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Abstract: A theorem is derived which (i) provides a new class of subfactors which may be
interpreted as generalized asymptotic subfactors, and which (ii) ensures the existence of two-
dimensional local quantum field theories associated with certain modular invariant matrices.

1 Introduction and results

We consider type III von Neumann factors throughout. $End\mathrm{f}\mathrm{i}\mathrm{n}(N)$ stands for the set of
unital endomorphisms $\lambda$ with finite dimension $d(\lambda)$ of a factor $N$ .

A closed $N$ -system is a set $\Delta\subset End\mathrm{f}\mathrm{i}\mathrm{n}(N)$ of mutually inequivalent irreducible endo-
morphisms such that (i) $\mathrm{i}\mathrm{d}_{N}\in\triangle,$ $(\mathrm{i}\mathrm{i})$ if $\lambda\in\triangle$ then there is a conjugate endomorphism
$\overline{\lambda}\in\triangle$ , and (iii) if $\lambda,$ $\mu\in\Delta$ then $\lambda\mu$ belongs to $\Sigma(\triangle)$ , the set of endomorphisms which
are equivalent to finite direct sums of elements from $\Delta$ .

Let $N\subset M$ be a subfactor of finite index with inclusion homomorphism $\iota\in Mor(N, M)$ .
An extension of the closed $N$-system $\triangle$ is a pair $(\iota, \alpha)$ , where $\iota$ is as above, and $\alpha$ is a
map $\trianglearrow End\mathrm{f}\mathrm{i}\mathrm{n}(M),$ $\lambda\vdash\Rightarrow\alpha_{\lambda}$ , such that

(E1) $\iota\circ\lambda=\alpha_{\lambda}\circ\iota$ ,
(E2) $\iota(Hom(\nu, \lambda\mu))\subset Hom(\alpha_{\mathrm{t}/}, \alpha_{\lambda}\alpha_{\mu})$ .

Conditions (E1) and (E2) mean that $(\iota, \alpha)$ is a monoidal functor from the full monoidal
$\mathrm{C}^{*}$ subcategory [3] of $End\mathrm{f}\mathrm{i}\mathrm{n}(N)$ with objects $\Pi(\triangle)$ (the set of finite products of elements
from $\triangle$ ) into the monoidal $\mathrm{C}^{*}$ category $End\mathrm{f}\mathrm{i}\mathrm{n}(M)$ . In particular, they imply that $\alpha_{\lambda}$

satisfy the same fusion rules as $\lambda\in\triangle$ , and that $\alpha_{\mathrm{i}\mathrm{d}_{N}}=\mathrm{i}\mathrm{d}_{M}$ (being an idempotent
within $End\mathrm{f}\mathrm{i}\mathrm{n}(M))$ . It follows that if $R_{\lambda}\in Hom(\mathrm{i}\mathrm{d}_{N},\overline{\lambda}\lambda)$ and $\overline{R}_{\lambda}\in Hom(\mathrm{i}\mathrm{d}_{N}, \lambda\overline{\lambda})$ are a
pair of isometries satisfying the conjugate equations $(1_{\lambda}\cross R_{\lambda}^{*})(\overline{R}_{\lambda}\mathrm{x}1_{\lambda})=d(\lambda)^{-1}1_{\lambda}=$

$(1_{\overline{\lambda}}\mathrm{x}\overline{R}_{\lambda}^{*})(R_{\lambda}\mathrm{x}1-)$ , and thus implementing left-and right-inverses $\Phi_{\lambda}$ and $\Psi_{\lambda}$ for $\lambda$ (i.e.,
linear mappings which invert the left and right monoidal products with $1_{\lambda}$ , cf. [9] $)$ , then so
do $\iota(R_{\lambda})$ and $\iota(\overline{R}_{\lambda})$ for $\alpha_{\lambda}$ . (The notation $\mathrm{x}$ refers to the monoidal product of intertwiners
[3].) In particular $\alpha_{\overline{\lambda}}$ is conjugate to $\alpha_{\lambda}$ .

While $\lambda\in\triangle$ is irreducible by definition, $\alpha_{\lambda}$ may be reducible, and its left- and
right-inverses are not unique in general. But the Lemma below states that the left-and
right-inverses $\Phi_{\alpha_{\lambda}}$ and $\Psi_{\alpha_{\lambda}}$ induced by $\iota(R_{\lambda})$ and $\iota(\overline{R}_{\lambda})$ are in fact the unique standard
(minimal) [9] ones, provided $\Delta$ is a finite system.
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We state our main result.
Theorem: Let $N_{1}\subset M$ and $N_{2}\subset M$ be two subfactors of $M$ , and $(\iota_{1},\alpha^{1})$ and

$(\iota_{2}, \alpha^{2})$ a pair of extensions of a finite closed $N_{1}$ -system $\Delta_{1}$ and a finite closed $N_{2}$-system
$\triangle_{2}$ , respeciively. Then there exists an irreducibl$e$ subfactor

