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1 Introduction
The problem of pricing financial derivatives is one of great interests in recent years among
scientists and practitioners. In a considerable literature it is reported that quasi-Monte
Carlo(QMC) method shows very rapid convegence in computing the price of derivatives.
On the other hand it is rare to see the invetigation on the error of the computed value by
QMC method. In this paper we report some experimental results on the error estimation
of computed value of derivatives by QMC methods.

All the problems in this paper are posed as the multi-dimensional integral over the
unit cube:

$\int_{[0,1]^{s}}f(x)\mathrm{d}x$ . (1)

QMC method uses a low-discrepancy point sequence $\{x_{i}\}\subset[0,1)^{s}$ and computes the
approximate value of (1) by

$I_{N}= \frac{1}{N}\sum_{i=1}^{N}f(x_{i})$ . (2)

For the error of QMC method, we have the following Koksma-Hlawka inequality.

$| \frac{1}{N}\sum_{i=1}^{N}f(x_{i})-\int_{[0,1]^{s}}f(x)\mathrm{d}x|\leq V(f)D_{N}^{*}$,

where $V(f)$ is the total $\backslash r\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of $f$ in the sense of Hardy and Krause, and $D_{N}^{*}$ is the
star discrepancy of the sequence $\{x_{i}\}$ . Koksma-Hlawka inequality is a basis of the superi-
ority of QMC method to Monte Carlo(MC) method, because if we use a low-discrepancy
point sequence, $D_{N}^{*}$ (and also the absolute error of integral) goes to $0$ with the rate
$\mathrm{O}((\log N)^{s}/N)$ asymptotically as $Narrow\infty$ , which exhibits a striking contrast to the con-
vergence rate $\mathrm{O}(1/\sqrt{N})$ of $\mathrm{M}\mathrm{C}$ .

However we cannot make an error estimation with Koksma-Hlawka inequality, because
it is usually impossible to calculate the total variation $V(f)$ . Recently several works on
the error analysis of QMC integrations have been developed. These approaches apply
statistical error estimation methods to QMC integrations. Since low-discrepancy point
sequences are deterministic, the point sequences must be selected from some probability
space in order to do a statistical error estimation,. We need a probabilistic structure on
the point sequences.

In this paper we select two methods and compare their efficiencies. The first method
uses scrambled sequences, which were proposed by Owen [6]. The second one uses ran-
domly shifted sequences, which are based on the idea of Cranley and Patterson [1] for good
lattice points methods. A part of authors of this paper examined $\mathrm{t}\backslash \mathrm{v}\mathrm{o}$ methods by vari-
ous test functions, and reported that both the methods give satisfactory error estimates
from a practical point of view [3]. In this paper we apply two methods to a “real-world
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problem,” pric.ing financial $\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}1^{\gamma}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{s}$ , and reac.h substantially the same conclusion as
our previous oork.

2 Randomized QMC

2.1 $(t, s)$ -sequence
We use $(t, s)$-sequence as a low-discrepancy point sequence. Let us recall the definition of
$(t, s)$ -sequence [4]. A subset $E$ of $I^{s}=[0,1)^{s}$ of the form

$E= \prod_{i=1}^{s}[a_{i}b^{-d_{i}},$ $(a_{i}+1)b^{-d_{t}})$

with $a_{i},$
$d_{i}\in \mathrm{Z},$ $d_{i}\geq 0,0\leq a_{i}<b^{d_{i}}$ for $1\leq i\leq s$ is called an elementary interval in base

$b$ .

Definition 1 Let $t$ and $m$ be nonnegative integers and $t\leq m$ . $A(t, m, s)$ -net in base $b$

is a set of $b^{m}$ points in $I^{s}$ such that every elementary interval of volume $b^{t-m}$ contains
exactly $b^{t}$ poinis of the point set.

