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1 Introduction
In the theory of operator algebras, study of automorphisms is one of the most important
subjects. In [3] and [5], A. Connes has classified automorphisms of approximately finite
dimensional (AFD) semifinite factors. After Connes’ classification, V. F. R. Jones has
introduced the characteristic invariant and classified actions of finite groups on the AFD
type $\mathrm{I}\mathrm{I}_{1}$ factor in [14]. Immediately after that work, A. Ocneanu succeeded in classifying
actions of discrete amenable groups on AFD semifinite factors. Based on these results,
actions of discrete amenable groups on AFD factors of type III have been classified in
[30], [21] and finally [16].

In subfactor theory, P. H. Loi first studied the automorphisms of subfactors in [23].
He introduced the invariant of automorphisms $\Phi(\alpha)$ , which we will call the Loi invariant,
and obtained some structural results on type $\mathrm{I}\mathrm{I}\mathrm{I}_{\lambda}$ subfactors. In [28], S. Popa has intro-
duced the proper outerness for automorphisms of subfactors, and proved that properly
outer actions of discrete amenable groups on strongly amenable subfactors of type $\mathrm{I}\mathrm{I}_{1}$ are
classified by the Loi invariant. (In [1], Choda-Kosaki have introduced the same property
independently and they call it strong outerness.)

So it is natural to ask if we can classify not necessary strongly outer actions of discrete
amenable groups. Several people have noticed the similarity between theory of subfactors
and (single) type III factors, and especially this similarity has been emphasized by Kawahi-
gashi in [17]. Based on this similarity, Kawahigashi has introduced two outer conjugacy
invariants for automorphisms, i.e., the higher obstruction and an algebraic $\nu$ invariant
in [20]. The former is an analogue of the Connes obstruction (or modular obstruction)
and the latter is an analogue of Sutherland-Takesaki’s modular invariant. With these two
invariants, Kawahigashi has classified approximately inner automorphisms of subfactors
under some extra assumptions on subfactors. After this work, Loi removed these extra
assumptions and generalized Kawahigashi’s results by commuting square technique in
[24].

The aim of this article is generalization of $\mathrm{K}\mathrm{a}\mathrm{w}\mathrm{a}\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{a}\mathrm{S}\mathrm{h}\mathrm{i}_{\mathrm{S}\mathrm{r}}’ \mathrm{e}\mathrm{s}\mathrm{u}\mathrm{i}\mathrm{t}$ to the case of actions
of arbitrary discrete amenable groups. Out idea is based on [30] and [16], that is, we use
duality technique. In the classification of group actions on type III factors, by taking the
crossed product by modular automorphism group, the classification problem is reduced
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to the case of semifinite factors. In subfactor setting, non-strongly outer automorphisms
correspond to the modular automorphisn, and we take the crossed product by the relative
$\chi$ group and reduce classification problem to easier case.

To classify actions, we consider two kinds of invariants. One is the characteristic in-
variant, and another is a lノ invariant. Our characteristic invariant may or may not be
different from the original one introduced by Jones, and is the generalization of Kawahi-
gashi’s higher obstruction. Our characteristic invariant has relation with the $\kappa$ invariant,
which has been introduced by Jones in [13]. In this article, we consider the “algebraic”
version of the $\kappa$ invariant, and if this $\kappa$ invariant is trivial, then our characteristic invari-
ant coincides with the usual characteristic invariant. The second invariant $\nu$ invariant
is precisely Kawahigashi’s algebraic $\nu$ invariant, and this is an analogue of Sutherland-
Takesaki’s modular invariant mentioned as above.

This article is a brief explanation of [25], and more details will be found in [25].

