
What generates the rhythm in a saline oscillator ?

名古屋大学大学院人間情報学研究科 岡村面面 (Mina Okamura)
京都大学大学院理学研究科 吉川研– (Kenichi Yoshikawa)

1 Introduction

In our environment, hydrodynamic flow accompanied with the time-dependent change of

density is rather usual, see e.g., mixing of river stream with sea water and front move-

ment in weather. Thus, it is very important to know the essentials in convection-diffusion

system. However, even for the problem without diffusion or without density gradient, no

analytical solution exists. In other words, the Navier-Stokes equation is not solvable even

in the absence of density gradient, and is complex enough to induce various ”unexpected”

phenomena (e.g. chaos in Lorenz attractor). The aim of the present research is to obtain an

intrinsic property buried in the ”complexity” in convection-diffusion system, by picking up

a curious phenomenon, $\mathrm{s}+$called saline oscillator, as a simple convection-diffusion system.

The saline oscillator was discovered by Martin in $1970[1]$ . The experimental procedure

is quite simple and the self-oscillatory behavior is highly reproducible. Fig.1 (a) shows the

experimental apparatus of the hydrodynamic oscillator. A plastic cup, with small orifice $($

$\mathrm{c}\mathrm{a}$ . $1$ mm diameter) in its base, filled with saline water, is placed within an outer vessel

containing pure water. When the experiment starts at the point that the saline water

level of the inner cup was nearly equal to that of the outer vessel, due to the imbalance of

hydrostatic pressure, the saline water begins to flow downward. After a while, the down flow

terminates, and then the pure water in the outer vessel begins to go upward through the

orifice. This cycle repeats again and again (Fig. $1(\mathrm{b})$ ). This rhythmic phenomenon exhibits

the characteristics of a nonlinear dynamical system. It has been subsequently shown that

a saline oscillator exhibits various behaviors typical of a nonlinear oscillator; i.e. limit-

cycle oscillation, bifurcation of the oscillatory mode and entrainment among $\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}[2-$

$7]$ . If the essential aspects of such a visible nonlinear oscillator can be descried in simple

mathematical terms, it should be helpful for understanding nonlinear rhythmic phenomena

in physics, chemistry and biology. In the present study, we performed a numerical simulation

on the curious periodic flow in a saline oscillator. The main purpose of this study was to
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identify the essence of the mechanism of this oscillatory phenomenon through an analysis
of the numerical simulation. In experimental studies, it is almost impossible to monitor
time-dependant changes in the spatiotemporal structure, such as the velocity and energy
dissipation at distinct points. On the other hand, a numerical study can provide detailed
information on the spatiotemporal changes in various physical parameters.

2 Procedure for the Numerical Simulation

We performed a computer simulation of a saline oscillator with a three-dimensional flow
field. We used the basic equations for an incompressible unsteady viscous fluid. Flow can
be described by the Navier-Stokes equation, $\mathrm{E}\mathrm{q}.(1)$ , and an equation of continuity, $\mathrm{E}\mathrm{q}.(2)$ ,

$\frac{\partial\rho U}{\partial t}+(U\cdot\nabla)\rho U=-\nabla P+\mu\nabla 2U+\rho g$ , (1)

$\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho U)=0$ , (2)

where $U=(u, v, w)$ is the velocity; $P$ is the pressure; $\rho$ is the density of the fluid; $g=$

$(0,0, -g)$ is the gravitational acceleration; and $\mu$ is the coefficient of viscosity. Note that
$\rho$ is a spatiotemporal variable in our system, $\rho=\rho(x, y, z,t)$ . For pratical purposes, the
density of a fluid can be given as the sum of the density of water, $\rho_{0}$ , and the density of
salt, $\rho_{s}$ . Thus, we evaluated the effects of density changes with the following equation of

mass conservation, which includes the effect of diffusion,

$\frac{\partial\rho_{s}}{\partial t}+\nabla\cdot(\rho_{s}U)=D_{s}\nabla^{2}\rho s$

’ (3)

where $\rho_{s}$ is the density of salt and $D_{s}$ is the diffusion coefficient of salt.