Definition 2 Let $t\geq 0$ be an integer. An infinite sequence $z_{0},$ $z_{1},$ $\ldots$ of points in $I^{s}$ is a
$(t, s)$ -sequence in base $b$ if, for all integers $k\geq 0$ and $m\geq t$ , the point set consisting of
the $z_{n}$ with $kb^{m}\leq n<(k+1)b^{m}$ is a $(t, m, s)$ -net in base $b$ .

We summarize the construction of $(t, s)$ -sequence in base $b$ according to Niederreiter
[4]. The n-th point $z_{n}=(z_{n}^{(1)}, \ldots, z_{n}^{(s)})$ is given by

$z_{n}^{(j)}= \sum_{k=1}^{\infty}y_{nk}^{(j)}b^{-k}$ ,

where
$y_{nk}^{(j)}= \sum_{r=1}^{\infty}c_{kr}^{(j)}a_{r}(n)$ (mod $b$).

Here $n=\Sigma_{r=1}^{\infty}a_{r}(n)b^{r-1}$ is the $b$-adic expansion of $n$ . We call the matrix $C^{(j)}=(c_{kr}^{(j)})$ the
generator matrix of the j-th coordinate of $(t, s)$ -sequence.

Faure sequence in the original form is given by setting

$C^{(j)}=(P^{\mathrm{T}})^{j-1}$ (mod $b$),

where $P=(p_{kr})$ , so-called Pascal matrix, is given by $p_{kr}=$ .

Generalized Faure sequence presented in [7] is $\mathrm{g}\mathrm{i}1^{\gamma}\mathrm{e}\mathrm{n}$ by setting

$C^{(j)}=A^{(j)}(P^{\mathrm{T}})^{j-1}$ (mod $b$),

where $A^{(j)}$ is an appropriately chosen lower triangular nonsingular matrix.
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Sobol’ sequence in the original $\mathrm{f}\mathrm{o}\mathrm{r}\ln$ is given by setting

$.\cdot.\cdot.\cdot)$ ,

where $E_{e_{j}}$ is the $e_{j}\cross e_{j}$ unit matrix, and $e_{j}$ is the degree of the j-th (in the order of
nondecreasing degree) primitive polynomial $p_{j}$ over $\mathrm{G}\mathrm{F}(2)$ . The matrix $W$ is determined
as follows. Let $p_{j}(x)=x^{e_{j}}+b_{e_{j}-1}x^{e_{j}-1}+\cdots+b_{0}(b_{0}\neq 0)$. For $1\leq k\leq e_{j}$ , we denote
the k-th row vector of $C^{(j)}$ by $c_{k}=(c_{k1}, c_{k2}, \ldots)$ . Obviously the first $e_{j}$ elements of $c_{k}$ are
those of the k-th row vector of $e_{j}\mathrm{x}e_{j}$ unit matrix $E_{e_{j}}$ , so $c_{k1}=0,$

$\ldots,$ $c_{kk}=1,$ $c_{k,k+1}=$
$0,$

$\ldots,$ $c_{k,e_{j}}=0$ . The elements $c_{kr}$ for $r>e_{j}$ , which are the elements of the k-th row of
$W$ , are determined by the recurrence relation:

$c_{kr}+b_{e_{j}-1}c_{k,r-1}+\cdots+b_{0}c_{k,r-e_{j}}=0$ (mod 2). (3)

Some generalization of Sobol’ sequence is obtained by replacing $E_{e_{j}}$ by an arbitrary
nonsingular $e_{j}\cross e_{j}$ matrix $F^{(j)}$ . Naturally the elements of each row in the generator matrix
must be changed to satisfy the relation (3). Hence a generalization of Sobol’ sequence is
given by setting

$C^{(j)}=$ ($F^{J}\mathrm{E}_{F^{(j)}}^{\mathfrak{s}\pi^{r;}}\mathrm{T}.\prime \mathrm{T}./^{\Gamma/}$

. $.\cdot.\cdot.\cdot$ ).
This generator matrix can be interpreted as the product of a block diagonal matrix with
$F^{(j)}$ as block diagonal elements and the original generator matrix:

$.\cdot.\cdot.\cdot)$ .