2 Preliminaries and notations
In this section, we recall several facts on automorphisms of subfactors and fix notations.

Let $N\subset M$ be a subfactor with finite index and $N\underline{\tau}M\subset M_{1}\subset M_{2}\subset\cdots$ the Jones
tower. (In this article, we consider only minimal index, and assume that every subfactor
of type II is extremal in the sense of [29].) Let $\alpha$ be an automorphism of $N\subset M$ . Then
$\alpha$ can be extended onto $M_{k}$ inductively by setting $\alpha(e_{k})=e_{k}$ , where $e_{k}$ is the Jones
projection for $M_{k-2}\subset M_{k-1}$ .

First we recall the Loi invariant and the strong outerness for automorphisms.

Definition 2.1 ([23, Section 5]) With above $notati_{on}S_{f}$ put

$\Phi(\alpha):=\{\alpha|_{MM}’\cap k\}_{k}$ .

We call this $\Phi$ the $Loi$ invariant for $\alpha$ .

Definition 2.2 ([1, Definition 1], [28, Definition 1.5.1]) An automorphism
$\alpha\in$ Aut $(M, N)$ is said to be strongly outer or properly outer if we have no non-zero
$a \in\bigcup_{k}M_{k}$ satisfying $\alpha(x)a=ax$ for every $x\in M$ .

According to the notation of [16], we use the notation $\mathrm{C}\mathrm{n}\mathrm{t}_{r}(M, N)$ to denote the set
of non-strongly outer automorphisms of $N\subset M$ .

In [28], Popa proved the following important results.

Theorem 2.3 ([28, Theorem 1.6]) Non-strongly outer automorphisms are centrally triv-
ial. Moreover if $N\subset M$ is a strongly amenable subfactor of type $II_{1;}$ then these two
notions are equivalent.

Theorem 2.4 ([28, Theorem 3.1]) Let $N\subset M$ be a strongly amenable subfactor of
type $II_{1}$ and $G$ a discrete amenable group. If $a$ and $\beta$ are strongly outer actions of $G$ on
$N\subset M$ , then $a$ and $\beta$ are cocycle conjugate if and only if $\Phi(\alpha)=\Phi(\beta)$ hold.

In [23, Theorem 5.4], Loi gave the following characterization of approximately inner
automorphisms.
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Theorem 2.5 If $N\subset M$ is a strongly amenable subfactor of type $II_{1f}$ then $\mathrm{K}\mathrm{e}\mathrm{r}\Phi=$

$\overline{\mathrm{I}\mathrm{n}\mathrm{t}}(M, N)$ holds.

Loi proved above theorem when $N\subseteq M$ is of finite depth. But his proof works when
$N\subset M$ is strongly amenable.

In [17], Kawahigashi defined the relative Connes invariant $\chi(M, N)$ for a subfactor of
type $\mathrm{I}\mathrm{I}_{1}N\subset M$ as an analogue of Connes’ $\chi$ group [4]. Based on this, Go.t $0$ defined the
algebraic $\chi$ group for subfactors in [11] as follows.

Definition 2.6 Set
$\chi_{a}(M, N):=\frac{\mathrm{K}\mathrm{e}\mathrm{r}\Phi\cap \mathrm{c}_{\mathrm{n}\mathrm{t}(M,N)}r}{\mathrm{A}\mathrm{d}N(M,N)}$ ,

where $N(M, N)$ is the normalizer group. We call this group an algebraic $\chi$ group for
$N\subset M$ .

In [11, Theorem 2.1], Goto proved that $\chi_{a}(M, N)$ is an abelian group.
When $N\subset M$ is strongly amenable and has the trivial normalizer, $\chi(M, N)=$

$\chi_{a}(M, N)$ holds because of Theorem 2.3 and Theorem 2.5.

3 $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{s}-\mathrm{R}\mathrm{a}\mathrm{d}\mathrm{o}\mathrm{n}-\mathrm{N}\mathrm{i}\mathrm{k}\mathrm{o}\mathrm{d}\mathrm{y}\mathrm{m}$ type cocycle theorem
Throughout the rest of this article, we always assume that $N\subset M$ has the trivial

$\mathrm{n}\mathrm{o}\mathrm{r}-\triangleleft$

malizer.