We chose to use a cylindrical coordinate system with its origin at the center of the orifice
with depth ” $d$” and radius ”a $n$ (see Fig.2), so that $r$ and $z$ are the radial and vertical

coordinates. We assume that the flow shows radial symmetry with respect to the vertical

axis, and we use the Boussinesq approximation in the equations of motion. With this
framework, the basic equations become

$\frac{\partial u}{\partial t}$

$+$ $\frac{1}{r}\frac{\partial}{\partial r}(ru^{2})+\frac{\partial}{\partial z}(uw)$

$=$ $- \frac{1}{\rho_{0}}\frac{\partial P}{\partial r}+\frac{1}{r}\frac{\partial}{\partial r}(2\iota \text{ノ}r\frac{\partial u}{\partial r})+\frac{\partial}{\partial z}(\nu(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}))-2\nu\frac{u}{r}$ , (4)
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$\frac{\partial w}{\partial t}$ $+$ $\frac{1}{r}\frac{\partial}{\partial r}(ruw)+\frac{\partial}{\partial z}(w)2$

$=$ $- \frac{1}{\rho_{0}}\frac{\partial P}{\partial z}+\frac{1}{r}\frac{\partial}{\partial r}(r\iota \text{ノ}(\frac{\partial w}{\partial r}+\frac{\partial u}{\partial z}))+\frac{\partial}{\partial z}(2\nu\frac{\partial w}{\partial z})-(1+\frac{\rho_{s}}{\rho_{0}})g$, (5)

$\frac{\partial u}{\partial r}+\frac{u}{r}+\frac{\partial w}{\partial z}=^{\mathrm{o}}$ , (6)

$\frac{\partial\rho_{s}}{\partial t}$ $+$ $\frac{1}{r}\frac{\partial}{\partial r}(r\rho_{s}u)+\frac{\partial}{\partial z}(\rho Sw)$

$=$ $\frac{1}{r}\frac{\partial}{\partial r}(rD_{s}\frac{\partial\rho_{s}}{\partial r})+\frac{\partial}{\partial z}(D_{s}\frac{\partial\rho_{s}}{\partial z})$ , (7)

where $u$ and $w$ are the radial and vertical velocities, respectively; $\nu(=\mu/\rho_{0})$ is the kinematic

viscosity.

In addition to the above equations for fluid motion, we must also consider the effect of

the free surface. For this purpose, we adapted the so-called Volume of Fluid method (VOF

$\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d})[8]$ . In this method, a function $F(x, y, z)=[0,1]$ is defined as $F=1$ for spatial

elements fully occupied by fluid and $F=0$ elsewhere. The summation of $F$ over the entire

system is constant and equals to the fractional volume of the cells occupied by fluid. The

time dependence of $F$ is governed by the following equation

$\frac{\partial F}{\partial t}+\frac{1}{r}\frac{\partial}{\partial r}(rFu)+\frac{\partial}{\partial z}(Fw)=0$. (8)

We performed calculations with the above equations using fluid-dynamic analysis software,

$\mathrm{F}\mathrm{U}\mathrm{J}\mathrm{I}\mathrm{T}\mathrm{S}\mathrm{U}/\alpha$-FLOW, provided by FUJITSU $\mathrm{L}\mathrm{I}\mathrm{M}\mathrm{I}\mathrm{T}\mathrm{E}\mathrm{D}[9]$ . The parameters and conditions

for the numerical calculation were as follows.

The system consists of a cup with an orifice at the bottom and an outer vessel, as shown

in Fig.2: the parameters are: $r_{in}=2.25$ cm, $r_{out}=5.0$ cm, $a=0.05$ cm, $b=0.25$ cm, $d=$

$0.1$ cm, $H_{0}=5.9$ cm. We divided the domain into 52 $\cross 132$ grids in the radial and vertical

directions. To take into account the effect of the fluid dynamics near the orifice, the space

within the orifice was divided into smaller grids, 5 $\cross 4$ in the radial and vertical directions,

where the ratios of the maximum to minimum grid size are 10 and 4, respectively. The

finite-difference approximation with a second-order central scheme was used to solve the

basic equations, except for the convection term. For the convection term in Eqs.(4) $(5)$

and (7), the QUICK scheme, which is a second-order accurate finite-difference method was

14



$\mathrm{u}\mathrm{s}\mathrm{e}\mathrm{d}[10]$ . The convection term in $\mathrm{E}\mathrm{q}.(8)$ was approximated by Donor-Acceptor $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}[11]$.
The slip boundary condition is taken for the velocity on the wall and the axis $(r=0)$ ,
except for the wall within the orifice: the normal velocity component vanishes at the wall,

and there is no gradient in tangential velocity. On the wall within the orifice, the boundary

condition for the velocity is set to be non-slip: both normal and tangential velocities are
always zero on the wall. The free-flux boundary condition is used to reflect the change in

concentration.