2.2 Statistical Error Estima.tion
Ce introduce statistical error $\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\dot{\mathrm{t}}$ ion methods for numerical integrations using ran-
domized $(t, s)$-sequence. The basic idea of statistical error estimation methods is a combi-
nation of MC and QMC. We construct a space of point sequences with some probabilistic
structure. This is done by randomizing a $(t, s)$-sequence. The error estimate is obtained
by means of choosing several point sequences from the probability space and calculating
the standard deviation of the computed values by those sequences.

3



The general scheme of the methods is as follows. We select point sequences $\{x_{i}^{(j)}\}$ ,
$j=1,$ $\ldots,$

$II$ , independently from a probability space, and compute the value of (2) using
the first $N$ elements of each sequence:

$S^{(j)}= \frac{1}{N}\sum_{i=1}^{N}f(x_{i}^{(j)})$ , $j=1,$ $\ldots,$
$\lambda I$ . (4)

Then we calculate the estimate of $\int_{[0,1]^{s}}f(x)\mathrm{d}x$ by

$\hat{I}=\frac{1}{\mathrm{J}I}\sum_{j=1}^{M}S^{(j)}$ . (5)

The error of the numerical integration is estimated using the variance of the evaluated
values.

$\hat{\sigma}^{2}=\frac{1}{\mathrm{J}I(\mathrm{J}I-1)}\sum_{j=1}^{M}(S^{(j)}-\hat{I})^{2}$ . (6)

We will consider the following two probabilistic structures.

Scrambling [6].

Let $\{z_{i}\}$ be a $(t, s)$ -sequence in base $b$ . Suppose $z_{i}=(z_{i}^{1}, \ldots , z_{i}^{s})$ and $z_{i}^{j}=\Sigma_{k=1}^{\infty}z_{ijk}b^{-k}$

for integers $0\leq z_{ijk}<b$ . A scrambled sequence $\{x_{i}\},$ $x_{i}=(x_{i}^{1}, \ldots, x_{i}^{s})$ is defined as
$x_{i}^{j}=\Sigma_{k=1}^{\infty}x_{ijk}b^{-k}$ , where $\{x_{ijk}\}$ is a random permutation applied to $\{z_{ijk}\}$ . Specifically
$x_{ijk}$ are determined as follows.

$x_{ij1}$ $=$ $\pi_{j}(z_{ij1})$ ,
$x_{ij2}$ $=$ $\pi_{jz_{ij1}}(z_{ij2})$ ,

.$\cdot$.

$x_{ijk}$ $=$ $\pi_{jz_{i_{J}1}z_{ij2}\ldots z_{ij,k-1}}.(z_{ijk})$ ,

.$\cdot$.

Here each $\pi$ is a random permutation over $\{0,1, \ldots , b-1\}$ . In the second line the sub-
script $z_{ij1}$ means that the permutation depends on the value of $z_{ij1}$ . In the same rvay
$\pi_{jz_{ij1}z_{ij2}\ldots z_{ij,k-1}}$ is a permutation depending on the values of $z_{ij1},$ $\ldots$ , $z_{ij,k-1}$ . All permuta-
tions are mutually independent.

Random Shifting [1].

Let $\{z_{i}\}$ be a $(t, s)$ -sequence in base $b$ and $u$ be an $s$-dimensional random vector uniformly
distributed over a unit cube. A randomly shifted sequence $\{x_{i}\}$

.
is given by

$x_{i}=z_{i}+u$ (mod 1),

where (mod 1) means the componentwise (mod 1) operation.
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3 Pricing Derivative Securities
Three kind of financial derivatives are used for numerical experiments. In all the exper-
iments we use generalized Faure sequence and generalized Sobol’ sequence described in
Sect. 2.