$A\equiv N_{1}\otimes N_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}\subseteq B$

with $d\iota \mathrm{z}\mathrm{a}l$ canonical endomorphism

$\theta\equiv\overline{\iota}\circ\iota\simeq$ $\oplus$ $Z_{\lambda_{1},\lambda_{2}}\lambda_{1}\otimes\lambda_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}$,
$\lambda_{1}\in\Delta_{1},\lambda_{2}\in\Delta_{2}$

$w\mathrm{A}o\epsilon e$
“

$co\mathrm{u}$pling matrix” $Z$ of $m$ultiplicities is given by

$Z_{\lambda_{1},\lambda_{2}}=\dim Hom(\alpha_{\lambda_{1}}^{1}, \alpha_{\lambda_{2}}^{2})$ .

Here, $\iota\in Mor(A, B)$ is the inclusion homomorphism with conjugate $\overline{\iota}\in Mor(B, A)$ .
The following special case when $\triangle_{i}$ are braided systems is of particular interest for an

application in quantum field theory:
Proposition 1: $Ass\mathrm{u}m\mathrm{e}$ in addition that the clos$ed$ systems $\Delta_{1}$ and $\triangle_{2}$ are braided

with unitary braidings $\epsilon_{1}$ and $\epsilon_{2}$ , respectively, $t$ urning $\mathrm{I}\mathrm{I}(\triangle_{1})$ and $\Pi(\triangle_{2})$ into braided
monoidal categories. Iffor any $\lambda_{i},$ $\mu_{i}\in\Delta_{i}$ and any $\phi\in Hom(\alpha_{\lambda_{1}}^{1}, \alpha_{\lambda_{2}}^{2}),$ $\psi\in Hom(\alpha_{\mu_{1}}^{1}, \alpha_{\mu_{2}}^{2})$,

(E3) $(\psi \mathrm{x}\phi)\circ\iota_{1}(\epsilon_{1}(\lambda_{1}, \mu_{1}))=\iota_{2}(\epsilon_{2}(\lambda_{2},\mu_{2}))\circ(\phi\cross\psi)$

holds, then the canonical isomeiry $w_{1}\in Hom(\theta, \theta^{2})(d$efin$ed$ below in the proof of the
Theorem) and th$e$ braiding operator $\epsilon(\theta, \theta)\mathrm{n}at$urally induced by the braidings $\epsilon_{1}$ and $\epsilon_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}$

satisfy
$\epsilon(\theta, \theta)w_{1}=w_{1}$ .

This result answers an open question in quantum field theory, where possible matrices
$Z$ are classified which are supposed to describe the restriction of a given two-dimensional
modular invariant conformal quantum field theory to its chiral subtheories, while it is ac-
tually not clear whether any given solution $Z$ does come from a two-dimensional quantum
field theory. This turns out to be true for a large class of solutions.

Namely, let $N_{1}=N_{2}=N$ be a local algebra of chiral observables and $\triangle_{1}=\Delta_{2}=\triangle$ a
braided system of DHR endomorphisms. If the dual canonical endomorphism $\theta_{M}$ associ-
ated with $N\subset M$ belongs to $\Sigma(\Delta)$ , then $\alpha$-induction $[8, 1]$ provides a pair of extensions
$(\iota, \alpha^{+})$ and $(\iota, \alpha^{-})$ which satisfies (E1), (E2) as well as (E3) [1, $\mathrm{I}$ , Def. 3.3, Lemma 3.5 and
3.25]. The associated coupling matrix $Z_{\lambda,\mu}=\dim Hom(\alpha_{\lambda}^{+}, \alpha_{\mu}^{-})$ is automatically a modu-
lar invariant [2]. By the characterization of extensions of local quantum field theories given
in [8], the subfactor given by the Theorem induces an entire net of subfactors, indexed by
the double-cones of two-dimensional Minkowski space. The statement of Proposition 1 is
precisely the criterium given in [8] for the resulting two-dimensional quantum field theory
to be local. Thus, every modular invariant found by the $\alpha$-induction method given in [2]
indeed corresponds to a local two-dimensional quantum field theory extending the given
chiral nets of observables.
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The case $N_{1}=N_{2}=M$ hence $Z=11$ is known for a while [8], and was recognized
[10] to yield (up to some trivial tensoring with a type III factor) the type II asymptotic
subfactor [11] associated with $\sigma(N)\subset N$ where $\sigma\equiv\oplus_{\lambda\in\Delta}\lambda$ . As the asymptotic subfactor
$M\vee M^{c}\subset M_{\infty}$ associated with a fixed point inclusion $M^{G}\subset M$ for an outer action of
a group $G$ , provides the same category of $M_{\infty}- M_{\infty}$ bimodules as a fixed point inclusion
for an outer action of the quantum double $D(G)$ on $M_{\infty}$ , general asymptotic subfactors
in turn are considered $[11, 4]$ as generalized quantum doubles.