3 Observation of the oscillator in real space

A saline oscillator was constructed with the following conditions, essentially the same as in
the numerical simulation: $r_{in}=2.25$ cm, $r_{out}=5.78$ cm, $a=0.05$ cm, $b=0.25$ cm, $d=0.1$

cm (see Fig.2). The initial amount of sodium chloride per unit volume in the cup was $p_{s}^{0}=$

$0.11\mathrm{g}/\mathrm{c}\mathrm{m}^{3}$ in the initial condition, indicating that $Pin=1.11\mathrm{g}/\mathrm{c}\mathrm{m}^{3}$ , and $\rho_{out}=1.0\mathrm{g}/\mathrm{c}\mathrm{m}^{3}$ .
The experiment was started with both of the initial heights, $H_{in}$ and $H_{out}$ , at about 5 cm.

At first, the saline water begins to flow downward, and after approximately 1 minute, the

downward flow stops. Soon after the fluid stops flowing around the orifice, the pure water

in the outer vessel begins to flow upward through the orifice. This upward flow stops after

several tens of seconds, and then the saline water again flows downward. This cycle repeats

dozens of times. The period of oscillation is about 24 $\sec$ and stays almost constant; the

periodicity increases less than 10 % even after a few hours on the experimental run.

Figure $3(\mathrm{a})$ shows a picture of the saline oscillator monitored with a CCD camera. In

this Figure, saline water or pure water was colored by ink for visualization of the downward
flow or upward flow, respectively. The change in the level of saline water in the inner cup

was measured with a laser displacement meter (Keyence, LPB-02, Japan). The results are

presented in Fig.4. From the amplitude of the rhythmic flow, it becomes clear that 0.12 %

of the saline water flows out during each period.

4 Results of the Numerical Simulation

The numerical simulation was carried out with the following coefficients in the basic equa-

tions and initial conditions in Fig.2: $g=980,$ $\nu=0.01\mathrm{c}\mathrm{m}^{2}/\mathrm{s},$ $\rho_{s}^{0}=0.1\mathrm{g}/\mathrm{c}\mathrm{m}^{3},$ $H_{in}=$
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4. $82\mathrm{c}\mathrm{m},$ $H\circ ut=4.99$ cm. A small change in the initial height was shown to have no signifi-

cant effect on the manner of oscillation. We have, thus, chosen a height difference so as to

reduce the induction period before oscillation began. Under these initial conditions, saline

water first began to flow downward, and upward flow began 70 $\sec$ later; i.e., oscillation

began at this time. Figure $3(\mathrm{b})$ shows the spatial density profile of salt for the states with

downward flow and upward flow. Figure $5(\mathrm{a}),$ $(\mathrm{b})$ shows the changes in the level of saline

water in the inner cup, $x$ , and the average velocity at the orifice, $\overline{w}$ , where $\overline{w}$ is defined as

$\overline{w}=\frac{2}{a^{2}d}\int_{-d}^{0}\int_{0}^{a}w(r,Z,t)rdrdz$. (9)

The period of oscillation was $\mathrm{c}\mathrm{a}$ . $41$ sec. Based on the change in the water level, it is found

that 0.16 % of the saline water escaped from the cup during each period of oscillation. This

may accord with 0.12 % in the corresponding experiment. In the simulation, as an artifact

we noticed that, during the upward flow in each period of oscillation, the amount of salt

in the inner cup increased by O.OOlg, which is considered to have a negligible effect on the

manner of the oscillation in the simulation.

5 Discussion

As shown above, our numerical simulation reproduced the experimental trend rather well,

except for the difference in the period of oscillation; $\mathrm{T}=24\sec$ in the experiment and $\mathrm{T}=$

$41\sec$ in the simulation. In our actual experiment with the saline oscillator, there is a small

but finite irregularity around the fringe of the orifice. Such an irregularity could disturb the

laminar flow around the orifice, which would influence the periodicity. Actually, we have

confirmed that little modification on the shape of the orifice (for example, by making the

periphery of the orifice smoother) induces the lengthening of the periodicity by $30\sim 50$

%. In addition to such experimental problem, there are also some factors in the numerical

simulation which particularly affect the periodicity, such as the size and arrangement of

the grids and the boundary conditions. However, taking into account these factors in both

the experiment and the simulation, the difference in periodicity is not considered to be a

serious matter.

In Fig.4, the broken lines are depicted as single exponential, together with the experimen-

tal traces on the height of the level of the saline water. From this, it is clear that individual
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periods both on upward flow and downward flow is interpreted well with first-order linear
differential equation as in $\mathrm{E}\mathrm{q}.(10)$ .

