (to appear).
- [Ku] W. I. Kuzminov, Homological dimension theory, Russian Math. Surveys 23 (1968), 1-45.
- [M-N] C.A.McGibbon and J.A.Neisendorfer, On the homotopy groups of a finite-dimensional space, Comment. Math. Helv. 59 (1984), 253-257.

- [Mi] H.Miller, The Sullivan conjecture on maps from classifying spaces, Ann. Math. 120 (1984), 39-87.
- [W] J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Lecture Notes in Math. 870, 1981, pp. 105-118.
- [Y] K.Yokoi, Localization in dimension theory, Topology and its Appl. 84 (1998), 269–281.

Department of Mathematics, Interdisciplinary faculty of Science and Engineering, Shimane University, Matsue, 690-8504, Japan

E-mail address: yokoi@math.shimane-u.ac.jp