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Abstract

This paper addresses a problem of how to determine the optimal auto sleep time
when the computer user should turn the hard disk or the display to a sleep mode in
order to save the electrical power after the computer has not been accessed. We pro-
pose a stochastic model to obtain the optimal sleep timing strategy which maximizes
the power effectiveness, where access requirements arrive at the system according to
a renewal process and are processed by a general service time. Then the phase-type
approximations are proposed to represent the power effectiveness. We investigate the
approximation performance for the proposed methods through a simulation study.

1 Introduction

Recently, the automatic sleep function of the hard disk or the display in a computer system
is rapidly recognized to be important in terms of power management. In fact, the auto
sleep function is equipped in almost computer systems as a standard function. Then, the
optimal design for the auto sleep function is the most important problem, in particular, for
notebook computers with limited capacity of battery. For example, on the hard disk of a
computer, the electrical power consumed to warm up from sleep mode is larger than that
consumed in the normal operation. Thus, it is not always effective to design the system
such that moves its state to the sleep mode whenever there is no access requirement.

First, the optimal design problem for the auto sleep function was considered by Sandoh,
Hirakoshi and Kawai [1]. Dohi, Kaio and Osaki [2] proposed a statistical nonparametric
method to estimate the optimal sleep timing for the same problem. However, it is noted
that the seminal works above simplified the underlying problem extremely and was in-
complete for representation of stochastic behavior of the auto sleep system. More valid
formulations were made by Okamura, Dohi and Osaki $[3, 4]$ . They considered two kinds
of models (Type I model and Type II model) with and without cancellation of access
requirements arrived at the system, respectively. More specifically, Type I model with
cancellation assumes that other access requirements arrived at the system when one job
has been processed are canceled, and focuses on the multi-use circumstance for a desktop
computer unit. On the other hand, Type II model corresponds to a buffer system in which
the other access requirements are accumulated while one job has been processed, and deals
with the multi-job system such as network printers. They proved that the optimal sleep
timing strategies for both models are the switching strategies, $i.e.$ , turn always the system
to a sleep mode after the process for a job is completed, or not do at all, if the access
requirements arrive according to the homogeneous Poisson process.

However, if the access requirements arrive following more general stochastic processes
such as the renewal process, it is difficult to obtain the power effectiveness explicitly.
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Okamura, Dohi and Osaki $[3, 4]$ applied the simple parametric approximation methods by
Miyazawa [5] and the usual diffusion approximation to represent the power effectiveness,
but could not obtain the satisfactory approximation performance. The main reason for this
problem is that the arrival process may belong to a more wide class of stochastic processes.
In this paper, we apply the phase-type approximations to represent the power effectiveness
and derive the approximated optimal auto sleep time for Type II model. Altiok [6] and
Heijden [7] showed that the phase-type approximations are useful to represent the general
probability distributions. Asmussen and Koole [11] have also proved that the phase-type
renewal process is weakly dense in the class of stationary simple point processes.

The paper is planed as follows. Section 2 describes the auto sleep model under con-
sideration and gives an implicit form of the power effectiveness under the assumption
that access requirements arrive at the system following the renewal process. Section 3
concerns the approximation problem for the power effectiveness. Then the phase-type
approximation is introduced to represent the access requirements process. Furthermore,
two estimation methods for the phase-type approximation are proposed. Section 4 is de-
voted to investigate the approximation performance for the proposed methods through a
simulation study. Finally, the paper is concluded with some remarks.

2 Model Description

2.1 Notation and assumptions

Suppose that the access requirements arrive at the system according to an ordinary renewal
process $\{N(t);t>0\}$ . Denote a sequence of inter-arrival times between $(k-1)$-th and
k-th arrivals by $\{X_{k;}k=1,2, \cdots\}$ . Then, $X_{k}$ are the non-negative i.i.d. random variables,
having the probability distribution $F(t)$ with mean $1/\lambda(>0)$ and variance $\sigma_{a}(>0)$ . The
tasks required by the k-th access are processed with the times $S_{k}$ , which are the non-
negative i.i.d. random variables having the probability distribution $H(t)$ with finite mean
$1/\mu(>0)$ and variance $\sigma_{s}(>0)$ . It is assumed that the system under consideration can
take the following states;

Busy: The system processes some tasks required by accesses, where the set-up time $\tau$ is
needed before processing each task. After the present task is completed, the state of
system moves to the idle state. During the busy state, the electrical power consumed
per unit time is $P_{1}(>0)$ .