3.1 European Call Option
First we deal with a basic case, European call option. Let $S(t)(0\leq t\leq T)$ be the
underlying asset price which obeys the Black-Scholes model:

$\mathrm{d}S(t)=S(t)r\mathrm{d}t+\sigma S(t)\mathrm{d}B(t)$, $S(0)=S_{0}$ , (7)
where $r$ is the riskless interest rate, $\sigma$ is the volatility, and $B(t)$ is the standard Brownian
motion. The price of European call option with a strike price $K$ can be written as follows.

$E[ \max(S(T)-K, 0)]$ . (8)
The expectation is taken over all Brownian motions starting at $S_{0}$ . We apply Euler-
Maruyama schelne to (7), obtaining the stochastic difference equation:

$S_{n}=S_{n-1}(1+r\triangle t+\sigma\sqrt{\triangle t}\xi_{n})$, $n=1,$ $\ldots,$
$s$ , (9)

where $\Delta t=T/s$ , and $\xi_{n}$ are i.i.d. standard normal random variables. Then we approxi-
mate (8) by

$\int_{\mathrm{R}^{s}}\max(S_{0}\prod_{i=1}^{s}(1+r\triangle t+\sigma\sqrt{\Delta t}\xi_{i})-K,$
$0)( \frac{1}{\sqrt{2\pi}})^{s}\prod_{j=1}^{s}\exp(-\frac{\xi_{j}^{2}}{2})\mathrm{d}\xi_{1}\ldots \mathrm{d}\xi_{s}$. (10)

Under the change of variables $x_{i}=\Phi(\xi_{i})$ , where $\Phi$ is the standard normal distribution
function, the integral becomes

$\int_{[0,1]^{s}}\max(S_{0}\prod_{i=1}^{s}(1+r\triangle t+\sigma\sqrt{\triangle t}\Phi^{-1}(x_{i}))-K,$ $0)\mathrm{d}x_{1}\ldots \mathrm{d}x_{s}$ . (11)

The parameters used in the experiment are as follows [2]:
current price, $S_{0}$ 100
strike price, $K$ 100
riskless interest rate, $r$ 0.1
time to maturity, $T$ 1
volatility, $\sigma$ 0.3
$s$ 360

$\mathrm{V}^{\gamma}\mathrm{e}$ can find the exact value of this option for these parameters by the analytical solution.
The value is approximately 16.734.

The result is shown in Figure. 1. In each figure, the abscissa is the number of points
$N$ in the underlying sequence, and the estimated values are indicated by dots. In the
experiment we used 10 independent sequences $(M=10)$ , so each estimate is the average
of $S^{(j)},$ $j=1,$ $\ldots,$

$10$ (cf. (4), (5)). The vertical bar on the dot shows the estimated error
$3\hat{\sigma}$ (cf. (6)). In the experiments, we observe that both scrambling method and random
shifting method lead to good error estimates, and that randomized Faure sequences give
smaller $\backslash \gamma \mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}$ than Sobol’ sequences. The difference between the variances given by
scrambling and random shifting is not distinguishable.
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3.2 Mortgage Backed Security

Next we $\mathrm{c}\mathrm{o}\mathrm{n}$.sider another financial problem, mortgage-backed security(MBS). Here we
use a simplified model provided by [5] for the experiment.

The underlying pool of mortgages has a thirty-year maturity and cash flows occur
monthly. So there are 360 cash flows. For $1\leq k\leq 360$ we set,

$C$ : the monthly payment on the underlying pool of mortgages.
$r_{k}$ : the appropriate interest rate in month $k$ .

$w_{k}$ : the percentage prepaying in month $k$ .
$a_{360-k+1}$ : the remaining annuity after month $k$ .