Theorem 3.1 For every $\sigma\in \mathrm{C}\mathrm{n}\mathrm{t}_{r}(M, N)$ and $\alpha\in \mathrm{K}\mathrm{e}\mathrm{I}:\Phi_{f}$ there exists a unitary $u_{\alpha,\sigma}\in$

$U(N)$ such that
(1) Ad $u_{\alpha,\sigma}\sigma=\alpha\sigma\alpha^{-1}$ ,
(2) $u_{\alpha,\sigma_{1}\sigma_{2}}=u_{\alpha,\sigma_{1}}\sigma_{1}(u_{\alpha,\sigma}),2$

(3) $u_{\alpha\beta,\sigma}=\alpha(u_{\beta,\sigma})u\alpha,\sigma \mathrm{z}$

(4) $u_{\alpha,\mathrm{A}\mathrm{d}v}=\alpha(v)v^{*}ru_{\mathrm{A}\mathrm{d}v,\sigma}=u\sigma(u^{*}),$ $v\in U(N)_{f}$

(5) Take nonzero $a^{-}\in M_{k}$ satisfying $\sigma(x)a=ax$ . Then a unitary $u_{\alpha,\sigma}$ satisfies $\alpha(a)=$

$u_{\alpha,\sigma}a$ .

We only explain how to construct $u_{\alpha,\sigma}$ . Since $\sigma$ is non-strongly outer, there exist $k>0$ and
$0\neq a\in M_{k}$ such that $\sigma(x)a=ax$ holds for every $x\in M$ . This implies $MM_{kM}\succ M\sigma^{-1}M_{M}$ .
Fix an intertwiner $T\in \mathrm{H}\mathrm{o}\mathrm{m}(_{M}M_{kMM\sigma},-1M_{M})$ with $TT^{*}=1$ . Let $U_{\alpha}$ be the canonical
implementing unitary of $a$ on $L^{2}(M_{k})$ . Set $u_{\alpha,\sigma}:=\sigma(TU_{\alpha}\tau*\hat{1})$ . By using $a\in \mathrm{K}\mathrm{e}\mathrm{r}\Phi$ ,
we can prove that this $u_{\alpha,\sigma}$ does not depend on the choice of $k>0$ or an intertwiner $T$ .
Hence $u_{\alpha,\sigma}$ is well-defined and satisfies the properties in the above proposition.
Remark. When $\alpha$ itself is non-strongly outer and has the trivial Loi invariant, $u_{\alpha,\alpha}$ is
equal to the higher obstruction $\gamma_{h}(a)$ . So in general, $u_{\alpha,\alpha}$ fails to be 1. Examples of such
automorphisms are non-strongly outer automorphisms of subfactors with Dynkin diagram
$A_{4n-1}$ . See [18], [33] and [9].

We compare the above theorem and $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{S}^{-}\mathrm{R}\mathrm{a}\mathrm{d}\mathrm{o}\mathrm{n}-\mathrm{N}\mathrm{i}\mathrm{k}\mathrm{o}\mathrm{d}\mathrm{y}\mathrm{m}$ cocycle theorem. Let $M$

be a type III factor, $\mathcal{F}(M)$ the flow of weights of $M$ and $\phi$ a dominant weight of M. (See
[6] for these notations.) For each $c\in Z^{1}(\mathcal{F}(M))$ , we can associate an extended modular
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automorphism $\sigma_{\mathrm{c}}^{\phi}\in$ Aut $(M)$ . Take $a\in M$ . Then we have $a\sigma_{C}^{\phi}\alpha^{-}1=\sigma_{\mathrm{m}\mathrm{o}\mathrm{d} (\alpha)}(c)=$

$\phi 0\alpha^{-1}$

Ad $[D\phi_{0}\alpha^{-}1 : D\phi]_{c}\sigma_{\mathrm{m}\mathrm{o}}^{\phi}\mathrm{d}(\alpha)(c\rangle$ . Especially if $\mathrm{m}\mathrm{o}\mathrm{d} (\alpha)$ is trivial, then $\alpha$ and $\sigma_{c}^{\phi}$ commute in
Aut $(M)/\mathrm{I}\mathrm{n}\mathrm{t}(M)$ . Hence we have the correspondence as in Table 1.

