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Difference Equation for A Population Model

Mami Suzuki (8pAKFE) Teikyo Heisei University

1. Introductioh.

Recently many kinds of population models are formulated with difference
euations [1,3,4]. Here we consider the following difference equation :

u(t + 1) — au(t)

(1.1) u(t+2)=au(t+1)+ 8 wu(d) ,

seems to be a general statements of a relative socio-spatial dynamics, where
a = 1+ r, in which r is the net (births minus death) endogenous popula-
tion (stock) growth rate, and the second term is a function depicting net
immigration at ¢ 4+ 1, in turn a function of a "momentum” to grow from ¢
to t + 1. So that we assume that & > 0 (r > —1) and § > 0in (1.1).

The model (1.1) was proposed by Prof. Dimitrios Dendrinos [2]. Let

u(t +2) = ur(t + 2) + ua(t + 2),

where ui(t + 2) = af{ui(t + 1) + uz(t + 1)}, up(t + 2) = ﬁZfE:ﬁ; In
this model we assume that « and f§ are constants. uq(f + 2) is a term for
endogenous population growth rate from ¢ + 1 to t + 2, and ua(t 4 2) due
to net in-migration rate.

Here we will study it, at first, from the viewpoint of (real) state-space

analysis, especially of stability properties ast — oo , for positive solutions.
Next we study it from the complex analytic view point.

2. Stability properties of positive solutions

In this section, we suppose that u(t) is a solution of (1.1) which is
positive for ¢ 2 ¢¢, with the initial values u(tg) and u(tg + 1).
We say u(t) is stable if there are positive constants Ly, Ly such that

0<L1§U,(t0+n)§L2 fornEN.
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u(t) is asymptotically stable if there is by such that, for any € > 0 there is
ng € N such that

lu(to +n) —bo| <€ forn Zmng, ie u(tog+n)— by (n— o).
We write (1.1) as

4

(2.1) u(t+2) —ou(t+1) = —=(u(t+ 1) — au(t)), c= -

()

2.1. When a >1
Suppose u(to+1)—au(ty) 2 0 for some 5. Then we have u(tg+n) — oo

(n — oo) and the solution u(t) is not stable. So if the solution u(t) is stable,
we assume that u(t + 1) — au(t) < 0 for any ¢ 2 0.

(i) Suppose u(tg) 2 ¢. If u(tg +1) > u(ty), then we have u(t) — +oo.
Therefore we must have that u(t + 1) < u(f) whenever u(t) 2 c. If u(t)
is stable and u(t) 2 ¢ for any ¢, then ¢ is an asymptotically stable equilib.
point : u(t) | c.

(ii) Suppose u(tg) < c. If u(to + 1) < u(to), then u(to +2) < u(ty +1) <
u(to) < ¢, and u(tg + n) — —oo. So that u(t) is not stable. Therefore, if
u(t) is stable, we must have |
(2.2) | -

u(t + 1) £ u(t) whenever u(t) > c, u(t + 1) 2 u(t) whenever u(t) < c.

Convérsely, if (2.2) holds, then u(t) — ¢ as t — oo. Therefore we see that
u(t) is stable if and only 1f u(t) is asymptotlcally stable, and ¢ is the only
stable equilib. point.

Indeed we can show the existence of a positive asymptotlca,lly stable
solution from the section 4.

2.2. Whena<l
Suppose u(tg + 1) — au(ty) < 0, for some . ¢5. Then we have u(to+n) — 0

and the population tends to death. So we may assume that u(t+1)—au(t) >
0 for any ft.

(1)When u(tg) < ¢ for some t;. We have
a(u(to + 1) —u(ty)) £ ulto +2) —u(to + 1).

(i-a) Suppose u(to + 1) —u(tg) = 0 and there is kg such that u(to + k) £
c(0 Sk < kp) and u(to + ko) > c. Furthermore if we assume u(to + ko +
n + 1) —u(to + ko +n) 2 0 for any n Z 1, we would have

u(teo + ko + n) T ug < oo(ug > c).
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This is contradiction. Hence there is ng such that u(to + ko +n) < u(to +
ko +n+1) (n < ng) and u(te + ko + n0) > u(te + ko +no +1).

(i-b) Suppose u(ty +1) < u(te) Se. Hu(to+n) Su(to+n—1) (n 2 1),
then u(tg +n) | 0. :

If there is ko such that u(to+k) S u(to+k—1) (k < ko) and u(to+ko) >
u(to + ko — 1), we suppose there is kg such that u(to + ko + h) L ¢ (h < ho)
and u(to+ko+ho) > c. Then we have u(to+ko+ho+1) > u(to+ko+ho) > c.

Now we proceed to the following case (ii).

(ii) When u(tg) > c¢. Then we have

(2.3) afu(ty + 1) — u(te)} > u(to +2) — u(to +1). |
(i}il—a) Suppose u(ty +1) > u(to) > 0. If u(to +n) > u(to +n — 1) (n>1),
we have | u(te + 1)

c<u(t0—|—n)Tu0< 11—

which is a contradiction. Thus there is ng such that
u(to +n) > u(to + n— (n<ng) and wu(to+n+1) <u(to+n).

Thus we proceed to the following case (ii-b).

(ii-b) Suppose u(ty + 1) < u(tg). Then u(te +2) < u(te +1) by (2.3).
If u(to + n) 2 ¢, then we get u(to +n) | c. If u(to +n) 2 ¢(n < ng) and
u(tog + ng) < ¢, then we come back to the case (i).