Idle: No access requirement occurs, after one task is completed. If a new access require-
ment occurs until the total spent time in the idle period becomes $t_{0}$ , the system
begins to process it after elapsing $\tau$ time units. Otherwise, the state of system
moves to the sleep state at the moment when the total spent time in the idle period
becomes $t_{0}$ . Throughout this paper, we call $t_{0}$ the auto sleep time. The electrical
power consumed per unit time during the idle period is also $P_{1}(>0)$ .

Sleep: The sleep state is the lower-power state, so that the electrical power consumed per
unit time is less than that in the other states. To $\mathrm{s}\mathrm{i}\mathrm{m}_{\mathrm{P}^{\mathrm{l}\mathrm{i}}\mathrm{w}}$ the discussion, we assume
that the electrical power consumed per unit time in the sleep state is zero. When
an access requirement occurs, the sleep mode terminates immediately and the state
of system moves to the warm-up state.

Warm-up: In order to begin processing a task from the sleep mode, $s(>0)$ time units
are needed for warming-up. Hence, after $s+\tau$ time units are elapsed, the process
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Figure 1: Possible realization of the stochastic system.

for the task is started. In the warm-up state, the electrical power $P_{2}$ is consumed
per unit time, where $P_{2}>P_{1}$ .

In this paper, it is assumed that the other access requirements arrived while the system
is in the busy are accumulated in an infinite.buffer. Hence, the state of system moves to
an idle after all tasks accumulated in the buffer are completed. Figure 1 is depicted a
possible realization of the system. Since access requirements are processed according to
FIFO (first-in-first-out) discipline, the number of access requirements in the buffer forms
a $GI/G/1/FIFO$ queueing process.

2.2 Formulation of the power effectiveness

Let us formulate the power effectiveness criterion. The power effectiveness means the
time measure when the system is operative by unit electrical power, so that the mean
operative time per unit electrical power. In this model, the system starts processing after
a delayed time period $s+\tau$ or $\tau$ . Such a delayed time period is called the vacation, which
pays a significant role in the application of queueing system. In the queueing system with
vacation, the periods when the buffer is empty, when the server processes tasks and when
the system is in the vacation are Called idle, busy and dormant periods, respectively. It is
$\mathrm{w}\mathrm{e}\dot{\mathrm{l}}1$ known that the following relation holds among the idle, busy and dormant periods;

$\mathrm{E}$ [$\mathrm{b}\mathrm{u}\mathrm{s}\mathrm{y}$ period] $=$ $\rho\{\mathrm{E}[\mathrm{d}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{n}}\mathrm{t}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}]+\mathrm{E}[\mathrm{b}\mathrm{u}\mathrm{s}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}]+\mathrm{E}$ [$\mathrm{i}\mathrm{d}\mathrm{l}\mathrm{e}$ period]}, (1)

where $\rho$ is the traffic intensity and is defined by $\rho=\lambda/\mu$ .
Now define the following random variables;

$\eta_{t}$ : time length when the system is in the idle state, having the distribution function
$I(x|t)=\mathrm{P}\mathrm{r}\{\eta_{t}\leq x\}$ and the survivor function $\overline{I}(x|t)=1-I(x|t)$ ,

$\zeta_{t}$ : time length when the system is in the busy state,

where both subscripts $t$ of the random variables above indicate the delayed time periods,
so that $t=s+\tau$ or $t=\tau$ . Then we have, from Eq. (1),

$\frac{\mathrm{E}[\zeta_{t}]}{t+\mathrm{E}[\zeta_{t}]+\mathrm{E}[\eta_{t}]}=\rho$ , $(t=\tau, s+\tau)$ . (2)
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We define the time period from the beginning of warm-up state to the next beginning of
that as one cycle. The mean operating time during one cycle is