Table 1:

Here we take $\alpha,$
$\beta\in \mathrm{K}\mathrm{e}\mathrm{r}\Phi\cap \mathrm{C}\mathrm{n}\mathrm{t}_{r}(M, N)$ and assume that $\alpha$ and $\beta$ commute. In this

case $u_{\alpha,\beta}$ is a scalar. We set $\kappa_{a}(\alpha, \beta):=u_{\beta,\alpha}^{*}$ and call this scalar the algebraic $\kappa$ invariant,
or the $\kappa$ invariant simply. The origin of this notation is Jones’ $\kappa$ invariant in [13] and when
$N\subset M$ is strongly amenable, it can be proved that this coincides with the relative Jones
$\kappa$ invariant defined in [19, Section 2] in the same way as in the proof of [20, Theorem 4.1].

Here we make following assumptions.
(A1) $\chi_{a}(M, N)$ is a finite group.
(A2) There exists a lifting from $\chi_{a}(M, N)$ to Aut $(M, N)$ . We fix one of the lifting $\sigma$ .
This $\sigma$ can be regarded as an action of $\chi_{a}(M, N)$ .
(A3) $\mathrm{K}\mathrm{e}\mathrm{r}\Phi=\mathrm{A}\mathrm{u}\mathrm{t}(M, N)$ .

Set $K:=\chi_{a}(M, N)$ . By using Theorem 3.1, we can extend $\alpha\in \mathrm{K}\mathrm{e}\mathrm{r}\Phi$ onto the crossed
product subfactor $N\lambda_{\sigma}K\subset M\rangle\triangleleft_{\sigma}K$ in the same way as [12].

Proposition 3.2 Let $w_{g}$ be an implementing unitary in $N\rangle\triangleleft_{\sigma}K\subset M\rangle\triangleleft_{\sigma}$ K. For each
$\alpha\in \mathrm{K}\mathrm{e}\mathrm{r}\Phi_{f}$ there exists a unique automorphism $\tilde{\alpha}\in$ Aut ( $M\rangle\triangleleft_{\sigma}K,$ $N\rangle\triangleleft_{\sigma}$ If) satisfying
$\tilde{\alpha}(x)=\alpha(x)$ for $x\in M$ and $\tilde{\alpha}(w_{g})=u_{\alpha},w_{g}\sigma_{g}$ .

Moreover we have the following.
(1) For $\alpha,$

$\beta\in \mathrm{K}\mathrm{e}\mathrm{r}\Phi,\tilde{\alpha}\tilde{\beta}=\overline{\alpha\beta}$ and $\tilde{\alpha}^{-1}=\overline{\alpha^{-1}}$ hold.
(2) For $a=\mathrm{A}\mathrm{d}u,$ $u\in U(N))\tilde{\alpha}=\mathrm{A}\mathrm{d}u$ holds.
(3) The extension $\tilde{a}$ commutes with the dual action of $\hat{I}4^{r}$ .
(4) If $\kappa(\sigma, \sigma)gh=1$ hold for every $h\in G$ , then $\sigma_{g}\sim$ is an inner automorphism and $\sigma_{g}\sim=$

Ad $w_{\mathit{9}}$ holds.

4 Cocycle conjugacy invariants
Let $G$ be a discrete group and $\alpha$ be an action of $G$ with trivial Loi invariant. We consider
the cocycle conjugacy invariants for $a$ .