Asymptotic subfactors have the properties
(A1) $M\vee M^{c}\simeq M\otimes M^{c}$ are in a tensor product position within $M_{\infty}$ , and every

irreducible $M\vee M^{c_{-}}M\vee M^{c}$ bimodule associated with the asymptotic subfactor respects
the tensor product, i.e., factorizes into an M-M bimodule and an $M^{c_{-}}M^{c}$ bimodule [11].

(A2) $M$ and $M^{c}$ are each other’s relative commutant in $M_{\infty}$ . We call this property of
the triple $(M, M^{\mathrm{c}}, M_{\infty})$ normality.

(A3) The system of $M_{\infty}- M_{\infty}$ bimodules associated with an asymptotic subfactor has
a non-degenerate braiding $[11, 5]$ .

In the type III framework, the analogous property of (A1) is that for a subfactor $A\otimes$

$B\subset C$ , the dual canonical endomorphism $\theta=\overline{\iota}\circ\iota$ respects the tensor product, i.e., each
of its irreducible components is (equivalent to) a tensor product $\alpha\otimes\beta$ of endomorphisms
of $A$ and $B$ , respectively. We call a subfactor with this property a canonical tensor product

subfactor (CTPS) $[12, 13]$ .
Let $(A, B, C)$ be a joint inclusion of von Neumann algebras, i.e., $A\vee B\subset C$ . We call

$(A, B, C)$ normal if $A$ and $B$ are each other’s relative commutant in $C$ , which is equivalent
to $A=A^{\mathrm{c}C}$ (i.e., $A\subset C$ is normal in standard terminology), and $B=A^{c}$ . For $(A, B, C)$

normal, one has $Z(A)=(A\vee B)^{c}=Z(B)\supset Z(C)$ , so $A$ and likewise $B$ are factors if and
only if $A\vee B\subset C$ is irreducible, and in this case $C$ necessarily is also a factor.

Obviously, the subfactors constructed in the Theorem are CTPS’s (property (A1) of
asymptotic subfactors), while we do not know at present whether they always share the
property (A3) (braiding), which ought to be tested with methods as in [5]. Definitely,
the joint inclusions $(N_{1}, N_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}, B)$ in the Theorem do not share the normality property
(A2) in general. The following Proposition is a characterization of normality in terms of
the coupling matrix, which suggests to regard normal CTPS’s as “generalized quantum
doubles”, beyond the class of asymptotic subfactors.

Proposition 2: Let $A\otimes B\subset C$ be a $c_{/}TPS$ of type III witb $co\mathrm{u}$pling matrix $Z$ , i.e.,
the dual canonical endomorph$ism$ is of the form

$\theta\simeq\bigoplus_{\alpha\in\Delta_{A},\beta\in\Delta_{B}}Z_{\alpha,\beta}\alpha\otimes\beta$
,

where $\triangle_{A}\ni \mathrm{i}\mathrm{d}_{A}$ and $\triangle_{B}\ni \mathrm{i}\mathrm{d}_{B}$ are two sets ofmutually in $e\mathrm{q}$ uivaleni irreducible endomor-
phisms in $End\mathrm{f}\mathrm{i}\mathrm{n}(A)$ and $End\mathrm{f}\mathrm{i}\mathrm{n}(B)$ . Then the following conditions are equivalent.

$(Nl)$ The joint inclusion $(A\otimes 11_{B}, ]1_{A}\otimes B,$ $C)$ is-normal, $i.e.,$ $A\otimes$ ]$1_{B}$ and ]$1_{A}\otimes B$ are
each other’s relative commutants in $C$ .
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$(N\mathit{2})$ The coupling matrix couples no $non- tri_{1^{\Gamma}}ial$ sector of $A$ to th $e$ trivial sector of $B$ ,
and vice versa, i.e.,

$Z_{\alpha,\mathrm{i}\mathrm{d}_{B}}=\delta_{\alpha,\mathrm{i}\mathrm{d}_{A}}$ and $Z_{\mathrm{i}\mathrm{d}_{A},\beta}=\delta_{\beta,\mathrm{i}\mathrm{d}_{B}}$.
$(N\mathit{3})T\Lambda e$ sets $\Delta_{A}$ and $\Delta_{B}$ are clos$\mathrm{e}dA-$ and $B$-systems, respectively, i.e., they are

both closed under conjugation and $f\mathrm{u}$sion. There is a bijection $\pi$ : $\triangle_{A}arrow\triangle_{B}$ which
preserves the fusion rules, i.e.,

$\dim Hom(\alpha_{1}, \alpha_{2}\alpha_{3})=\dim Hom(\pi(\alpha_{1}), \pi(\alpha_{2})\pi(\alpha_{3}))$ .
The matrix $Z$ is th$e$ permutation matrix for this bijection, i.e.,

$Z_{\alpha,\beta}=\delta_{\pi(\alpha\rangle,\beta}$ .