$A(t_{0})= \frac{1}{1-\rho}\{\tau+\mathrm{E}[\eta_{s+\tau}]+\mathrm{E}[N](\mathcal{T}+\mathrm{E}[\eta_{\mathcal{T}}])\}$ , (3)

where
$\mathrm{E}[N]=\frac{\mathrm{P}\mathrm{r}\{\eta_{s+\mathcal{T}}\leq t_{0}\}}{\mathrm{P}\mathrm{r}\{\eta_{\mathcal{T}}>t_{0}\}}=\frac{I(t_{0}|s+\mathcal{T})}{\overline{I}(t_{0}|_{\mathcal{T}})}$. (4)

Also, the expected power consumed for one cycle is

$C(t_{0})$ $=$ $\{\frac{\rho}{1-\rho}P_{1}+P_{2\}\frac{P_{1^{\mathcal{T}}}}{1-\rho}+}s+P_{1}\{\frac{\rho}{1-\rho}\mathrm{E}[\eta s+\tau]+\mathrm{E}[\eta_{\mathit{8}+}\tau\wedge t_{0}]\}$

$+ \mathrm{E}[N]\{\frac{P_{1^{\mathcal{T}}}}{1-\rho}+P_{1}$ ( $\frac{\rho}{1-\rho}\mathrm{E}[\eta_{\mathcal{T}}]+\mathrm{E}$ [$\eta_{\tau}$ A $t_{0}$]) $\}$ , (5)

where $\mathrm{E}$ [$\eta_{t}$ A $t_{0}$ ] $= \mathrm{E}[\min(\eta_{t,0}t)]=\int_{0}^{t0_{ud}}I(u|t)+t_{0}\overline{I}(t0|t)$ . Fkom the renewal reward
theorem, the power effectiveness is given by

$W(t_{0})$ $=$ $\lim_{tarrow\infty}\frac{\mathrm{E}[\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}_{\mathrm{P}^{\mathrm{e}\mathrm{r}}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{n}(\mathrm{o},t]]}{\mathrm{E}[\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{t}_{\mathrm{o}\mathrm{t}}\mathrm{a}1\mathrm{p}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{n}(\mathrm{o},t]]}$

$=$ $A(t_{0})/C(t_{0})$ . (6)

The problem is to find the optimal auto sleep time $t_{0}^{*}$ which maximizes the power effec-
tiveness $W(t_{0})$ , that is, $\mathrm{m}\mathrm{a}\mathrm{x}0\leq t0<\infty W(t_{0})$.

3 The phase-type approximation

In general arrival cases, it is difficult to obtain an explicit forms of $I(t|x)$ and the power
effectiveness $W(t_{0})$ . Hence any approximation method has to be developed to generate the
auto sleep time in the computer operation phase. Rom these motivations, we introduce
the phase-type approximation method.

3.1 Formulation of the power effectiveness based on the phase-type ap-
proximation

Consider a Markov process on the state space $\{1, 2, \cdots, m+1\}$ , where $\{1, 2, \cdots, m\}$ denote
the transient states and $\{m+1\}$ means the absorbing one. The initial probability vector
for the Markov process is given by $(\alpha, 0)$ . Until the absorption in the state $m+1$ , the
process behaves similar to the Markov process with an infinitesimal generator $T$ , where $T$

is a matrix with components $\lambda_{ij}(>0),$ $1\leq i,$ $j\leq m,$ $j\neq^{\backslash }i\mathrm{a}\mathrm{n}\mathrm{d}-\lambda_{ii}(<0)$ . In our model,
the absorption implies the occurrence of events, such as the arrival of access requirements,
etc. After the absorption, the process is restarted $\mathrm{w}\mathrm{i}\mathrm{t}\check{\mathrm{h}}$ initial state. Then, the inter-arrival
time distribution is assumed to obey the following phase-type distribution with parameter
$(\alpha,T)$ ;

$F_{PH}(t)=1-\alpha\exp(Tt)e$ , (7)
$\mathrm{w}\dot{\mathrm{h}}\mathrm{e}\mathrm{r}\mathrm{e}e$ is a column vector of $1\mathrm{s}$ .

