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Abstrac$t$

$ln$ this $\epsilon tud\gamma$, the sound $fie/ds$ inside $\mathrm{a}coustical/\gamma- strucfur\mathrm{a}//\gamma$ coupled enclosed spaces
excited by simple harmonic point sound sources and sfructural forcing under the presence of
$He/mhol\mathrm{f}z$ resonators $inc/udingtl?e$ acoustic absorption is modeled $b\gamma$ a special modal $anal\gamma sis$

technique. Two case studies are $\rho \mathrm{e}rformed$, in the first one, a rectangular $ca\mathrm{v}i\nu$ having $a//$

boundaries STexible is solved $b\gamma\ulcorner\Xi M$ and the proposed method. $/n$ the second case $stud\gamma$, the
efficiency $oti\prec elmholtz|$ resonators and acoustic absorptive treatment is compared.

Introduction

Study of sound fields inside acoustically-structurally coupled enclosed spaces $|\mathrm{s}$ alwaysan interesting but difflcult subject for those who are interested in shaping $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ controlling such
fields by active $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ passive means. There are several different techniques in modeling these
coupled fields such as FEM, Modal Analysis, BEM, Statistical Energy Analysis etc. In this study,
it is aimed to model the low frequency response of $\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{l}\mathrm{c}\mathrm{a}\mathfrak{l}\mathrm{l}\mathrm{y}- \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\dot{\mathrm{a}}\mathrm{I}\mathrm{l}\mathrm{y}$ coupled enclosed
spaces under the presence of simple harmonic $\mathrm{p}o$ int sound sources $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ structural $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{c}|\mathrm{n}\mathrm{g}$ for
shaping these $\mathrm{f}_{\dot{1}}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{s}$ . Acoustical absorption is also included in the model. Model also includes the
$\mathrm{H}\mathrm{e}\mathrm{I}\mathrm{m}\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{t}\mathrm{z}$ resonators which are well-known passive systems tuned to shape sound fields [1].
Efficiency of resonators and absorptive treatment is compared in the coupled field response in
low frequency range inside acoustoelastically coupled enclosed spaces. Besides, as a special
case, a rectangular cavity having all boundaries flexible is solved with the proposed method and
the results are compared with FEM results obtained in a previous study [2].

Theory
Since it $i\dot{\mathrm{s}}$ interested in the low frequency response of coupled fields, matMmatical

modeI $\mathrm{i}.\mathrm{s}.\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}6$ on a special modal analysis technique, namely, Method of Acoustoelasticity [3].
The $\mathrm{o}\mathrm{r}\dagger \mathrm{n}\mathrm{a}\mathrm{l}$ technique is developed and improved to include all the possible excitations and
resonators are also included in the mathematica} model for single and multi-cavity systems.
Throughout the formulations of acoustoetastically coupled enclosed spaces the following basic
assumptions are done:

$\mathrm{i}$ . fluid inside the cavity is at rest prior to the motion of the flexible wall.
$\mathrm{i}i$ . sound sources are simple harmonic point sound sources.
$\mathrm{i}\mathrm{i}\mathrm{i}$ . all the sound sources and Helmholtz resonators are stationary
$\mathrm{i}\mathrm{v}$. Helmholtz resonators are cornpact in $\mathrm{s}|\mathrm{z}\mathrm{e}$ when compared to the size of the enclosed

space.
$\mathrm{v}$. harmonic $\mathrm{v}\mathrm{a}\mathrm{r}\dagger \mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ in time are assumed for all inputs.
$\mathrm{v}\mathrm{i}$ . absorption material is to be modeled as a locally reacting material for which a force at

a point leads to motion of that point only
Under the presence of Helmholtz resonators there are three different coupled systems,

i.e. acoustical system, structural system and Helmholtz resonators
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$\ddot{P}_{n}+\sum_{l}\frac{A_{A}^{i}}{V}\rho_{\mathit{0}}c_{o}^{2}\frac{\alpha_{1n}^{i}}{M_{n,A}},\dot{P}_{n}+P_{n}=-\frac{A_{F}}{V}\ddot{w}_{n}rightarrow$

(t)

$\sum\frac{S_{k}}{V}\ddot{\zeta}_{k}F_{n}(r_{Rk})\sim-\sum\frac{\dot{Q}_{l}}{V}F_{n}(r_{Sl})arrow$

second term in Equation (1) is the acoustic absorption, and the $\mathrm{f}|\mathrm{r}\mathrm{s}\mathrm{t}$ term on the right
hand side represents the structural coupling, second term represents the Helmholtz resonators
which are treated as source-like, and the last term represents the simple harmonic point sound
sources

$M_{n},( \ddot{q}_{m}+\omega_{m}^{2}q_{m})=\rho_{\mathit{0}}c_{o}^{2}A_{F}\sum_{m}\frac{P_{n}L_{nm}}{M_{n,A}}+Q_{m}^{E}$ (2)