Thus we see that, when 0 < a < 1, we have either u(t 4+ n) — 0 or u(t)
1s stable.

2.3. When ¢ =1
We have in this case

Cc

u(t+2) —u(t+1) = )

(u(t +1) - u(t))
Note that,

u(to +n +1) _1

if ki t = then i
if lim u(to +n) = ug 79 +oo, then lim (o £ 1)
(i) When u(to 4+ 1) > u(to). If u(to) 2 c. Then we have

< (2= bu(to + 1) = u(to)
= 1-%

u(to +n) T uo . (w0 > c). |
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If u(to) < c. Hereafter u(to + n) behaves as above and we get u(tg +n) T
Ug < 00.

(i1) When u(to + 1) < u(to)-

If u(to) £ ¢, and u(ty + n) > 0. u(ty + n) oscillate.

If u(ty) > c and u(to + n1) £ ¢ for some ny, then u(ty + n) oscillate.

If u(to) > c and u(to +n) > ¢ for all n, then there is a ug such that
u(to +n) | ug 2 c. Therefore, when o = 1, we get that

cither u(tg+no) 0 (Ing), or wu(te+n) | ug ¢, or u(to+n) T ug > c.

3. Analytic Solution

3.1. Whena>1
We have showed that, if u(to +n) is stable, then u(ty +n) — c as n — oo.

Then v(t) = u(t) — c satisfies v(to + n) — 0 and .
(3.1) | v(t+2) =(a+ 1ot +1) —v(t) + Fluv(t),v(t+ 1)),

where F(v1,v7) is the sum of terms of higher degree with respect to vy, vs.
Let A1, Ag, be roots of the characterristic equation

(3.2) M—(a+DA+1=0, (0<i<1<).

If we suppose u(t + n) is stable when n — oo . Therefore we consider a
paticular solution of (1.1) in the form

(3.3) u(ty +t) =c+ Z ap A5t
k=1

If we suppbse u(t + n) is stable when n — —oo, then we also consider
solutions in the form

(3.4) u(to+1) =c+ Y _a_gr; "
k=1
Furthermore, if u(tg — n) — 0 (n — 00), then we have

. ou(t+n+2)
lim —
n——oo u(t +n+ 1)
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And we have a solution u(t) = a;at(a; : arbitrary). Suppose z(t) = ¢(t)a’
be a solution of (1.1) such that z(t —n) — 0 as n — +oo, and ¢ satisfies
im0 |#(t—n)—a1| < M uniformly on any compact set for some constant

M. Then we have lim,_,oo(¢(t —n+ 1) — ¢(t —n)) = 0.

3.2. Whena<l1
There is no asymptotically stable solution.

3.3. When a=1
 Suppose u(ty +n) T ug or u(te +n) | uo with ug > ¢, then we have

kt
u(t0+t+1)—u(t0+t)_§:dk(c> £

U u
E=1 0 0

and u(to + t) will be obtained.
4 Existence of analYtic stable solutions in the case a > 1

In this section, we write u(ty + t) simply as u(t). Time t is of course

a real variable. But in this section, we consider t to be a complex varlable
and we will prove existance of analytm solutions.

When a > 1, we can determined a formal solution to (3.1) in the form

(4.1),

(4.1) o)=Y @A™, 0< A =2 <1,
n=1
where
n—1
anB{N" —(1+a)A\" +1} =« Z aran_k A" (o — A"7F),
k=1

4.1. Make a Map T and existence of a fixed poit of 7.
We rewrite (3.1) as

(1+a)(t+1)—ov(t+2) |

(4.2) v(t) = ’Bav(t'—l— 2)—a?v(t+1)+p

= F(o(t +1),0(t +2)).

Let N be a positive integer. Put Pn(t) = EnN=1 anA™ and y(t) = v(t) —
Pn(t). We rewrite (4.2) as

(4.3) - y(t) = g(t,y(t +1),y(t + 2))
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Put
S(p) = {t € C: |\ < p} '
H(A, p) = {y : y(t) is holomorphic and |y(t)| < A|A? |N+1 for t € S(p)}

Take A > 0 and 0 < p < 1, which will be determined later. For y(t) €
H(A,p), put

(4.4) TlI(t) = gt y(t + 1), y(t +2).

Then we can show that T has a fixed point y(t) = yn(t) € H(A,p) by
schauder’s fixed point theorem in [5]

Furthermore we can show the uniqueness of the fixed poit and arbitrari-
ness of N (indepence of N ) Thus we have proved that a solution v(t) is

defined and holormorphic in S(p) for a p > 0, which has the expansion
(4.1).

4.2. Analytic General Solutions.
Analytic solutions of some difference equations are 1nvest1gated in [6]-[9].
In this section, we shall investigate analytic general solutions of (1.1).
From in [6], we have following theorem.

THEOREM 1. Let v(s) be the solution of (4.2) obtained in section 3. Sup-
pose z(t) be an analytic solution of (4.2) such that z(t—n) — 0 asn — +oo,

uniformly on any compact set. Then there is a periodic entire function 7 (t),
(w(t+ 1) = =(t)), such that

2(t) = v (t + kﬁgf\t)) .

z(t) = v (t + lolig(;)) ,

where 7 is a periodic function whose period is one, then z(t) is a solution

of (3.1).

Conversely if we put

Now we have sought general solutions of the population model which
is given by the equation (1.1) such that

0= L oo+ 20

where 7(t) is an arbitrarily peroidic function whose period is one.
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