Denote $N_{t}$ and $J_{t}$ be the number of arrivals in $(0, t]$ and the internal state of arrival at
time $t$ , respectively, where the internal states can be interpreted as the states of various
factors which cause the arrival of access requirements. We define the transition probability

$P_{ij}(n, t)=\mathrm{P}\mathrm{r}\{N_{t}=n, J_{t}=j|N_{0}=0, J_{0}=i\}$ (8)
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and the matrix $P(n, t)$ with components $P_{ij}(n, t)$ . The matrix generating function $P^{*}(z,t)$

is obtained as follows.

$P^{*}(z,t)= \sum_{n=0}P(n, t)z^{n}=\exp\{(T+Z\tau^{\mathrm{o}}\alpha)t\infty\}$ , (9)

where $T^{0}=-Te$ is the column vector. We can find that both the number of access
requirements $N_{t}$ and the internal state process $J_{t}$ construct an embedded Markov chain
at the points of the completion of a process. Let $A_{n}$ and $B_{n}$ be the $m\cross m$ matrices
with components $[A_{n}]_{ij}$ and $[B_{n}]_{ij}$ , respectively, for $n\geq 0$ . The component $[A_{n}]_{ij}$ is the
probability that the internal state moves from $i$ to $j$ and that $n$ access requirements during
a process do not occur. Thus, it is easy to obtain

$A_{n}$ $=$ $\int_{0}^{\infty}P(n,t)dH(t)$ . (10)

The component $[B_{n}]_{ij}$ is also the probability of a transition from the internal state $i$ to $j$

and that $n$ access requirements in the buffer are remained. Hence, the matrix $B_{n}$ is

$B_{n}$ $=$ $\int_{0}^{\infty}e\alpha\sum_{0k=}^{n}P(k,x)P(n-k, t)dH(t)$ , (11)

where $x$ is the server vacation period.
Denote 9 be the probability vector with components $g_{i},$ $1\leq i\leq m$ , where $g_{\grave{i}}$ is the

probability that the internal state is in $i$ at the beginning of the idle period. Then, the
probability distribution of the idle period can be reduced to the phase-type distribution
with parameter $(g, T)$ . Therefore, we concentrate our attention to find the-probability
vector $g$ . Consider the first-passage time when the number of access requirements in-
dependent of the internal state becomes $i$ from $i+1$ , where such a time is called the
fundamental period. Define the $m\cross m$ matrix $G$ as the transition probability matrix with
components $[G]_{ij}$ , which is the probability that the internal state moves from $i$ to $j$ during
the fundamental period. We also define the $m\cross m$ matrix $K$ as the transition probability
matrix for the first-passage time when the number of access requirements becomes $0$ from
$0$ again. Note that the matrix $K$ is constructed with the probability that the internal
state moves from $i$ to $j$ during the fundamental period. By the above definitions, we can
see that the following equations hold (see Lucantoni, Meier-Hellstern and Neuts [8]).

$G= \sum_{n=0}^{\infty}A_{n}Gn$ , $K= \sum_{n=0}^{\infty}B_{n}cn$ and $gK=g$ . (12)

The algorithm for computation of the matrix $G$ was proposed by Lucantoni and Ra-
maswami [10]. Equations (9), (11) and $(1\dot{2})$ yield

$g= \frac{\alpha\exp\{(T+\tau^{0}\alpha G)x\}G}{\alpha\exp\{(T+\tau^{0}\alpha G)x\}c_{e}}$ . (13)

In the sequel, the probability distribution of the idle period can be approximated by

$I(t|x)\approx 1-g\exp(\tau t)e$ , (14)

which results an approximation form of the power effectiveness.
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3.2 Statistical estimation procedure

Since the phase-type renewal process is composed of two stochastic processes which are
observable and unobservable, usual statistical estimation methods, such as the method
of maximum likelihood, cannot be used for model parameters. Thus, we introduce the
following two estimation methods for the arrival process.