Then we recall that the remaining annuity $a_{k}$ is given by

$a_{k}= \sum_{i=0}^{k-1}v_{0}^{i}$ ,

where $v_{0}=1/(1+r_{0})$ and $r_{0}$ means the current monthly interest rate. In our setting $C$

and $r_{0}$ (therefore also $a_{k}$ ) are constants; $r_{k}$ and $w_{k}$ are stochastic variables determined by

$\log r_{k}-\log r_{k-1}$ $=$ $-\log 1.020201+0.2\xi_{k}$ , (12)

$w_{k}$ $=0.24+0.134\arctan(12.72-261.17r_{k})$ , (13)

respectively, where $\xi_{k}$ are independent normal random variables. The cash flow in month
$k$ is

$M_{k}=C(1-w_{1})\cdots(1-w_{k-1})(1-w_{k}+w_{k}a_{360-k+1})$ . (14)

To get the present value of this cash flow, we multiply $M_{k}$ by the corresponding discount
factor

$u_{k}= \prod_{i=0}^{k-1}v_{i}$ ,

where
$v_{i}=\underline{1}$ $i=1,$ $\ldots,$

$359$ .
$1+r_{j}$

’

Summing up the present values of the cash flow for every month $k$ , we obtain the present
value of the security

$V( \xi_{1}, \ldots, \xi_{360})=\sum_{k=1}^{360}\Lambda f_{k}u_{k}$ .

The objective is to estimate the expected value $E[V]$ . As in the previous example,
using the change of variables $x_{k}=\Phi(\xi_{k}),$ $\backslash \mathrm{v}\mathrm{e}$ see that

$E[V]= \int_{[0,1]^{360}}V(\xi_{1}(x_{1}), \ldots, \xi_{360}(x_{360}))\mathrm{d}x_{1}\ldots \mathrm{d}x_{360}$ .

In the experiment we set $C=2000,$ $r_{0}=0.075/12$ . $\mathrm{t}1’\mathrm{e}$ have no analytical solution for
this problem.

The result is shown in Figure 2. The notation used in the figure is the same as in the
case of European call option. The error estimation is made in terms of 10 independent
sequences $(\Lambda l=10)$ .

6



Randonuized Faure sequences give smaller $\backslash r\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}$ than randomized Sobol’ sequences.
As for Faure sequence, the difference between the variances given by scrambling and
random shifting is not distinguishable. The result of randomized Sobol’ sequences (Fig-
ure $2(\mathrm{a}),$ $(\mathrm{b}))$ is unsatisfactory. We observe the very slow convergence of estimated errors
for these cases. We are not clear about the reason for this. However we give some heuris-
tics, permuting coordinates, in order to improve the convergence. Specifically, we select
first $\kappa(1<\kappa\leq 360)$ variables $x_{1},$ $\ldots,$

$x_{\kappa}$ , then permute the order of variables:
$x_{1}’=x_{\sigma(1)},$

$\ldots,$
$x_{\kappa}’=x_{\sigma(\kappa)}$ ,

with a randomly chosen permutation $\sigma$ over $\{$ 1, $\ldots$ , $\kappa\}$ . The other variables $x_{\kappa+1},$ $\ldots,$ $x_{360}$

remain in the same order:
$x_{\kappa+1}’=x_{\kappa+1},$

$\ldots,$
$x_{360}’=x_{360}$ .

We use new variables $\{x_{i}’\}_{i=1}^{360}$ for the computation. Figure $2(\mathrm{e})$ and (f) present the result
for this heuristics, where we set $\kappa=30$ , and for a fixed order of variables determined by
a randomly chosen permutation, 10 independent sequences are generated to estimate the
error.

Insofar as we observe the experimental results, we can consider both methods, scram-
bling and shifting, give reliable error estimations.

3.3 Asian Option
The payoff of the Asian option depends on the arithmetic average of an asset price. We
examine here the call option. The payoff at expiry is given by

$\max(\frac{1}{T}\int_{0}^{T}S(t)\mathrm{d}t-K, 0)$ ,

where $S(t)$ is the asset price which follows (7), and $K$ is the strike price. As in Sect. 3.1,
discretization in time leads to an approximation of the option price.