$\dot{x}(t)=-kx(t)$ $(k>0)$ . (10)

The next problem is how to interpret the process of the switching of the flow direction. Let
us consider the critical hydrostatic pressure required to stop the downward flow of saline
water and to initiate the upward flow of pure water. Based on the conservation of the total
fluid volume, the changes in the heights of saline and pure water, $\Delta h$ and $\triangle h’$ , are related
to each other by the ratio of the surface areas in the inner cup and the outer vessel, $S_{in}$

and $S_{out}$ .

$\triangle h’=-\frac{S_{in}}{S_{out}}\Delta h$ . (11)

The initial equilibrium height, $H_{eq}^{0}$ is given by

$H_{eq}^{0}=H_{i}n-\Delta h$ , (12)

where $\Delta h$ is obtained from the following equation

$( \rho_{s}^{0}+\rho 0)g(Hin+\frac{d}{2}+\triangle h)=p0g(H_{out}+\frac{d}{2}+\triangle h’)$ . (13)

From $\mathrm{E}\mathrm{q}.(13),$ $H_{eq}^{0}$ is calculated to be 4.59 cm in the first cycle of the oscillation. As we
mentioned in the preceding section, the density difference decreases with oscillatory flow.
By denoting $\Delta H_{eq}$ as the difference between successive oscillations, the equilibrium height
of the $n\mathrm{t}\mathrm{h}$ oscillation, $H_{eq}(n)$ is given by

$H_{\mathrm{e}q}(n)=H_{\mathrm{e}q}^{0}+(n-1)\Delta H_{eq}$ . (14)

From the result of the numerical simulation, $\Delta H_{\mathrm{e}q}$ is calculated to be $1.68\cross 10^{-4}$ cm. By

adapting a”moving axis”, as $\Delta x=x-\Delta H_{\mathrm{e}q}(n)$ , the limit-cycle behavior represented by
$\Delta x\mathrm{v}\mathrm{s}.\overline{w}$ , is given as in Fig.6, where $\overline{w}$ is the average fluid velocity at the orifice and the

interval between the data points is 0.1 sec. The cycles change as $A_{r}arrow A’arrow Barrow B’arrow A$.
The temporal changes in the water level, and the average velocity and acceleration at the

orifice are given in Fig. $5(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ . The flow accelerates upward in $Aarrow A’$ , and decelerates

during $A’arrow B$ . In $Barrow B’$ , upward flow stops and downward flow accelerates. In $B’arrow A$ ,
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downward flow decelerates. Here, the periods on $Aarrow A’$ and $Barrow B’$ are shorter than

0.5 $\mathrm{s}\mathrm{e}\mathrm{c}$ , corresponding to the process in the exchange of fluid within the orifice, from saline

water to pure water and vice versa, respectively. As the switching of the flow is almost

abrupt, the magnitude of the acceleration at the moment of the change in flow direction are

two orders as large as that during one-directional flow through the orifice as is clear in the

result of our simulation. If we carefully examine the switching process, it is apparent that

just after the stop of the downward flow of saline water, pure water rises upward through

the orifice from its edge, and this upward flow then accelerates. Except for the ”moment”

of the switching of the flow, the height exhibits single-exponential curve in the simulation,

corresponding well to the present of the experiment (Fig.5 $(\mathrm{a})$ ).

To characterize the manner of the fluid motion, let us estimate the Reynolds number in

the saline oscillator.

$Re= \frac{\rho\overline{w}l}{\mu}$ , (15)

where the density $\rho$ of the fluid has a value between 1.0 and 1.1 $\mathrm{g}/\mathrm{c}\mathrm{m}^{3}$ , the characteristic

length $l(l=2a)$ is 0.1 cm, and $\overline{w}$ is at the most 1.9 $\mathrm{c}\mathrm{m}/\mathrm{s}\mathrm{e}\mathrm{c}$ , as shown in Fig.5. Thus, the

maximum Reynolds number is no more than 20. This suggests that the effect of turbulence

is almost negligible in this phenomenon.