2 Indication of Proofs

For complete proofs, see $[12, 13]$ .
Lemma: Let $(\iota, \alpha)$ be an extension of a clos$edN$-system $\triangle$ . Let $R\in Hom(\mathrm{i}\mathrm{d}_{N},\overline{\lambda}\lambda)$

and $\overline{R}\in Hom(\mathrm{i}\mathrm{d}_{N}, \lambda\overline{\lambda})$ be a pair of isometries as before implementing the unique 1$\mathrm{e}$ft-
and right-inverses [9] $\Phi_{\lambda}$ and $\Psi_{\lambda}$ for $\lambda\in\Delta$ . Then $\iota(R_{\lambda})$ and $\iota(\overline{R}_{\lambda})$ implement left- and
right-inverses $\Phi_{\alpha_{\lambda}}$ and $\Psi_{\alpha_{\lambda}}$ for $\alpha_{\lambda}$ . If $\triangle$ is ffiite, $t\mathrm{A}\mathrm{e}l\mathit{1}d(\alpha_{\lambda})=d(\lambda)$ , and $\Phi_{\alpha_{\lambda}}$ and $\Psi_{\alpha_{\lambda}}$ are
the unique standard left- and right-inverses.

Proof of the Lemma: The first statement is obvious, since $\iota(R_{\lambda})$ and $\iota(\overline{R}_{\lambda})$ solve the
conjugate equations [9] for $\alpha_{\lambda}$ if $R_{\lambda}$ and $\overline{R}_{\lambda}$ do so for $\lambda$ . If $\triangle$ is finite, then the minimal
dimensions $d(\alpha_{\lambda})$ are uniquely determined by the fusion rules, and the latter must coincide
with those of $\lambda\in\triangle$ . Hence $d(\alpha_{\lambda})=d(\lambda)$ . Since $d(\lambda)$ are also the dimensions associated
with the pair of isometries $\iota(R_{\lambda}),$ $\iota(\overline{R}_{\lambda})$ , the last claim follows by [9, Thm. 3.11]. $\square$

Thus, general properties of standard left- and right-inverses [9] are applicable. We
shall in the sequel repeatedly exploit the trace property

$d(p)\Phi_{\rho}(S^{*}T)=d(\tau)\Phi_{\tau}(TS^{*})$ if $S,$ $T\in Hom(p, \tau)$

for standard left-inverses of $\rho,$ $\tau\in End\mathrm{f}\mathrm{i}\mathrm{n}(M)$ , their multiplicativity $\Phi_{\rho\tau}=\Phi_{\rho}\Phi_{\tau}$ , as well
as the equality of standard left-and right-inverses $\Psi_{\rho}=\Phi_{\rho}$ on $Hom(\rho, \rho)$ .

Proof of the Theorem: First notice that the multiplicity of $\mathrm{i}\mathrm{d}_{A}$ in $\theta$ is $Z_{\mathrm{i}\mathrm{d}_{N_{1}},\mathrm{i}\mathrm{d}_{N_{2}}}=$

$\dim Hom(\mathrm{i}\mathrm{d}_{M},\mathrm{i}\mathrm{d}_{M})=1$ , so the asserted subfactor is automatically irreducible.
In order to show that $\theta$ is the dual canonical endomorphism associated with a subfactor

$A\subset B$ , we make use of Longo’s characterization [7] of canonical endomorphisms in terms
of “canonical triples” (“ $\mathrm{Q}$-systems”). It says that $\theta\in End\mathrm{f}\mathrm{i}\mathrm{n}(A)$ is the dual canonical
endomorphism associated with $A\subset B$ if (and only if) there is a pair of isometries $w\in$

$Hom(\mathrm{i}\mathrm{d}_{A}, \theta)$ and $w_{1}\in Hom(\theta, \theta^{2})$ satisfying
(Q1) $w^{*}w_{1}=\theta(w^{*})w_{1}=d(\theta)^{-1/2}]1_{A}$ ,
(Q2) $w_{1}w_{1}=\theta(w_{1})w_{1}$ , and
(Q3) $w_{1}w_{1}^{*}=\theta(w_{1}^{*})w_{1}$ .
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In order to construct the $\mathrm{Q}$-system $(\theta, w, w_{1})$ in the present case, we first choose a
complete system of mutually inequivalent isometries $W_{(\lambda_{1},\lambda_{2},1)}\equiv W\iota\in A\equiv N\otimes N^{\mathrm{o}\mathrm{p}\mathrm{p}}$,
where $l$ is considered as a multi-index including $(\lambda_{1}\in\triangle_{1}, \lambda_{2}\in\triangle_{2}, l=1, \ldots Z_{\lambda_{1},\lambda_{2}})$, and
put

$\theta=\sum_{l}W_{l}(\lambda_{1}\otimes\lambda_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}})(\cdot)W_{l}^{*}$
.