Equation (2) represents the structural system and the first term on the right hand $\mathrm{s}|\mathrm{d}\mathrm{e}$ is
the acoustical loading on it and the second term is the structural external loading

$\rho_{\mathit{0}}l_{k}’S_{k}\ddot{\zeta}_{k}+S_{k}R_{ik}\dot{\zeta}_{k}+\frac{\rho_{\mathit{0}}c_{O}^{2}S^{\frac{9}{k}}}{V_{Rk}}\zeta_{k}=-p(\overline{r}_{Rk})S_{k}$ (3)

the last equation, Equation (3) is the equation representing the Helmholtz resonator and
as it is seen it couples with total acoustic pressure at the mouth in acoustically-structurally
coupled cavities. These three system equations can be reduced into two by defining two new
resonator parameters as [1]

$H_{M}( \omega_{E})=\frac{S_{k}c_{o}^{2}\omega_{E}^{2}(-\omega_{E}^{2}+\omega_{M}^{2})}{l_{\mathrm{A}}’VR_{k}^{2}\omega_{E}^{2}+(-\omega_{E}^{-}+\omega_{Rk}^{2})\underline{9}}$, (4)

$H_{d}( \omega_{E})=\frac{S_{k}c_{o}^{2}}{l_{k}’V}\frac{R_{k}\omega_{E}^{8}}{R_{k}^{2}\omega_{E}^{2}+(-\omega_{E}^{2}+\omega_{Rk}^{2})^{2}}$ (5)

Harmonic inputs are assumed for all the acoustical and structural parameters and some
matrices are $\mathrm{d}\mathrm{e}\mathrm{f}\dot{\iota}\mathrm{n}\mathrm{e}\mathrm{d}$ for the equations above [1]. The coupled system equations then obtained in
the $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}!\mathrm{e}$ matrix form as

$[[\mathrm{T}\eta NA]+2^{H_{Rk}}(\omega_{E})[FRMNA]_{k}]\{\overline{P_{nr}}\}+$

(6.a)

$[ \sum^{H_{d}(\omega_{E})[FRMNA]_{k}}-\sum_{i}[\alpha m^{\langle i\rangle}]]\{\overline{P_{ni}}\}=\omega_{E}^{9}\sim\frac{A_{F}}{V}[LNM]\{qmr\}$

$[[7mA]+2^{H_{Rk}}(\omega_{E})[FRMNA]_{k}]\{\overline{P_{ni}}\}-$

$[ \sum^{H_{aR}}(\omega_{E})[FRMN\mathrm{A}]_{k}+\sum_{\iota}[\alpha nn^{(i\rangle}]]\{\overline{P_{nr}}\}=\omega_{E}^{2}\frac{A_{F}}{V}[LNM]\{qmi\}$ (6.b)

$- \sum\frac{\omega_{E}}{V}Q_{l}\{FNRS\}_{l}$

$[\mathrm{T}\mathrm{t}MS]\{qmr\}=\rho_{\mathit{0}}c^{\frac{?}{o}}A_{F}[LMNA]\{Pnr\}+\{Q_{m}^{E}\}$ (7.a)

$[WMS]\{qmi\}=\rho_{\mathit{0}}c^{\frac{9}{o}}A_{F}[LMNA]\{Pni\}$ (7.b)

Equations (6.a) to (7.b) are the general equations representing the acoustica} structural
system and Helmholtz resonators. As it is seen that, sound fields should contain phase
information as well. Solution of these equations requires only simple matrix operations.
Calculation of the eigenvalues are performed by bisection method with a dynamic step length,
thus the error $|\mathrm{n}$ obtaining the eigenvalues is proponionaI with the step size used in the
calculations. Besides, the computational time is very short compared with other methods.
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Moreover, since the theoretical solutions are $\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{I}\mathrm{o}\mathrm{y}\mathrm{e}\mathrm{d}$ in the solution of system equations, it is
easy to determrne the cost function for the optimization procedures for shaping purposes.

Case Study

Within the scope of the present study, two case study is performed. $\ln$ the first case
study, a rectangular cavity having all boundaries flexible of $\mathrm{d}\dot{|}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}|\mathrm{o}\mathrm{n}\mathrm{s}$ of lm $\mathrm{x}$ lm $\mathrm{x}$ $ $\mathrm{m}$ excited
by unit harmonic structural $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{c}|\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{S}$ solved by the proposed mode} and the results are
compared with the results obtained from solving the same system by FEM by Ma and Hagiwara
[2]. In their study, only lowest 12 $.\mathrm{m}$odes were held, but the present model considers all the
modes, for which the mode numbers changing from 1 to 8 for each structural flexible plate within
the frequency range of interest. The results obtained from the present analysis are tabulated in
Table 1. $\ln$ Table 2, modes calculated by FEM, and the present model are compared and
percentage error is given in the last column. Study of the Table 1, yields that, the coupled system
at low frequency range is highly dominated by structural modes with a very high modal $\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{s}|\mathrm{t}\mathrm{y}$