Let us now examine the manner of the periodic flow using cylindrical coordinates. In

the simulation, we have adopted the radial symmetry with respect to the vertical axis. We

think that the numerical simulation on the approximation with radial symmetry may be

almost satisfactory to describe the oscillator, at least on the switching between upward and

downward flow. The driving force is considered to consist of four components; convection

$f_{\mathrm{C}on}$ , and the gradients of pressure $f_{p_{\Gamma}e}$ , viscosity $f_{vis}$ , and gravity $f_{gta}$ . The effects of

acceleration can therefore be described as follows:

$\frac{\partial w}{\partial t}=f_{\mathrm{C}O}n$ $+$ $f_{pte}+fvis+fgra$ ’ (16)

$f_{CO}n$ $=$ $- \frac{1}{r}\frac{\partial}{\partial r}(ruw)-\frac{\partial}{\partial z}(w)2$ , (17)

$=$

$-\underline{1}\underline{\partial P}$

$f_{p\mathrm{r}e}$ (18)
$\rho_{0}\partial z$

’
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$f_{vi_{S}}$ $=$ $\frac{1}{r}\frac{\partial}{\partial r}(r\nu\frac{\partial w}{\partial r})+\frac{1}{r}\frac{\partial}{\partial r}(r\nu\frac{\partial u}{\partial z})+\frac{\partial}{\partial z}(2\nu\frac{\partial w}{\partial z})$ , (19)

$f_{g\mathrm{r}a}$ $=$ $-g- \frac{\rho_{s}}{\rho_{0}}g$ . (20)

By integrating $\mathrm{E}\mathrm{q}.(16)$ over the entire volume in the orifice, the net driving force is given
as in $\mathrm{E}\mathrm{q}.(21)$ .

$\frac{2}{a^{2}d}\int_{-d}^{0}\int_{0}^{a}\frac{\partial w}{\partial t}$rdrdz $=$ $\frac{2}{a^{2}d}\int_{-}^{0_{d}}\int_{0}^{a}(f_{\mathrm{C}on}+f_{pre}+f_{vis}+f_{g\mathrm{r}a})\Gamma drd_{Z}$

$=$ $F_{\mathrm{C}on}+Fp\gamma e+F_{vi}+SF_{\mathit{9}}\gamma a$. (21)

Figure 7 shows the temporal changes in the different components, $F_{p_{\Gamma 6}}+F_{g_{\Gamma a}’ vi_{S}}F,$ $F_{con}$ ,
which accompany periodic flow in the saline oscillator, as deduced from the numerical
simulation. Based on this figure, $F_{con}$ and $F_{vis}$ always have the role to depress the oscillation,
and $F_{\mathrm{p}\mathrm{r}e}+F_{g\mathrm{r}a}$ accelerates the flow. Figure $8(\mathrm{a})(\mathrm{b})(\mathrm{c})$ shows the change of the respective

term, $F_{\mathrm{c}o},$ F$n$ vis’ $F_{pe}r+F_{gta}$ , at intervals of 0.1 $\sec$ as in Fig.6. From this Figure, it is clear
that all terms, $F_{\mathrm{c}on},$ $F_{vis}$ and $F_{p_{\Gamma}e}+F_{g\gamma a}$ are proportional to the average velocity, $\overline{w}$ , except
the moment of flow switching. During the continuous upward flow and downward flow, the
coefficients of $F_{con}$ and $F_{vis}$ are negative and the coefficient of $F_{p_{\Gamma}e}+F_{gra}$ is positive. The
summation of these contributions is negative.

$\frac{d\overline{w}}{dt}=-k\overline{w}$ $(k>0)$ . (22)

This result explains why the profile of the water level in inner cup, $x,$
$\mathrm{i}_{8}$ expressed by

the profile $x(t)\propto e^{-kt}$ . The period is, thus, determined by the competition between the
pressure gradient and damping effect such as viscosity, as we mentioned before.

From the above results and discussion, it becomes evident that the dynamical behavior is
interpreted with different characteristic stages between the continuous upward or downward
flow, and the switching of the flow. Then, let us discuss further on the mechanism of

the switching. Based on Fig. $8(\mathrm{a})$ , it is apparent that $F_{con}$ is negligibly small compared

to other components. As for the change in $F_{vis}$ , we have noticed that the first term in
$\mathrm{E}\mathrm{q}.(19)$ , accounts for 96 % of $F_{vi_{S};}$ thus, the second and third terms are negligible. We
also noticed that the flow profile at the orifice could be represented almost perfectly with a
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parabola. In fact, there was actually only slight deviation from ideal Hagen-Poiseuille flow.

By introducing a correction factor $\epsilon$ to Hagen-Poiseuille flow, $F_{vis}$ can be represented as

$F_{vis}=- \frac{8\nu}{a^{2}}\in\overline{w}$ . (23)

By comparison with the results of the simulation, $\epsilon$ was determined to be $\epsilon=0.94$ . Thus,

the deceleration of the flow can almost be characterized by the first term in $F_{vis}$ . Then,

let us now discuss the pressure term in detail. We divide the pressure on both sides of

the orifice, $z=0,$ $-d$ into hydrostatic pressure and the difference from it, $P^{*}(z)$ . $P^{*}(z)$

corresponds to the effects of the discontinuous density distribution and the velocity of the

flowing fluid.

