On the Nash equilibrium of partial cooperative games

Department of Information Science, Hirosaki University Dmitri A. Ayoshin¹

Department of Mathematical System Science, Hirosaki University Tamaki Tanaka²

Department of Applied Mathematics, St. Peterburg State University Leon A. Petrosjan³

1 Introduction

In [4] a class of partial cooperative games with perfect information (PCGPI) is defined. PCGPI proceeds on a tree $K(x_0)$ of a finite non-cooperative game in extensive form with perfect information and without chance moves $\Gamma = \langle K(x_0), P, h \rangle$. Here, x_0 is the origin of $K(x_0)$; P denotes the player partition $P_1, \ldots, P_i, \ldots, P_n, P_{n+1}$, where $P_i, i \in N$, is the set of decision points of player i, and P_{n+1} is the set of the endpoints; $h : P_{n+1} \to \mathbb{R}^n_+$ is the terminal payoff function. Denote the player set by $N = \{1, \ldots, n\}$. In PCGPI for each player i a set of points called the cooperative region is given. (In general case the cooperative region may be empty.) During the game, in a decision point $x \in P_i$ player i is purposed to use an individually rational behavior if x is not in his cooperative region. But, if x lies in the cooperative region of player i, then in x he forms a coalition involving all players whose cooperative regions contain x also.

Formalization of the concept of the players' cooperative region may be realized by various approaches. In [4] a timing interpretation of the cooperative region is considered. It is supposed that $K(x_0)$ has the following information structure:

- 1. For any evolution of the game players make decisions in accordance with their index order, i.e., in the point x_0 the decision is made by player 1, in the immediate successors of x_0 the decision is made by player 2 and so on until player n. After player n the decision is again made by player 1 and etc.
- 2. Each path has the same length.

For the given game tree, we shall say that a *stage* is the *n* sequential moves, where the first move is made by player 1. Let the length of $K(x_0)$ be T + 1 stages.

¹E-mail: srdima@si.hirosaki-u.ac.jp

²E-mail: tanaka@cc.hirosaki-u.ac.jp

³<u>E-mail:</u> lapetr@apmath.spbu.ru

In PCGPI a vector $s = (s_1, \ldots, s_i, \ldots, s_n)$, $s_i \in \overline{L} = \{0, 1, \ldots, T, T+1\}$, is given. The component s_i denotes the length of the player *i*'s cooperative activity. If $s_i = 0$, then during the game player *i* plays non-cooperatively. If $s_i > 0$, then starting form the initial stage 0 until the stage $T - s_i$ player *i* plays non-cooperatively, and since the stage $t_i = T - s_i + 1$ until the end of the game player *i* is ready to cooperate with anybody. The given PCGPI is denoted by $\Gamma_s(x_0)$.

Suppose that $\{x_0, \ldots, \bar{x}\}$ is the path realized in $\Gamma_s(x_0)$. Let $S_s = \{i \in N | s_i > 0\}$ be a coalition formed to the end of $\Gamma_s(x_0)$. If $i \notin S$, then the payoff of player *i* is defined by the terminal payoff function *h* and equals $h_i(\bar{x})$. If $i \in S_s$, then the payoff of player *i* is defined by the Shapley value $\alpha(s)$ of the payoff of the coalition S_s , i.e.,

$$\sum_{j \in S_s} lpha_j(s) = \sum_{j \in S_s} h_j(ar{x})$$

It is considered that the purpose of a player in $\Gamma_s(x_0)$ is maximizing his payoff within the restrictions given by s.

Let $L = \prod_{i \in N} \overline{L}$ be the set of all vectors s that can be defined for $K(x_0)$. In [4] an approach to find the players' optimal behavior in $\Gamma_s(x_0)$, $s \in L$, is proposed. The scheme of construction of a path $\Phi_s(x_0) = \{x_0, \ldots, \phi_s(x_0)\}, \phi_s(x_0) \in P_{n+1}$, which is realized in $\Gamma_s(x_0)$ when players keep on their optimal behavior, is defined. The payoff-vector $r(s) = (r_1(s), \ldots, r_n(s))$,

$$r_i(s) = \begin{cases} h_i(\phi_s(x_0)), & \text{if } s_i = 0\\ \alpha_i(s), & \text{if } s_i > 0, \end{cases} \quad i \in N$$

related to $\Phi_s(x_0)$ is called the value of $\Gamma_s(x_0)$.