$\int_{\mathrm{R}^{s}}\max(\frac{1}{s}\sum_{n=1}^{s}S_{n}-K,$ $0)( \frac{1}{\sqrt{2\pi}})^{s}\prod_{j=1}^{s}\exp(-\frac{\xi_{j}^{2}}{2})\mathrm{d}\xi_{1}\ldots \mathrm{d}\xi_{s}$,

where $S_{n}=S_{n}(\xi_{1}, \ldots, \xi_{n})$ is defined as in (9), and $\triangle t=T/s$ . After the change of variables
$x_{i}=\Phi(\xi_{i})$ , we obtain the third test problem:

$\int_{[0,1]^{s}}\max$ ( $\frac{1}{s}\sum_{n=1}^{s}\tilde{S}_{n}(x_{1}, \ldots , x_{n})-K,$ $0$) $\mathrm{d}x_{1}\ldots \mathrm{d}x_{s}$ , (15)

where $\tilde{S}_{n}(x_{1}, \ldots, x_{n})=S_{n}(\Phi^{-1}(x_{1}), \ldots , \Phi^{-1}(x_{n}))$ . The parameters used in the experiment
are as follows (we used the same parameters as in [2]):

current price, $S_{0}$ 100
strike price, $K$ 100
riskless interest rate, $r$ 0.09
time to maturity, $T$ 1
volatility, $\sigma$ 0.5
$s$ 52

The result is shown in Figure 3. Similarly to the case of MBS, the convergence of the
error for Sobol’ sequences is very slow. Applying the same heuristics, i.e. a permutation,
we have the improved convergence, see Figure $3(\mathrm{e})’.(\mathrm{f})$ .
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4 Conclusion
We presented the result of some numerical experiments on the statistical error estimation
of QMC integrations. The numerical experiments show that both methods lead to good
error estimates. As for the magnitudes of errors given by two methods, the estimated
error value of one method can become bigger or smaller than another in different exper-
iments. Thus we cannot provide a definite conclusion on which method gives a shaper
error estimate.

The implementation of scrambling method is very complicated and the method is
very time-consuming. On the other hand, the random shifting method is simple and very
fast. From a practical point of view, we consider random shifting method can be a good
alternative of scrambling method.
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Figure 1: Pricing European call option and its error estimate.

9



$\frac{v3}{>^{a}}$

$\tau_{v}$

$.\beta.\mathrm{j}\sim aw\underline{\mathrm{g}}$

$.. \frac{v}{>^{a}}\mathrm{m}\sim\underline{\circ \mathrm{e}a}m\Phi.$

’

$\frac{v\not\supset}{\succ^{\mathrm{d}}}$

$\frac{w3}{\backslash ^{\alpha},\prime}$

$\tau_{\Phi}$

$\triangleleft_{\Phi}$

$.\mathfrak{k}^{n}\#\underline{n\dot{\mathrm{e}}.}\mathrm{D}$

$.6 \sim a.\frac{8}{.,\infty \mathrm{J}}$

$\sim$ . . $-$ -P—.— .. $.-r-\cdot.-$

$\frac{v\not\supset}{>^{\alpha}}$

$\tau_{\Phi}$

$. \frac{v\not\supset}{\tau>\triangleleft}\mathfrak{k}^{m}\vee\vee\underline{\omega \mathrm{g}a}\mathrm{d}$

$\mathrm{f}.\mathrm{i}3\sim\hslash\frac{\mathrm{g}}{\sim}\mathrm{r}$

Number of Points Number of Points

(e) Scrambled $\mathrm{S}\mathrm{o}\mathrm{b}\mathrm{o}\mathrm{l}’$ ( $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ permuting) (f) Shifted $\mathrm{S}\mathrm{o}\mathrm{b}\mathrm{o}\mathrm{l}’$ ( $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ permuting)

Figure 2: Pricing MBS and its error estimate.
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Figure 3: Pricing Asian option and its error estimate.
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