$P(\mathrm{O})=(\rho_{s}^{0}+\rho_{0})g_{X}+P^{*}(0)$ , (24)

$P(-d)=p_{0}g(X’+d)+P^{*}(-d)$ , (25)

where $x’$ is the level of pure water from $z=0$ in the outer vessel and

$x’=- \frac{S_{in}}{S_{out}}x+(\frac{S_{in}}{S_{out}}H_{in}+H_{oui})$ . (26)

Using the above expression, $F_{pte}$ becomes

$F_{p\tau \mathrm{e}}$ $=$ $- \frac{1}{\rho_{0}}\frac{P(0)-P(-d)}{0-(-d)}$

$=$ $\frac{P^{*}(-d)-P*(\mathrm{o})}{\rho_{0}d}-\frac{(\rho_{0}+_{P_{s}^{0}})g_{X}-\rho 0g(x’)}{\rho_{0}d}+g$. (27)

We can obtain the second term as a function of $x$ strictly and the third term is canceled

by the first term of $F_{g\mathrm{r}a}$ . We use the expression $F_{p_{\Gamma 6}}^{*},$ $F_{g\mathrm{r}a}^{*}$ as the first term of $F_{p\mathrm{r}e}$ and

the second term of $F_{g\mathrm{r}a}$ . Figure $8(\mathrm{d})(\mathrm{e})$ show $F_{pre}^{*}$ versus $\overline{w}$ and $F_{g\gamma a}^{*}$ versus $\overline{w}$ , as in Fig.6.

The interval between the data points is 0.1 sec. Based on the results of the simulation, the

characteristics on $F_{pte}^{*}$ woule be expressed as $\mathrm{E}\mathrm{q}.(28)$ with the symmetry of cubic function.

$F_{p_{\Gamma}e}^{*}$ $=$ $\overline{w}-30\overline{w}^{3}$ . (28)

As shown in Fig. $8(\mathrm{e}),$ $F_{ga}*f$ is represented as signum function with a good approximation.

$F_{g\tau a}^{*}=- \frac{\rho_{s}^{0}g}{2}+\frac{\rho_{S}^{0}g}{2}Sgn(\overline{w})$ . (29)
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From the definition, $\overline{w}$ is given as

$\overline{w}=(\frac{r_{in}}{a})^{2}\frac{\partial x}{\partial t}$ . (30)

As $x(t)$ , the level of saline water, is almost independent on the position, $r$ , it may be

allowed for us to adapt an ordinary differential instead of the partial differential in the

above equation,

$\frac{\partial x}{\partial t}arrow\frac{dx}{dt}$ . (31)

For the above the consideration, $\mathrm{E}\mathrm{q}.(21)$ becomes as follows with the substitution of $X$ to
$x-H_{\mathrm{e}q}$

$\frac{d^{2}X}{dt^{2}}=-A(1+B(\frac{dX}{dt})^{2})\frac{dX}{dt}-\omega_{0}^{2}x+\frac{\rho_{s}^{0}g}{2}sgn(\overline{w})+C$, (32)

where $A,$ $B,$ $C,\omega_{0}$ are positive constants. It is worthy to notice that the first term is always

negative. On this differential equation without the constant and signum function, the

system becomes a damped oscillator, because $\omega_{0}^{2}$ is larger than the square of the coefficient

of $\overline{w}$ . The limit cycle is, thus, maintained by the repetitive sudden change in the sign of

the velocity.

From the characteristics given in Fig. $8(\mathrm{f})$ , the essential feature is represented with poly-

nomial expansion through numerical fitting.

$F_{p\mathrm{r}e}^{*}+F_{gra}^{*}$ $=$ $-51+90_{\overline{w}}-30\overline{w}^{3}+\mathcal{O}(\overline{w}^{4})$ . (33)

Thus $\mathrm{E}\mathrm{q}.(21)$ can be rewritten as

$\frac{d^{2}X}{dl^{2}}=56\frac{dX}{dt}-1.2\cross 10^{8}(\frac{dX}{dt})^{3}-7X$ . (34)

hterestingly, this ordinal differential equation corresponds to the a so-called Layleigh equa-

tion $[6,7]$ :