In $\Gamma_s(x_0)$ the vector s is not regulated by players. In this paper we consider a generalization of $\Gamma_s(x_0)$, where players form a vector $s \in L$ themselves.

2 Model.

On the tree $K(x_0)$ consider a new game $\Gamma_L(x_0)$. In pre-play communications of $\Gamma_L(x_0)$ players form a vector $s \in L$. Then, players play in accordance with the vector s. Hence, $\Gamma_L(x_0)$ evolves along the optimal path $\Phi_s(x_0)$ and players get payoffs defined by the value r(s). It is supposed that in $\Gamma_L(x_0)$ each player tries to maximize his own payoff.

Definition. A vector $s^* \in L$ is called the Nash equilibrium of $\Gamma_L(x_0)$ if for all $s_i \in \overline{L}$ and $i \in N$ there is

$$r_i(s^*) \ge r_i(s^*|s_i),$$
 (2.1)

where $s^* | s_i = (s_1^*, \ldots, s_{i-1}^*, s_i, s_{i+1}^*, \ldots, s_n^*).$

Theorem. The Nash equilibrium in $\Gamma_L(x_0)$ always exists.

Proof. We prove the theorem if propose the Nash equilibrium construction method for $\Gamma_L(x_0)$.

Knowing the formed vector s we know the path $\Phi_s(x_0)$ of the game evolution and players' payoffs r(s). Therefore, the set \overline{L} may be considered as the set of the player's strategies in $\Gamma_L(x_0)$. For each player i and his decision point $x \in P_i$, if player i cooperates in x or not that is all we need to know.

Basing on $K(x_0)$, define an auxiliary binary tree $\overline{K}(x_0)$. The length of $\overline{K}(x_0)$ is T + 1stages (the definition of a stage is given in section 1). For each decision point x, we shall call the branches going out from x by Left and Right respectively. We shall consider that if player i does not cooperate in a stage t, then on $\overline{K}(x_0)$ player i has to go Left in his decision points in the stage t. Otherwise, if player i cooperates in the stage t, then on $\overline{K}(x_0)$ player i has to go Right in his decision points in the stage t. For the given relation between the rules of $\Gamma_L(x_0)$ and $\overline{K}(x_0)$ to be one-to-one, we suppose that $\overline{K}(x_0)$ satisfies the following condition.

Let x_r and x_ℓ be immediate successors of a decision point x. Assume that x_r related to the decision Right in x, and x_ℓ related to the decision Left in x. Then,

$$K(x_r) \cap P_i = \emptyset \tag{2.2}$$

for each player $i \in N$ and his decision point $x \in P_i$. Here, $K(x_r)$ denotes the subtree with the initial point x_r .

Let $\overline{P}_1, \ldots, \overline{P}_n, \overline{P}_{n+1}$ be the player partition on $\overline{K}(x_0)$, where \overline{P}_{n+1} is the set of endpoints. By the condition (2.2) there is one-to-one correspondence between the sets L and \overline{P}_{n+1} . Define a payoff function $\overline{h}: \overline{P}_{n+1} \to R^n_+$ by

$$h(\hat{x}) = r(s), \quad \hat{x} \in \overline{P}_{n+1} \tag{2.3}$$

where \hat{x} related to s. Consider a non-cooperative game $\overline{\Gamma} = \langle \overline{K}(x_0), \overline{P}, \overline{h} \rangle$. Let $\pi = (\pi_1, \ldots, \pi_n)$ denote a situation in $\overline{\Gamma}$, where $\pi_i, i \in N$, is a player *i*'s strategy. Denote the set of all situations in $\overline{\Gamma}$ by Π . Suppose that π^* is the Nash equilibrium in $\overline{\Gamma}$. From the construction of the game $\overline{\Gamma}$ it follows that there is one-to-one correspondence between Π and L. Hence, the vector s^* related to π^* satisfies the definition of the Nash equilibrium in $\Gamma_L(x_0)$.

Remark. During the theorem proof a construction method of the Nash equilibrium in $\Gamma_L(x_0)$ was proposed.