and parallel plates can act $|\mathrm{l}\mathrm{k}\mathrm{e}$ a piston $i\mathrm{B}\Re$ in the system response. The frequencies which are
very close to zero on the other hand can be considered as rigid body motion of the cavity. Table
2illustrates that for the modes retained in the previous study, the results obtained from FEM
and the results $\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}|\mathrm{n}\mathrm{e}\mathrm{d}$ from the proposed method are quite close to each other. The reason of
th $e$ percentage difference between the two methods on the other hand, is due to truncation of
$\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}\}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$and higher modes in the FEM analysis which affects the frequency response.

In the second case study, the efficiency of Helmholtz resonators and absorptive
treatment are compared in coupled field response. Although in the mathematical model,
Helmholtz resonators are treated as source-like, they also introduce an absorptive mechanism
to the acoustical system which is very similar to acoustic absorption provided by absorptive
materials and are coupled with total acoustic pressure $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\ln$ the cavity. Therefore, even
Helmholtz resonators are tuned to a $\mathrm{s}|\mathrm{n}\mathrm{g}\mathrm{I}\mathrm{e}$ frequency, they affect the frequency range of interest.
This can be seen in Figure 2. $\ln$ Figure 3, the response of the cavity having a sound source and
resonator is $\mathrm{g}\mathrm{I}\mathrm{v}\mathrm{e}\mathrm{n}$. In Figu $r\mathrm{e}4$ , the coupled acoustic pressure distribution is glven.

Comparison of the figures yield that, in the absence of sound sources resonators are
very promising in shaping the cavity response. When there is sound source, although the
efficiency of resonators seems to be decreased compared with the absorptive treatment, this
can be improved by optimizing the resonator equivalent resistance and $\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}|\mathrm{o}\mathrm{n}\mathrm{s}$ . Besides, for
the efficiency, it is necessary to $\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{m}|\mathrm{z}\mathrm{e}$ the resonator-source-receive$r$ combinations. When the
application of these two passive methods are compared, depending on the purpose, Helmholtz
resonators can be still more attractive with proper combinations, since they are much less bulky
and cheap compared with absorptive treatment. Therefore, in shaping the sound fields $\mathrm{i}\mathrm{n}\mathrm{s}|\mathrm{d}\mathrm{e}$

$\mathrm{v}\mathrm{e}\mathrm{h}|\mathrm{c}\mathrm{I}\mathrm{e}$ passenger cabins such as automobiles or airplane fuselages for which weight has
importance, the possibility of employing the resonators as a promising passrve method should
also be considered having an appropriate mathematical modeling of the system.

Summary

$\ln$ this study, sound fields inside coupled enclosed spaces excited by acoustical $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

structural excitations such as sound sources, structural loadings were modeled. Acoustical
$\mathrm{a}\mathrm{b}\mathrm{s}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{t}|\mathrm{o}\mathrm{n}$ was also included in the model. Helmholtz resonators were also introduced to the
coupled cavity as an additional system, but defining two new parameters, system was reduced
into coupling problem between acoustical system and structural system only.

Two case studies were performed. $\ln$ the $i\dot{\mathrm{i}}\mathrm{r}\mathrm{s}\mathrm{t}$ case study, the FEM model and the model
obtained from the proposed study were compared. Acoustical pressure distribution inside the
cavity and all the coupled modes were calculated. Comparison was realized for the modes
retained in FEM. It was seen that there was a percentage difierence of maximum 4.8% because
of the truncation of lower and $\mathrm{h}\mathrm{I}\mathrm{g}\mathrm{h}\mathrm{e}\mathrm{r}$ modes in FEM analysis as well as some numerical
modeling errors introduced by FEM. $\ln$ the second case study, the efficiency of Helmholtz
resonators was compared with absorptive treatment, and it was illustrated that, Helmholtz
resonators were also promising in shaping the sound $\mathrm{f}\mathrm{i}\mathrm{e}$ { $\mathrm{d}\mathrm{s}$ in $\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}$ } $\mathrm{e}\mathrm{d}$ enclosed spaces.
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Figure 1. Acoustic Pressure Distribution Inside the Rectangular Cavity
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Table 2. Comparison of Coupled Frequencies Calculated by the Proposed Method and FEM

Comparison of Frequencies

$\mathrm{u}$ $\tau \mathit{1}$ 4 6 8
Number of Retained Modes

Figure 2. Percentage Difference Between Proposed Method and FEM
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Figure 2. Effect of helmholtz Resonator without Sound Source

Figure 3. Eftect of Helmholtz Rcsonator with Sound Sourc$e$

$\Gamma\prec \mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}4$. Effect of Absorblive Trcalmenl
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