(1) The moment matching
Heijden [7] proposed the following moment matching conditions. If there are $n$ unknown-

parameters, they are determined by fitting the first $n$ moments to the sample moments
estimated from real data. If the inter-arrival time distribution of the phase-type renewal
process obeys the following Coxian-2 distribution;

$T=$ and $\alpha=(1-a, a)$ , (15)

then the estimators for the parameters are given by

$a= \frac{\lambda_{2}}{\lambda_{1}}(m_{1}\lambda-1)$ , (16)

(17)

and
$\lambda_{2}=\frac{2(m_{1}\lambda_{1}-1)}{m_{2}\lambda_{1}-2m_{1}}$ , (18)

where $m_{1},$ $m_{2}$ and $m_{3}$ are the first three moments of inter-arrival time.

(2) The $\mathrm{E}\mathrm{M}$-algorithm for phase-type distribution
The EM (expectation-maximization) algorithm is an iterative method for maximum

likelihood estimation $[12, 13]$ . It is a useful methods to parameterize statistical models
including the incomplete data. Suppose that $Y=u(X)$ is observed and that $X$ is un-
observed, where $\mathrm{Y}$ and $X$ have the probability density functions $g_{\gamma}$ and $f_{\gamma}$ , respectively.
Then $(n+1)$-th step in the EM algorithm is to find the value $\gamma_{n+1}$ which maximizes

$\gammaarrow \mathrm{E}[\log f_{\gamma}(X)|u(X)=y;\gamma n]$ , (19)

where $y$ is the observed data and $\gamma_{n}$ is the current estimate after $n$ steps of the algorithm
(see $e.g$. $[14]$ for detail). In particular, when the inter-arrival time distribution has the
phase-type distribution, the $\mathrm{E}\mathrm{M}$-algorithm is given by as follows:

Let $(y_{1}, y_{2}, \ldots, yn)\mathrm{b}.\sigma$ the observed sample data. Then $(k+1)$-th iteration of the
algorithm becomes

$\mathrm{B}\frac{-}{}\mathrm{s}_{\mathrm{t}}\mathrm{e}\mathrm{p}$ : Calculate

$\pi_{i}^{(k+1)}$ $=$ $\sum_{l=1}^{n}\mathrm{E}[\pi_{i}|(k)k)\hat{T}(k)]y_{l};\hat{\alpha}^{(}$, for $i=1,$ $\ldots,$
$m$ , (20)

$\xi_{i}^{(k+1)}$ $=$ $\sum_{l=1}^{n}\mathrm{E}$ [$\xi i|(k)yl$ ; a $(k),\hat{T}(k)$ ] for $i=1,$ $\ldots,$
$m$ , (21)

$\Lambda_{ij}^{(k+1)}$ $=$ $\sum_{l=1}^{n}\mathrm{E}[\Lambda(k)|y_{l;\hat{\alpha}^{(}},\hat{\tau}^{(k})k)]ij$ for $i\neq j,$ $i=1,$ $\ldots,$ $m$ and $j=1,$ $\ldots,m$ (22)
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$\mathrm{M}$-Step: The new estimators are given by

$\hat{\alpha}_{i}^{(k+1)}=\frac{\pi_{i}^{(k+1)}}{n}$ , $\hat{t}_{ij}^{(k+1}=\frac{\Lambda_{ij}^{(k+1)}}{\xi_{i}^{(k+1})})$, $\hat{t}_{ii}^{\langle k+)}=-1(\frac{\Lambda_{i0}^{(k}+1)}{\xi_{i}^{(k+1)}}+\sum_{1j=1,j\neq}^{m}\hat{t}ij\mathrm{I}(k+1),$ (23)

where $\hat{\alpha}_{i}$ and $\hat{t}_{ij}$ are the elements of $\hat{\alpha}$ and $\hat{T}$ , respectively. In the above expressions, $\pi_{i}$

is the number of Markov processes starting in state $i,$ $\xi_{i}$ is the total time spent in state $i$

and $\Lambda_{ij}$ is the total number of jumps from state $i$ to $j$ .