The choice of these isometries is immaterial and ffiects the subfactor to be constructed
only by inner conjugation.

Since $Hom(\mathrm{i}\mathrm{d}_{A}, \theta)$ is one-dimensional, the isometry $w$ is already fixed up to an ir-
relevant complex phase, and we choose $w=W_{0}$ , where $0$ refers to the multi-index
$l=0\equiv(\mathrm{i}\mathrm{d}_{N_{1}},\mathrm{i}\mathrm{d}_{N_{2}},1)$. The second isometry, $w_{1}$ , must be of the form

$w_{1}= \sum_{l,m,n}(W_{l}\cross W_{m})\circ \mathcal{T}_{lm}^{n}\circ W_{n}^{*}$

where $\mathcal{T}_{lm}^{n}\in Hom(\nu_{1}\otimes\nu_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}, (\lambda_{1}\otimes\lambda_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}})_{0}(\mu_{1}\otimes\mu_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}))$ , since these operators span $Hom(\theta, \theta^{2})$ .
In turn, $\mathcal{T}_{lm}^{n}$ must be of the form

$\mathcal{T}_{lm}^{n}=\sum_{\mathrm{e}_{1},\mathrm{e}_{2}}\zeta_{lm,e_{1}e_{2}}^{n}T_{\mathrm{e}_{1}}\otimes(T_{e_{2}}^{*})^{\mathrm{o}\mathrm{p}\mathrm{p}}$

$(\zeta_{t^{n}m,e_{1}e_{2}}\in \mathbb{C})$

where $T_{e_{i}}$ constitute orthonormal isometric bases of the intertwiner spaces $Hom(\nu_{i}, \lambda_{i}\mu_{i})$ ,
since these operat$o\mathrm{r}\mathrm{s}$ span $Hom(l/_{1}\otimes\nu_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}, (\lambda_{1}\otimes\lambda_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}})\circ(\mu_{1}\otimes\mu_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}))\equiv Hom(\iota/_{1}, \lambda_{1}\mu_{1})\otimes$

$Hom(\nu_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}, \lambda_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}}\mu_{2}^{\mathrm{o}\mathrm{p}\mathrm{p}})$. Note that if $T\in Hom(\alpha, \beta)$ is isometric in $N$ , then $(T^{*})^{\mathrm{o}_{\mathrm{P}\mathrm{P}}}\in$

$Hom(\beta, \alpha)^{\mathrm{o}\mathrm{p}\mathrm{p}}\equiv Hom(\alpha^{\mathrm{o}\mathrm{p}\mathrm{p}}, \beta^{\mathrm{o}\mathrm{p}\mathrm{p}})$ is isometric in $N^{\mathrm{o}\mathrm{p}\mathrm{p}}$ . The labels $e_{i}$ are again multi-
indices of the form $(\lambda, \mu, \iota/, e=1, \ldots\dim Hom(\nu, \lambda\mu))$ .

It remains therefore to determine the complex coefficients $\zeta_{lm,e_{1}e_{2}}^{n}$ , such that $w_{1}$ is an
isometry satisfying Longo’s relations (Q1-3) above. To specify the coefficients, we equip
the spaces $Hom(\alpha_{\lambda_{1}}^{1}, \alpha_{\lambda_{2}}^{2})$ with the non-degenerate scalar products $(\phi, \phi’):=\Phi_{\lambda_{1}}^{1}(\phi^{*}\phi’)$

(where $\Phi_{\lambda_{t}}^{i}$ stand for the induced left-inverses for $\alpha_{\lambda_{i}}^{i}$ ). With respect to these scalar
products, we ch$\mathit{0}$ose orthonormal bases $\{\phi_{l}, l=1, \ldots Z_{\lambda_{1},\lambda_{2}}\}$ for all $\lambda_{1},$ $\lambda_{2}$ , and put

$\zeta_{lm,e_{1}e_{2}}^{n}=\sqrt{\frac{d(\lambda_{2})d(\mu_{2})}{d(\theta)d(\nu_{2})}}\Phi_{\lambda_{1}}^{1}[\iota_{1}(T_{e_{1}}^{*})(\phi_{l}^{*}\cross\phi_{m}^{*})\iota_{2}(T_{e_{2}})\phi_{n}]$ .