Set $H:=\{n\in G|\alpha_{n}\in \mathrm{C}\mathrm{n}\mathrm{t}_{r}(M, N)\}$ . Obviously $H$ is a normal subgroup of $G$

and a cocycle conjugacy invariant. Define a homomorphism $\nu$ from $H$ to $\chi_{a}(M, N)$ by
$\nu(n)=[\alpha_{n}]\in\chi_{a}(M, N)$ . Since we assume that $\alpha$ has the trivial Loi invariant, this $\nu$

is well defined. This $\nu$ satisfies $\nu(gng^{-}1)=\nu(n)$ for every $g\in G$ and $n\in H$ . In [20],
Kawahigashi introduced an algebraic $\nu$ invariant $\nu_{alg}$ and an analytic $\nu$ invariant $\nu_{ana}$ as
an analogue of Sutherland-Takesaki’s modular invariant in [30, Definition 5.8]. Obviously

our $\nu$ is a generalization of an algebraic $\nu$ invariant $\nu_{alg}$ . .
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Hence for $n\in H$ we have $\alpha_{n}=\mathrm{A}\mathrm{d}v_{n}\sigma_{\nu(}n$) for some unitary $v_{n}\in U(N)$ .
From equations $\alpha_{m}a_{n}=\alpha_{mn}$ and $\alpha_{g}a_{g}-1\alpha^{-1}ngg=\alpha_{n},$ $m,$ $n\in H$ and $g\in G$ , we get

scalars $\lambda(g, n)$ and $\mu(m, n)$ by the following equations in a si.milar way as in the single
factor case.

$v_{m}\sigma_{\nu(m\rangle}(v_{n})=\mu(m, n)v_{mn}$ ,
$\alpha_{g}(v_{g}-1ng)u_{\alpha,\sigma_{\nu(}}gn)=\lambda(g, n)v_{n}$ .

Proposition 4.1 For $h,$ $k,$ $l\in H$ and $g,g_{1},g_{2}\in G_{f}$ we have the following equalities.
(1) $\mu(h, k)\mu(hk, l)=\mu(k, l)\mu(h, kl)$ ,
(2) $\lambda(g_{1}g2, n)=\lambda(g1, n)\lambda(g2,g^{-1}1gn2))$

(3) $\lambda(h, k)=\mu(h, h^{-1}kh)\overline{\mu(k,h)\kappa a(\mathcal{U}(k),\nu(h))}$,
(4) $\lambda(g, hk)\overline{\lambda(g,h)\lambda(g,k)}=\mu(h, k)\overline{\mu(g^{-1}hg,g^{-}k1g)}$,
(5) $\lambda(g, 1)=\lambda(1, h)=\mu(h, 1)=\mu(1, h)=1$ .

By $Z(G, H|\kappa_{a})$ , we denote the set of $(\lambda, \mu)$ satisfying the above $\mathrm{c}o$nditions. The
above definition of $\lambda$ and $\mu$ are depend on the choice of unitaries $v_{n}$ . To get rid of this
dependence, we define the equivalence relation in $Z(G, H|\kappa_{a})$ as follows. Two elements
$(\lambda_{1},\mu_{1})$ and $(\lambda_{2},\mu_{2})$ are equivalent if and only if there exists a map $c$ from $H$ to $\mathrm{T}$ with
$c_{e}=1$ such that $\lambda_{1}(g, n)=\overline{c_{g^{-1}ng2}}\lambda(g, n)c_{n}$ and $\mu_{1}(m, n)=\overline{c_{m}c_{n}}\mu_{2}(m, n)Cmn$ hold. We
set $\Lambda(G, H|\kappa_{a})=Z(G, H|\kappa_{a})/\sim,$ $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\sim \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{S}$ the above equivalence relation. If the
$\kappa$-invariant is trivial, then this is a usual characteristic invariant $\Lambda(G, N)$ .