Example. Consider a three person non-cooperative game Γ with the game tree $K(x_0)$ given in Figure 1. $N = \{1, 2, 3\}$. The player 1's decision points are denoted by single circle, player 2's — by double circle and player 3's — by triple circle. The vectors at the endpoints are the terminal payoffs of players, with the first components being the payoff of player 1 and so on. There are two stages in Γ . The initial stage starts in x_0 . The stage 1 starts in $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}$. $\overline{L} = \{0, 1, 2\}$. For each $s \in L$ consider the game $\Gamma_s(x_0)$ and find the value r(s). All possible values $r(s), s \in L$, are given in Table 1.

Find the Nash equilibrium s^* of the game $\Gamma_L(x_0)$. Construct the tree $\overline{K}(x_0)$ (see in Figure 2) which satisfies the condition (2.2).

We shall say that player 1 goes Up in $x_0 \in \overline{K}(x_0)$, if he cooperates in $\Gamma_L(x_0)$ since the initial stage. Player 1 goes Down in $x_0 \in \overline{K}(x_0)$, if he does not cooperate in $\Gamma_L(x_0)$ in the initial stage. In x_{11} , x_{12} , x_{13} and x_{14} of $\overline{K}(x_0)$ player 1 goes Up, if he cooperates in $\Gamma_L(x_0)$ since the stage 1. If player 1 does not cooperate $\Gamma_L(x_0)$, then he goes Down in x_{11} , x_{12} , x_{13} and x_{14} of $\overline{K}(x_0)$.

Player 2 goes Up in x_1 , x_2 of $\overline{K}(x_0)$, if he cooperates in $\Gamma_L(x_0)$ since the initial stage x_1 , x_2 of $\overline{K}(x_0)$. If player 2 does not cooperate in $\Gamma_L(x_0)$ in the initial stage, then he goes Down

in x_1 , x_2 of $\overline{K}(x_0)$. Player 2 goes Up in x_9 , x_{10} , x_{25} , x_{26} , x_{27} , x_{28} of $\overline{K}(x_0)$, if he cooperates in $\Gamma_L(x_0)$ since the stage 1. If player 2 does not cooperate in $\Gamma_L(x_0)$, then he goes Down in x_9 , x_{10} , x_{25} , x_{26} , x_{27} , x_{28} of $\overline{K}(x_0)$.

Player 3 goes Up in x_3 , x_4 , x_5 , x_6 of $\overline{K}(x_0)$, if he cooperates in $\Gamma_L(x_0)$ since the initial stage. If player 3 does not cooperate in $\Gamma_L(x_0)$ in the initial stage, then he goes Down in x_3 , x_4 , x_5 , x_6 of $\overline{K}(x_0)$. Player 3 goes Up in x_8 , x_{19} , x_{20} , x_{23} , x_{24} , x_{41} , x_{42} , x_{43} , x_{44} of $\overline{K}(x_0)$, if he cooperates in $\Gamma_L(x_0)$ since the stage 1. If player 3 does not cooperate in $\Gamma_L(x_0)$, then he goes Down in x_8 , x_{19} , x_{20} , x_{23} , x_{44} , x_{41} , x_{42} , x_{43} , x_{44} of $\overline{K}(x_0)$, if he cooperates in $\Gamma_L(x_0)$ since the stage 1. If player 3 does not cooperate in $\Gamma_L(x_0)$, then he goes Down in x_8 , x_{19} , x_{20} , x_{23} , x_{24} , x_{43} , x_{44} of $\overline{K}(x_0)$.

Using the given interpretation of players' behavior, we put the values r(s), $s \in L$, at the endpoints of $\overline{K}(x_0)$. Define the non-cooperative game $\overline{\Gamma}$ on $\overline{K}(x_0)$ and find the Nash equilibrium of $\overline{\Gamma}$.

There are tree Nash equilibrium in $\overline{\Gamma}$. The trajectories related to the Nash equilibrium situations are $\{x_0, \ldots, x_{23}\}$, $\{x_0, \ldots, x_{35}\}$ and $\{x_0, \ldots, x_{45}\}$. Hence, the Nash equilibriums in $\Gamma_L(x_0)$ are (0, 2, 1), (0, 1, 2) and (0, 1, 1). For all cases players get payoffs $(9, 4\frac{1}{2}, 5\frac{1}{2})$. We can see that for player 1 it is optimal (in the sense of the Nash equilibrium) not to cooperate in $\Gamma_L(x_0)$. Note, that if all players cooperate since the start of $\Gamma_L(x_0)$, then we have a usual cooperative game on $K(x_0)$. In this case, the Shapley value is (7, 7, 6).