Condition (Q1) is trivially satisfied, since left multiplication of $w_{1}$ by $w^{*}$ singles out
the term $l=0$ due to $W_{0}^{*}W_{l}=\delta_{l0}$ . This leaves only terms with $\lambda_{i}=\mathrm{i}\mathrm{d}_{N}.\cdot$ , hence $\mu_{i}=\nu_{i}$ ,
for which $T_{e_{i}}$ are trivial and $\sqrt{d(\theta)}\zeta_{0m,e_{1}e_{2}}^{n}=\delta_{mn}$ (up to cancelling complex phases), so
$\sqrt{d(\theta)}w^{*}w_{1}=\sum_{n}W_{n}W_{n}^{*}=\mathrm{I}_{A}$ . For $\theta(w^{*})w_{1}$ the argument is essentially the same.

We turn to the conditions (Q2) and (Q3). Whenever we compute either of the four
products occurring, we obtain a Kronecker delta $W_{s}^{*}W_{t}=\delta_{st}$ for one pair of the labels
$l,$ $m,$ $n,$ $\ldots$ involved, while the remaining operator parts are of the form

$(W_{l}\cross W_{m}\cross W_{k})[(T_{e_{1}}\cross 1_{\kappa_{1}})T_{f_{1}}\otimes(((T_{\mathrm{e}_{2}}\cross 1_{\kappa_{2}})T_{f_{2}})^{*})^{\mathrm{o}\mathrm{p}\mathrm{p}}]W_{n}^{*}$ ,
$(W_{l}\cross W_{m}\cross W_{k})[(1_{\lambda_{1}}\cross T_{\mathit{9}1})T_{h_{1}}\otimes(((1_{\lambda_{2}}\cross T_{\mathit{9}2})T_{h_{2}})^{*})^{\mathrm{o}\mathrm{p}\mathrm{p}}]W_{n}^{*}$

for the left- and right-hand side cf (Q2), $w_{1}w_{1}=\theta(w_{1})w_{1}$ , and in turn,
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$(W_{l}\cross W_{m})[T_{e_{1}}T_{f_{1}}^{*}\otimes((T_{e_{2}}T_{f_{2}}^{*})^{*})^{\mathrm{o}\mathrm{p}\mathrm{p}}](W_{n}\cross W_{k})^{*}$ ,
$(W_{l}\cross W_{m})[(1_{\lambda_{1}}\cross T_{\mathit{9}1}^{*})(T_{h_{1}}\cross 1_{\kappa_{1}})\otimes(((1_{\lambda_{2}}\mathrm{x}T_{g_{2}}^{*})(T_{h_{2}}\mathrm{x}1_{\kappa_{2}}))^{*})^{\mathrm{o}\mathrm{p}\mathrm{p}}](W_{n}\cross W_{k})^{*}$

for the left-and right-hand side of (Q3), $w_{1}w_{1}^{*}=\theta(w_{1}^{*})w_{1}$ . (In these expressions, we do
not specify the respective intertwiner spaces to which the various operators $T$ belong,
since these are determined by the context.)

The numerical coefficients multiplying these operators are, respectively,

$C_{2L}= \sum_{s}\zeta_{lm,e_{1}\mathrm{e}_{2}}^{s}\zeta_{sk,f_{1}f_{2}}^{n}$
,

$C_{2R}= \sum_{s}\zeta_{mk,g_{1}g_{2}}^{s}\zeta_{ls,h_{1}h_{2}}^{n}$

for (Q2), and
$C_{3L}= \sum_{s}\zeta_{lm,e_{1}e_{2}}^{s}\overline{\zeta_{nk,f_{1}f_{2}}^{s}}.$ ,

$C_{3R}= \sum_{s}\overline{\zeta_{sk_{\mathit{9}1\mathit{9}2}}^{m},}\zeta_{ls,h_{1}h_{2}}^{n}$

for (Q3), with a summation over one common label $s=1,$ $\ldots Z_{\sigma_{1},\sigma_{2}}$ due to the above
Kronecker $\delta_{st}$ in each case.

These summations over $s$ can be carried out. Namely, factors $\zeta^{s}..,\cdot$ . are in fact scalar
products of the form $\Phi_{\sigma_{1}}^{1}(X\phi_{s})=(X^{*}, \phi_{s})$ within $Hom(\alpha_{\sigma_{1’}}^{1}\backslash \alpha_{\sigma_{2}}^{2})$, so summation with the
operator $\phi_{s}^{*}$ contributing to the other factor $\zeta$ yields $\sum_{s}\Phi_{\sigma_{1}}^{1}(X\phi_{s})\phi_{s}^{*}=X$ . A factor of
the form $\zeta_{s}.,\cdot$ . can also be rewritten with the help of the trace property for standard left
inverses as a scalar product $\Phi_{\sigma_{1}}^{1}(\phi_{s}^{*}X)$ within $Hom(\alpha_{\sigma_{1}}^{1}, \alpha_{\sigma_{2}}^{2})$ , and the evaluation of the
sum over $s$ is likewise possible.