For a given action $a$ of $G$ , we get $[\lambda,\mu]\in\Lambda(G, H|\kappa_{a})$ and $\nu\in \mathrm{H}\mathrm{o}\mathrm{m}_{G}(H,\chi_{a}(M, N))$ .
When we have to specify an action $a$ , we also use notations $H_{\alpha},$ $\Lambda(\alpha)=[\lambda_{\alpha}, \mu_{\alpha}]$ and $\nu_{\alpha}$ .

We have the following proposition.

Proposition 4.2 The triplet $(H_{\alpha},\Lambda(\alpha),\nu\alpha)$ is a cocycle conjugacy invariant.

5 Classification results
Here we can state the main theorem in this article. We always assume (A1), (A2) and
(A3) in Section 3.

Theorem 5.1 Let $N\subset M$ be as above and $G$ a discrete amenable group. Let $\alpha$ and $\beta$

be approximately inner actions of $G$ , whose range of $\nu$ are cyclic groups. Then $a$ and
$\beta$ are cocycle conjugate if and only if $(H_{\alpha}, \Lambda(a),$ $\nu\alpha)=(H_{\beta}.\Lambda(\beta), \theta(\nu_{\beta}))$ hold for some
$\theta\in$ Aut $N\subset M(x(M, N))$ .

Examples of subfactors satisfying the assumptions of the above theorem are $SU(n)_{k}$

subfactors, where $n$ is a odd number, or $n$ is even number and $2n$ divides k.sec See [7],
[33] and [10].

To prove Theorem 5.1, we use the following theorem.

Theorem 5.2 Let $Q\subset P$ be a strongly amenable subfactor of type $II_{1;}G$ a discrete
amenable group. (Here we never assume $\mathrm{K}\mathrm{e}\mathrm{r}\Phi=\mathrm{A}\mathrm{u}\mathrm{t}(P,$ $Q).$ ) Let $\alpha$ and $\beta$ be actions of
$G$ on $Q\subset P$ such that $H:=\alpha^{-1}(\mathrm{I}\mathrm{n}\mathrm{t}(P, Q))=\alpha^{-1}(\mathrm{C}\mathrm{n}\mathrm{t}(P, Q))=\beta^{-1}(\mathrm{I}\mathrm{n}\mathrm{t}(P, Q))=$

$\beta^{-1}$ (Cnt $(P,$ $Q)$ ). Then $\alpha$ and $\beta$ are cocycle conjugate if and only if $(\Phi(\alpha),\Lambda(\alpha))=$

$(\Phi(\beta),\Lambda(\beta))$ holds.
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Outline of proof of Theorem 5.1. Set $Q\subset P:=N\rangle\triangleleft_{\sigma}K\subset M\rangle\triangleleft_{\sigma}$ K. By [32,
Theorem 6.1], $Q\subset P$ is strongly amenable. By Proposition 3.2, we have an action of
$G\cross\hat{K}$ by $(g,p)rightarrow\tilde{\alpha}_{g}\hat{\sigma}_{p}$ , which we denote $\tilde{\alpha}_{g,p}$ for simplicity. We also get an action $\tilde{\beta}$

of $G\cross I^{\wedge}\{\mathrm{i}$ on $Q\subset P$ . Here by assumpti$o\mathrm{n}\mathrm{s}\Lambda(\alpha)=\Lambda(\beta)$ and $\nu_{\alpha}=\nu_{\beta}$ , we can show
$\Phi(\tilde{\alpha})=\Phi(\tilde{\beta}),$ $H_{\alpha}=\tilde{\alpha}^{-1}(\mathrm{I}\mathrm{n}\mathrm{t}(P, Q))=\tilde{\beta}^{-1}(\mathrm{I}\mathrm{n}\mathrm{t}(P, Q))=\tilde{\alpha}^{-1}$ (Cnt $(P,$ $Q)$ ) $=\tilde{\beta}^{-1}\mathrm{c}_{\mathrm{n}\mathrm{t}}(P, Q)$

and $\Lambda(\tilde{\alpha})=\Lambda(\tilde{\beta})$ . (Here we use (4) in Proposition 3.2 and the triviality of algebraic $\kappa$