$\frac{d^{2}X}{dt^{2}}=\tilde{A}\frac{dX}{dt}-\tilde{B}(\frac{dX}{dt})^{3}-\omega_{0}^{2}x$, (35)

where $\tilde{A},\tilde{B},\omega_{0}^{2}$ are positive constants. The Layleigh equation implies the following physical

meaning; the third term on the right together with the left second time-derivative consti-

tutes an oscillator, and the first and second terms on the right correspond to ”negative”
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and positive friction, respectively. In the actual saline oscillator, $X$ is the fluid level from

the equilibrium height, and $\omega_{0}^{2}$ corresponds to $\mathrm{E}\mathrm{q}.(36)$ as is deduced from Eqs. (21), (26),

(27)

$\omega_{0}^{2}=-\frac{g}{d}(\frac{a}{r_{in}})^{2}(1+\frac{S_{in}}{S_{out}}+\frac{\rho_{s}^{0}}{\rho_{0}}\mathrm{I}\cdot$ (36)

As have been shown both on the simulation and the experiment, the system is ”energized”

due to the sudden change in the ”effective mass” of the flow. Such an abrupt energization,

or the process of switching, exhibits the odd symmetry with respect to the fluid velocity.

Thus, such an effect can be most simply represented as the cubic function of the velocity

as in the second term on the right side in the layleigh equation, $\mathrm{E}\mathrm{q}.(35)$ .
In the saline oscillator, energy is stored as gravitational instability where the high-density

saline water is situated above the low density of pure water. We took the potential energy

of a discrete fluid cell as

$U(i, k)=\rho(i, k)\Delta V(i,k)gh(i, k)$ , (37)

where $i$ and $k$ are the grid numbers in the horizontal and vertical directions, respectively,

and reflect the position of the cell. $\rho(i, k)=\rho_{0}+\rho_{s}(i, k)$ is the density of the cell, $\Delta V(i, k)$

is the volume of the cell and $h(i, k)$ is the height from the bottom of the outer vessel. By

sumning $\mathrm{E}\mathrm{q}.(37)$ over the entire fluid, the net potential energy can be evaluated. The

stored potential energy in the saline water in the inner cup is, thus, calculated to be 2 $\cross$

$10^{3}[\mathrm{g}\cdot \mathrm{c}\mathrm{m}^{2}/\mathrm{s}^{2}]$ , compared to that in the final state where the fluid exhibits a uniform density

and the fluid levels in the inner cup and the outer vessel are the same. Each oscillation

consumes 0.08 % of this stored energy: where 78 % of the consumed energy is converted

into kinetic energy and the rest is dissipated by viscosity.

The conclusion that the essence of the saline oscillator can be described with a Layleigh

equation is consistent with previous findings on coupling between saline $\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}[4,7-8]$ ;

i.e., when two cups of saline water with orifices are situated in a same outer vessel of

pure water, the rhythmic flows self-synchronize in an exact antiphase mode. This curious

behavior has been successfully interpreted by coupled Layleigh equations, at least phe-

nomenologically. Thus, the present study provides a theoretical basis for why the coupling

between saline oscillators can be rather well simulated with coupled Layleigh equations.
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(a) (b)

HnyInmlc

change Upward flow
of saline water of water

Figure 1: (a) Experimental apparatus for the saline oscillator. The outer vessel and the
inner cup are filled with $\mathrm{P}^{\mathrm{U}1^{\backslash }\mathrm{e}}$ water and saline water, respectively. (b) Schematic represen-
tation of oscillatory flow in the saline oscillator.
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Figure 2: Coordinates in the saline oscilla-
tor. $r$ and $z$ are the radial and vertical coor-
dinates.
$f$: : inner radius of the cup, $\mathrm{r}_{\mathrm{o}ut}$ : radius
of the outer vessel, $a$ : radius of the orifice,
$b$ : thickness of the inner cup, $d$ : depth of
the orifice, $\rho_{in}(=\rho_{0}+\rho_{s}^{0})$ : initial density in
the cup, $\rho_{out}(=\rho_{0})$ : initial density of the
outer vessel , $H_{\dot{\mathrm{z}}n}$ : initial height of saline
water, $H_{out}$ : initial height of pure water, $H_{0}$

: depth of the outer vessel. Here $\rho_{s}^{0}$ is the
initial amount of sodium chloride per unit
volume in the cup and $\rho_{0}$ is the density of
pure water.