After some transformations, one arrives at

$C_{2L}\propto\Phi_{\nu_{1}}^{1}[\iota_{1}(T_{f_{1}}^{*}(T_{e_{1}}^{*}\cross 1_{\kappa_{1}}))(\phi_{l}^{*}\cross\phi_{m}^{*}\mathrm{x}\phi_{k}^{*})\iota_{2}((T_{\mathrm{e}_{2}}\cross 1_{\kappa_{2}})T_{f_{2}})\phi_{n}]$ ,

$C_{2R}\propto\Phi_{\nu_{1}}^{1}[\iota_{1}(T_{h_{1}}^{*}(1_{\lambda_{1}}\mathrm{x}T_{\mathit{9}1}^{*}))(\phi_{l}^{*}\cross\phi_{m}^{*}\cross\phi_{k}^{*})\iota_{2}((1_{\lambda_{2}}\cross T_{g_{2}})T_{h_{2}})\phi_{n}]$

up to a common ftctor $\sqrt{\frac{d(\lambda_{2})d(\mu_{2})d(\kappa_{2})}{d(\theta)^{2}d(\nu_{2})}}$ . Summing the operators on both sides of (Q2) as
above with the coefficients $C_{2L},$ $C_{2R}$ , and noting that the passage from bases $(T_{\mathrm{e}}\cross 1_{\kappa})T_{f}$ to
bases $(1_{\lambda}\cross T_{g})T_{h}$ of $Hom(\nu, \lambda\mu\kappa)$ for any fixed $\nu,$

$\lambda,$
$\mu,$

$\kappa$ is described by unitary matrices,
we conclude equality of both sides of (Q2).

For (Q3), similar manipulations give

$C_{3L} \propto\frac{d(\mu_{1})d(\mu_{2})}{d(\sigma_{2})d(\sigma_{1})}\Phi_{\mu_{1}\lambda_{1}}^{1}[(\phi_{l}^{*}\cross\phi_{m}^{*})\iota_{2}(T_{\mathrm{e}_{2}}T_{f_{2}}^{*})(\phi_{n}\cross\phi_{k})\iota_{1}(T_{j_{1}}T_{e_{1}}^{*})]$,

$C_{3R} \propto\frac{d(\sigma_{2})d(\sigma_{1})}{d(\nu_{1})d(\nu_{2})}\cross$

$\Phi_{\mu_{1}\lambda_{1}}^{1}[(\phi_{l}^{*}\cross\phi_{m}^{*})\iota_{2}((1_{\lambda_{2}}\mathrm{x}T_{\mathit{9}2}^{*})(T_{h_{2}}\cross 1_{\kappa_{2}}))(\phi_{n}\mathrm{x}\phi_{k})\iota_{1}((T_{h_{1}}^{*}\mathrm{x}1_{\kappa_{1}})(1_{\lambda_{1}}\cross T_{\mathit{9}1}))]$

up to a common factor $\sqrt{\frac{d(\lambda_{2})d(\nu_{2})d(\kappa_{2})}{d(\theta)^{2}d(\mu_{2})}}d(\lambda_{1})$. Summing the operators on both sides of
(Q3) as above with the coefficients $C_{3L},$ $C_{3R}$ , and noting that the passage from bases
$\sqrt{\lrcorner d\mu\Delta d(\sigma)}T_{e}T_{f}^{*}$ to bases $\Gamma^{\lrcorner\Delta}d\sigma(d(\nu)1_{\lambda}\cross T_{g}^{*})(T_{h}\mathrm{x}1_{\kappa})$ of $Hom(\nu\kappa, \lambda\mu)$ for any fixed $\nu,$ $\kappa,$

$\lambda,\mu$ is
again described by a unitary matrix, we obtain equality of both sides of (Q3).
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It remains to show that $w_{1}$ is an isometry, $w_{1}^{*}w_{1}=1$ .
Performing the multiplication $w_{1}^{*}w_{1}$ yields two Kronecker delta’s from the factors $W_{l}\cross$

$W_{m}$ , and two more Kronecker delta’s from the factors $T_{e_{1}}\otimes(T_{\mathrm{e}_{2}}^{*})^{\mathrm{o}\mathrm{p}\mathrm{p}}$ . Thus

$w_{1}^{*}w_{1}= \sum_{ns}(\sum_{lm,e_{1}e_{2}}\overline{\zeta_{lm,\mathrm{e}_{1}\mathrm{e}_{2}}^{n}}\zeta_{lm,e_{1}e_{2)}}^{s}\mathrm{T}T^{\gamma_{n}}W_{s}^{*}$,

and we have to perform the sums over $l,$ $m,$ $e_{1},$ $e_{2}$ (involving, as sums over multi-indices,
the summation over sectors $\nu_{i},$

$\lambda_{i},$ $\mu_{i}\in\triangle_{i},$ $i=1,2$).