invariant to determine inner part of $\tilde{\alpha}$ and $\tilde{\beta}.$ )
By Theorem 5.2, $\tilde{\alpha}$ and $\tilde{\beta}$ are cocycle conjugate. Then we take the partial crossed

product $Q\rangle\triangleleft_{\hat{\sigma}}\hat{I}\mathrm{f}\subset P\rangle\triangleleft_{\hat{\sigma}}\hat{K}$, extend the actions $\tilde{\alpha}$ and $\tilde{\beta}$ of $G$ canonically and we denote

them $\alpha\approx$ and $\beta \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{y}\approx$ . Then by [30, Proposition 1.1], $\alpha\approx$ and $\beta \mathrm{a}\mathrm{r}\mathrm{e}\approx$ cocycle conjugate.
With Takesaki’s duality theorem, we can conclude $\alpha$ and $\beta$ are $\mathrm{c}o$cycle conjugate. $\square$

To prove Theorem 5.2, we need some preparations. The following lemma can be
verified in the same way as in the proof of [26, Lemma 2.3].

Lemma 5.3 Let $N\subset M_{f}G$ and $\alpha$ be as in Theorem 5.2. Assume $\Lambda(a)$ is trivial. Then
we can choose a-cocycle $w_{g}$ such that Ad $w_{h}\alpha_{h}=id$ for $h\in H$ .

Lemma 5.4 Let $N\subset M_{f}G,$ $\alpha$ and $\beta$ be as in Theorem 5.2 and assume that the charac-
teristic invariants of $a$ and $\beta$ are trivial. Then $\alpha$ and $\beta$ are cocycle conjugate.

Proof. By the previ$o\mathrm{u}\mathrm{s}$ lemma, we can choose an $a$-cocycle $w_{g}^{1}$ and a $\beta$-cocycle $w_{g}^{2}$ such
that Ad $w_{h}^{1}\alpha_{h}=\mathrm{A}\mathrm{d}w_{h}^{2}\beta_{h}=id$ for $h\in H$ . So we can regard these action as the centrally
free actions of $G/H$ . Since they have the same Loi invariant, these two actions are
cocycle conjugate by [28, Theorem 3.1]. Since this means that they are cocycle

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}\square$

as actions of $G$ , original actions $\alpha$ and $\beta$ are cocycle conjugate.
The $\mathrm{f}\mathrm{o}\mathrm{l}1_{0}\mathrm{w}_{-}\mathrm{i}\mathrm{n}\mathrm{g}$ lemma is the subfactor analogue of [26].

Lemma 5.5 Let $N\subset M_{f}G$ and $\alpha$ be as in Theorem 5.2. Then $\alpha$ is cocycle conjugate to
the action $\alpha\otimes\sigma^{(0)}$ , where $\sigma^{(0)}$ is the model action of $G/H$ on the $AFD$ type $II_{1}$ factor $R_{0}$

constructed by Ocneanu in [26], and we regard $\sigma^{(0)}$ as the action of $G$ in the natural way.

Proof of Theorem 5.2. Let $\sigma$ be an action of $G$ on $R_{0}$ whose characteristic invariant
is an inverse of $\Lambda(\alpha)$ and $\overline{\sigma}$ an action of $G$ on $R_{0}$ with the characteristic invariant $\Lambda(\alpha)$ .
Then the characteristic invariants of $\alpha\otimes\sigma$ and $\beta\otimes\sigma$ are trivial, so they are cocycle
conjugate by Lemma 5.4. Then we have

$\alpha$ $\sim$
$\alpha\otimes\sigma^{(0)}\sim\alpha\otimes\sigma\otimes\overline{\sigma}$

$\sim$
$\beta\otimes\sigma\otimes\overline{\sigma}\sim\beta\otimes\sigma(0)$

$\sim$ $\beta$ .

Hence $a$ and $\beta$ are cocycle conjugate. $\square$
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