4 Numerical Examples

In this section, we investigate the approximation performance of the phase-type methods
proposed in Section 3. Suppose that the arrival of access requirements follows t,he renewal
process with the Weibull inter-arrival time distribution,

$F(t)=1-\exp\{-(t/\beta_{a})^{m_{a}}\}$ , $(m_{a}=0.5, \beta_{a}=\rho/\Gamma(1+1/m_{a}))$ (24)

where $m_{a}(>0)$ and $\beta_{a}(>0)$ denote the shape and scale parameters of the Weibull distri-
bution, respectively, and where $\Gamma(\cdot)$ is the standard gamma function. We also suppose that
the processing time distribution is the exponential distribution; $H(t)=1-\exp(-t)$ . The
other model parameters are fixed as $P_{1}=1.0,$ $P_{2}=3.0,$ $\tau=0.1$ and $s=5.0$ . In our ap-
proximation scheme, the inter-arrival time distribution of the phase-type renewal process
corresponds to the Coxian-2 distribution. In addition to the phase-type approximation,
we calculate the optimal auto sleep time based on the equilibrium approximation [4] and
compare their precision, where the equilibrium approximation is to approximate the idle
period distribution with the equilibrium distribution of inter-arrival time, that is

$I(t|x) \approx F_{e}(t)=\lambda\int_{0}^{t}\overline{F}(x)dx$. (25)

Tables 1 and 2 present the optimal auto sleep times and their associated maximum
power effectiveness based on the equilibrium approximation and the phase-type approxi-
mations. In the phase-type approximations, we use the moment matching and the EM-
algorithm to estimate the model parameters. In addition, we estimate numerically the
power effectiveness by the Monte Carlo simulation, provided that the auto sleep time is
given. On each table, the values in brackets indicate the lower and upper bounds on the
confidence interval with significant level 95% and are calculated by the simulation. From
Table 2, it is observed that the maximum power effectiveness by the moment matching is
not belonging to the corresponding confidence intervals. This result shows that the phase-
type approximation with the moment matching may not function well to approximate the
power effectiveness. Also, the power effectiveness estimated by the simulation are smaller
than those based on the other approximations. On the other hand, the simulated power
effectiveness based on the equilibrium approximation and the phase-type approximation
with the $\mathrm{E}\mathrm{M}$-algorithm tend to belong to the confidence interval in the heavy traffic cir-
cumstance. Comparing Table 1 with Table 2, the simulated power effectiveness when the
optimal auto sleep time is calculated by the $\mathrm{E}\mathrm{M}$-algorithm is larger than the simulated one
by the equilibrium approximation. Hence we can conclude that the actual optimal auto
sleep time is close to that estimated by the $\mathrm{E}\mathrm{M}$-algorithm, and that it outperforms the
equilibrium approximation, when the system has a heavy traffic intensity. However, in the
case of the light traffic circumstance, it is seen that the optimal auto sleep time based on
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Table 1: The optimal auto sleep time based on the equilibrium approximation.

Table 2: The optimal auto sleep time based on the phase-type approximation.

the equilibrium approximation tends to give the lager power effectiveness. It follows from
these results that the phase-type approximation with the $\mathrm{E}\mathrm{M}$-algorithm is more efficient
in the cases of the heavy traffic intensity.

5 Concluding Remarks

In this paper, we have considered the stochastic auto sleep model under the renewal
arrival process, and have proposed $\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}- \mathrm{t}\mathrm{y}\dot{\mathrm{P}}^{\mathrm{e}}$ approximation methods to represent the
power effectiveness. Based on these approximations, we $\tilde{\mathrm{h}}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{a}1_{\mathrm{C}}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ the optimal auto
sleep schedule which maximizes the power effectiveness. In numerical examples, we have
investigated the approximation performance for the proposed methods. As a result, we
have shown that the phase-type approximation could be useful for finding the optimal auto
sleep time approximately in the heavy traffic circumstance for the other approximation
method.
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