Again, we rewrite $\zeta_{lm,e_{1}e_{2}}^{n}$ as a scalar product $(\phi_{m},X)$ within $Hom(\alpha_{\mu_{1}}^{1}, \alpha_{\mu_{2}}^{2})$ and per-
form the sum over $m$ similar as before. In the resulting expression, both sums over $(e_{1},\mu_{1})$

and over $(e_{2}, \mu_{2})$ can be performed after a unitary passage from the bases of orthonormal
isometries $T_{e}$ of $Hom(\nu, \lambda\mu)$ to the bases $\sqrt{\frac{d(\lambda)d(\nu)}{d(\mu)}}(1_{\lambda}\cross T_{e}^{*},)(\overline{R}_{\lambda}\cross 1_{\nu})$ , making use of the
conjugate equations between $\overline{R}_{\lambda}$ (contributing to the new bases) and $R_{\lambda}$ (implementing
the left-inverses $\Phi_{\lambda}$ and hence $\Phi_{\lambda_{t}}^{i}$ ). This produces the expression

$\sum_{lm,e_{1}e_{2}}\overline{\zeta_{lm,e_{1}e_{2}}^{s}}\zeta_{lm,e_{1}\mathrm{e}_{2}}^{n}=\sum_{l,\lambda_{1}\lambda_{2}}\frac{d(\lambda_{2})^{2}}{d(\theta)}\Phi_{\nu_{1}}^{1}[\Psi_{\lambda_{2}}^{2}(\phi\iota\phi_{i}^{*})\mathrm{x}(\phi_{s}^{*}\phi_{n})]$ .

Here $\Psi_{\lambda_{2}}^{2}$ ist the standard right-inverse implemented by $\iota_{2}(\overline{R}_{\lambda_{2}})$ which coincides with $\Phi_{\lambda_{2}}^{2}$

on $Hom(\alpha_{\lambda_{2}}^{2}, \alpha_{\lambda_{2}}^{2})$ , and can be evaluated by the trace property: $\Psi_{\lambda_{2}}^{2}(\phi_{l}\phi_{l}^{*})=\Phi_{\lambda_{2}}^{2}(\phi_{l}\phi_{l}^{*})=$

$\frac{d(\lambda_{1})}{d(\lambda_{2})}\Phi_{\lambda_{1}}^{1}(\phi_{l}^{*}\phi\iota)=\frac{d(\lambda_{1})}{d(\lambda_{2})}$, while the sum over 1 yields the multiplicity factor $Z_{\lambda_{1},\lambda_{2}}$ . Hence

$\sum_{lm,e_{1}e_{2}}\overline{\zeta_{lm\mathrm{e}_{1}e_{2}}^{s}}\zeta_{lm,e_{1}e_{2}}^{n}|=(\sum_{\lambda_{1},\lambda_{2}}\frac{d(\lambda_{1})d(\lambda_{2})Z_{\lambda_{1},\lambda_{2}}}{d(\theta)})\Phi_{\nu_{1}}^{1}(\phi_{s}^{*}\phi_{n})=\delta_{sn}$,

and hence $w_{1}^{*}w_{1}= \sum_{n}W_{n}W_{n}^{*}=1$ .

This completes the proof of the Theorem. For the detailed computations, cf. [13]. $\square$

Proof of Proposition 1: Left multiplication of $w_{1}$ with the induced braiding operator

$\epsilon(\theta, \theta)=\sum_{mlm’l’}(W_{m’}\cross W_{l’})\circ(\epsilon_{1}(\lambda_{1},\mu_{1})\otimes(\epsilon_{2}(\lambda_{2},\mu_{2})^{*})^{\mathrm{o}\mathrm{p}\mathrm{p}})\circ(W_{l}\cross W_{m})^{*}$

amounts to a unitary passage from bases $T_{\mathrm{e}}\in Hom(\nu, \lambda\mu)$ to bases $\epsilon(\lambda, \mu)T_{e}\in Hom(\nu, \mu\lambda)$ .
But by (E3), the coefficients $\zeta_{lm,\mathrm{e}_{1}e_{2}}^{n}$ are invariant under these changes of bases. Hence
$\epsilon(\theta, \theta)w_{1}=w_{1}$ . $\square$

Proof of Proposition 2: The proof is published in [12, Lemma 3.4 and Thm. 3.6]. $\square$
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3 Conclusion

We have shown the existence of a class of new subfactors associated with extensions of
closed systems of sectors. The proof proceeds by establishing the corresponding Q-systems
in terms of certain matrix elements for the transition between two extensions. The new
subfactors are canonical tensor product subfactors and include the asymptotic subfac-
tors. They may be regarded as generalized quantum doubles if they satisfy a normality
condition for which a simple criterium is given. The new subfactors also include the lo-
cal subfactors of two-dimensional conformal quantum field theory associated with certain
modular invariants, thereby establishing the expected existence of these theories.
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