$\mathrm{F}\mathrm{i}\mathrm{g}_{\mathrm{U}1}\mathrm{e}3$ : Flow $\mathrm{p}_{\mathrm{l}\mathrm{o}\mathrm{r}]}1\mathrm{e}$ in the saline oscillator for the down-stleam of saline watcl (left) and
the $\mathrm{u}\mathrm{p}- \mathrm{s}\dagger,\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{m}$ of pule water (light). (a) An actual cxperiment in the saline oscillatol with
$r‘’‘=225\mathrm{t}\mathrm{m},$ $ro\tau\iota t=5.78$ cm, $\mathrm{a}=0.05$ cm, $\mathrm{b}=05$ cm, $\mathrm{d}=0.1$ cm, and $\rho_{s}^{0}=0.11\mathrm{g}/\mathrm{c}\mathrm{m}^{3}$

Saline $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\iota$. or purc watcr was cololed by ink $\mathrm{f}\mathrm{o}\iota$. visualization of the downward flow or
upward flow, respectively. (b) Computer simulation of tlte saline $\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}1_{\mathrm{d}}lo1$ with $r_{\mathrm{i}n}=2.25$

cm, $\gamma_{\mathit{0}u\mathrm{t}}=5.0$ cm, $\mathrm{a}=0.05$ cm, $\mathrm{b}=0.5$ cm, $\mathrm{d}=0.1$ cm, and $\rho_{s}^{0_{=0}}.1\mathrm{g}/\mathrm{c}\mathrm{m}^{3}$. See $1^{\neg}\mathrm{i}\mathrm{g}$ . $2$ for
$\mathrm{a}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}$ .
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$\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\dot{\mathrm{r}}\mathrm{e}4$: Experimental results on the rhythmic change in the level of saline water in the
inner cup. The broken lines represent single exponential fits for the individual stages, during
the upward flow and the downward flow: $x(t)\propto e^{-k\mathrm{t}}+const$.

Figure $\dot{5}$ : (a) Nurnerical simulation of the change in the level of saline water in the inner
cup, .$\prime \mathrm{r}$ . The broken line shows the equilibrium height ( $H_{\mathrm{c}_{l}}^{0}=4.59$ cm) where the inner and
outer hydrostatic plcssures are equal at the center of the $01^{\cdot}\mathrm{i}\mathrm{f}\mathrm{i}_{\mathrm{C}\mathrm{e};}z=-d/2$ . $(\mathrm{b})$ The average
velocity at tlle orifice, $v\overline{)}$ . $(\mathrm{c})$ The accelerat,ion at the olifice, $d\overline{w}/di$ .
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$\wedge \mathrm{s}\circ$.

$.lU(\mathrm{C}\Pi\nu \mathrm{s}\mathrm{C}\mathrm{c}_{)}$

Figure 7: Time-dependent change in the in-
$\mathrm{F}\mathrm{i}\mathrm{g}_{\mathrm{U}1}\cdot \mathrm{e}6$ : Numerical simulation of the limit- dividual components of the force needed to
cycle behavior in the saline oscillator shown induce acceleration in fluid flow. $F_{\mathrm{c}on}$ is the
as $\Delta x\mathrm{v}\mathrm{s}$ . $\mathrm{c}\overline{\mathit{0}}$ , where $\Delta x=x-H_{\epsilon q}(n)$ and convection term, $F_{\mathrm{p}r\epsilon}$ is the pressure term,
$\overline{w}$ is the average velocity at the orifice The and $F_{v}$: is the viscosity term, and Fgra is
interval between the data points is 01 sec the gravity term.

Figure 8: (a) Phase portrait of $F_{\mathrm{c}on}(cm/sec^{2})$ with lespect to the average velocity,
$\overline{w}(c’ n/sec)$ , at the orifice. (b) Phase portrait of $F_{ms}(m/sec^{2})$ with respect to the aver-
age velocity, $\overline{w}(cm/sec)$ , at the orifice. (c) Phase portrait of $\Gamma_{\mathrm{P}}^{2}re+F_{gra}^{*}(cl?l/sec^{2})$ with
respect to the average velocity, $\overline{w}$ , at the orifice. (d) Phase portrait of $F_{pr\epsilon}(cm/sec^{2})$

with respect to the average velocity, $\overline{w}(cm/sec)$ , at the orifice. (e) Phase portrait of
$F_{gra}(C\uparrow/sec^{2})$ with respect to the avelage velocity, $\overline{w}(cm/sec)$ , at the orifice. (f) Phase

$\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}_{1}\cdot \mathrm{a}\mathrm{i}\mathrm{t}$ of $F_{\mathrm{p}r\epsilon}+F_{gr\alpha}(Cm/sec^{2})$ with $1^{\cdot}\mathrm{G}\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{C}\mathrm{t}}}$ to the average velocity, $\overline{w}(cm/sec)$ , at the
olifice. The inlerval between the data points is 0.1 sec.
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