$s = (s_1, s_2, s_3)$	r(s)	$s = (s_1, s_2, s_3)$	r(s)	$s = (s_1, s_2, s_3)$	r(s)
(0, 0, 0)	(5, 2, 5)	(2, 0, 0)	(5, 2, 5)	(1, 0, 2)	$(5\frac{1}{2}, 4, 3\frac{1}{2})$
(1,0,0)	(5, 2, 5)	(0, 2, 0)	(5, 2, 5)	(2, 2, 0)	$(4\frac{1}{2}, 4\frac{1}{2}, \bar{6})$
(0, 1, 0)	(5, 2, 5)	(0, 0, 2)	(5, 2, 5)	(0, 2, 2)	$(6\frac{1}{2}, 7, 5\frac{1}{2})$
(0, 0, 1)	(5, 2, 5)	(2, 1, 0)	$(4\frac{1}{2}, 4\frac{1}{2}, 6)$	(2, 0, 2)	$(4\frac{1}{2}, 8, 5\frac{1}{2})$
(1, 1, 0)	$(4\frac{1}{2}, 4\frac{1}{2}, 6)$	(1, 2, 0)	$(4\frac{1}{2}, 4\frac{1}{2}, 6)$	(2,2,1)	$(5, \overline{7\frac{1}{2}}, 7\frac{1}{2})$
(1, 0, 1)	$(5\frac{1}{2}, 4, 3\frac{1}{2})$	(0, 2, 1)	$(9, 4\frac{1}{2}, 5\frac{1}{2})$	(1,2,2)	$(5\frac{1}{2}, 6\frac{1}{2}, 7)$
(0, 1, 1)	$(9, 4\frac{1}{2}, 5\frac{1}{2})$	(0, 1, 2)	$(9, 4\frac{1}{2}, 5\frac{1}{2})$	(2, 1, 2)	$(5, 7\frac{1}{2}, 7\frac{1}{2})$
(1, 1, 1)	$ (5\frac{1}{2}, \tilde{6}\frac{1}{2}, \tilde{7}) $	(2, 0, 1)	$(5\frac{1}{2}, 4, 3\frac{1}{2})$	(2,2,2)	$(7, \overline{7}, 6)$
(2, 1, 1)	$(5\frac{1}{2}, 6\frac{1}{2}, 7)$	(1,2,1)	$(5\frac{1}{2}, 6\frac{1}{2}, \bar{7})$	\parallel $(1,1,2)$	$(5\frac{1}{2}, 6\frac{1}{2}, 7)$

Table 1: Players' payoffs

We supposed that each player use the following criteria when he make decision in $\overline{\Gamma}$. 1) to maximize own payoff;

2) if criterion 1 is fulfilled, then to maximize the common payoff of all players;

3) if criteria 1, 2 are fulfilled, then to maximize the payoff of player 1 (if the player is not player 1);

4) if criteria $1, \ldots, 3$ are fulfilled, then to maximize the payoff of player 2 (if the player is not player 2) and so on;

n+2) if criteria $1, \ldots, n+1$ are fulfilled, then to maximize the payoff of player n (if the player is not player n);

(n+3) if criteria $1, \ldots, n+2$ are fulfilled, then to choose any of the remain strategies.

Figure 1: The game tree $K(x_0)$

Figure 2: The game tree $\overline{K}(x_0)$

References

- [1] Hsiao C.R. and Raghavan T.E.S., *The Shapley value for multi-choice games (I)*, Games and Economic Behavior 5 (1993), 240–256.
- [2] Neumann J. von and Morgenstern O., *Theory of games and Economic Behavior*, Princeton University Press, Princeton, New Jersey, (1944)
- [3] Nash J.F., Non-cooperative games, Ann. of Math. 54 (1951), 286–295.
- [4] Petrosjan L.A., Ayoshin D.A., Tanaka T., Construction of a Time Consistent Core in Multi-Choice Multistage Games, RIMS – 97, Symposium "Decision Theory and Its Related Fields" (1997).
- [5] Shapley L.S., A value for *n*-person games, Ann. of Math. 28 (1953), 307–317.
- [6] Vorobjev N.N., Game Theory Lectures for Economists and System Scientists, Springer-Verlag, New-York (1977).