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1 Introduction
In [4] a class of partial cooperative games with perfect information (PCGPI) is defined.
PCGPI proceeds on a tree $K(x_{0})$ of a finite non-cooperative game in extensive form with
perfect information and without chance moves $\Gamma=\langle K(x_{0}), P, h\rangle$ . Here, $x_{0}$ is the origin
of $K(x_{0});\mathrm{P}$ denotes the player partition $P_{1},$

$\ldots$ , $P_{i},$
$\ldots,$

$P_{n},$ $P_{n+1}$ , where $P_{i},$ $i\in N$ , is the
set of decision points of player $i$ , and $P_{n+1}$ is the set of the endpoints; $h$ : $P_{n+1}arrow R_{+}^{n}$

is the terminal payoff function. Denote the player set by $N=\{1, \ldots , n\}$ . In PCGPI for
each player $i$ a set of points called the cooperative region is given. (In general case the
cooperative region may be empty.) During the game, in a decision point $x\in P_{i}$ player $i$ is
purposed to use an individually rational behavior if $x$ is not in his cooperative region. But,
if $x$ lies in the cooperative region of player $i$ , then in $x$ he forms a coalition involving all
$\dot{\mathrm{p}}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s}$ whose cooperative regions eontain $x$ also.

Formalization of the concept of the players’ cooperative region may be realized by various
approaches. In [4] a timing interpretation of the cooperative region is considered. It is
supposed that $K(x_{0})$ has the following information structure:

1. For any evolution of the game players make decisions in accordance with their index
order, i.e., in the point $x_{0}$ the decision is made by player 1, in the immediate successors
of $x_{0}$ the decision is made by player 2 and so on until player $n$ . After player $n$ the
decision is again made by player 1 and etc.

2. Each path has the same lengh.

For the given game tree, we shall say that a stage is the $n$ sequential $\mathrm{m}\mathrm{o}.\mathrm{v}$es, where the first
move is made by player 1. Let the length of $K(x_{0})$ be $T+1$ stages.
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In PCGPI a vector $s=(s_{1}, \ldots, s_{i}, \ldots, s_{n}),$ $s_{i}\in\overline{L}=\{0,1, \ldots , T, T+1\}$ , is given. The
component $s_{i}$ denotes the length of the player $i’ \mathrm{s}$ cooperative activity. If $s_{i}=0$ , then during
the game player $i$ plays non-cooperatively. If $s_{i}>0$ , then starting form the initial stage $0$

until the stage $T-s_{i}$ player $i$ plays non-cooperatively, and since the stage $t_{i}=T-s_{i}+1$

until the end of the game player $i$ is ready to cooperate with anybody. The given PCGPI is
denoted by $\Gamma_{s}(x_{0})$ .

Suppose that $\{x_{0}, \ldots,\overline{x}\}$ is the path realized in $\Gamma_{s}(x_{0})$ . Let $S_{s}=\{i\in N|s_{i}>0\}$ be a
coalition formed to the end of $\Gamma_{s}(x_{0})$ . If $i\not\in S$ , then the payoff of player $i$ is defined by the
terminal payoff function $h$ and equals $h_{i}(\overline{x})$ . If $i\in S_{s}$ , then the payoff of player $i$ is defined
by the Shapley value $\alpha(s)$ of the payoff of the coalition $S_{s}$ , i.e.,

$\sum_{j\in S_{s}}\alpha_{j}(s)=\sum_{j\in S_{s}}h_{j}(\overline{x})$

It is considered that the purpose of a player in $\Gamma_{s}(x_{0})$ is maximizing his payoff within the
restrictions given by $s$ .

Let $L=\Pi_{i\in N}\overline{L}$ be the set of all vectors $s$ that can be defined for $K(x_{0})$ . In [4] an
approach to find the players’ optimal behavior in $\Gamma_{s}(x_{0}),$ $s\in L$ , is proposed. The scheme
of construction of a path $\Phi_{s}(x_{0})=\{x_{0}, \ldots , \phi_{s}(x_{0})\},$ $\phi_{s}(x_{0})\in P_{n+1}$ , which is realized in
$\Gamma_{s}(x_{0})$ when players keep on their optimal behavior, is defined. The payoff-vector $r(s)=$
$(r_{1}(s), \ldots, r_{n}(s))$ ,

$\mathrm{s}$

$r_{i}(s)=\{$
$h_{i}(\phi_{\mathit{8}}(x_{0}))$ , if $s_{i}=0$

$\alpha_{i}(s)$ , if $s_{i}>0$ ,
$i\in N$

related to $\Phi_{s}(x_{0})$ is called the value of $\Gamma_{s}(x_{0})$ .
In $\Gamma_{s}(x_{0})$ the vector $s$ is not regulated by players. In this paper we consider a generaliza-

tion of $\Gamma_{s}(x_{0})$ , where players form a vector $s\in L$ themselves.

2 Model.
On the tree $K(x_{0})$ consider a new game $\Gamma_{L}(x_{0})$ . In pre-play communications of $\Gamma_{L}(x_{0})$

players form a vector $s\in L$ . Then, players play in accordance with the vector $s$ . Hence,
$\Gamma_{L}(x_{0})$ evolves along the optimal path $\Phi_{s}(x_{0})$ and players get payoffs defined by the value
$r(s)$ . It is supposed that in $\Gamma_{L}(x_{0})$ each player tries to maximize his own payoff.

Definition. A vector $s^{*}\in L$ is called the Nash equilibrium of $\Gamma_{L}(x_{0})$ if for all $s_{i}\in\overline{L}$ and
$i\in N$ there is

$r_{i}(s^{*})\geq r_{i}(s^{*}|s_{i})$ , (2.1)

where $s^{*}|s_{i}=$ $(s_{1}^{*}, \ldots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \ldots , s_{n}^{*})$ .

Theorem. The Nash equilibrium in $\Gamma_{L}(x_{0})$ always exists.
Proof. We prove the theorem if propose the Nash equilibrium construction method for

$\Gamma_{L}(x_{0})$ .
Knowing the formed vector $s$ we know the path $\Phi_{s}(x_{0})$ of the game evolution and players’

payoffs $r(s)$ . Therefore, the set $\overline{L}$ may be considered as the set of the player’s strategies in
$\Gamma_{L}(x_{0})$ . For each player $i$ and his decision point $x\in P_{i}$ , if player $i$ cooperates in $x$ or not
that is all we need to know.
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Basing on $K(x_{0})$ , define an auxiliary binary tree $\overline{K}(x_{0})$ . The length of $\overline{K}(x_{0})$ is $T+1$
stages (the definition of a stage is given in section 1). For each decision point $x$ , we shall
call the branches going out from $x$ by Left and Right respectively. We shall consider that if
player $i$ does not cooperate in a stage $t$ , then on $\overline{K}(x_{0})$ player $i$ has to go Left in his decision
points in the stage $t$ . Otherwise, if player $i$ cooperates in the stage $t$ , then on $\overline{K}(x_{0})$ player
$i$ has to go Right in his decision points in the stage $t$ . For the given relation between the
rules of $\Gamma_{L}(x_{0})$ and $\overline{K}(x_{0})$ to be $\mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{t}\mathrm{o}-\mathrm{o}\mathrm{n}\mathrm{e}$ , we suppose that $\overline{K}(x_{0})$ satisfies. the following
condition.

Let $x_{r}$ and $x_{l}$ be immediate successors of a decision point $x$ . Assume that $x_{r}$ related to
the decision Right in $x$ , and $x_{\ell}$ related to the decision Left in $x$ . Then,

$K(x_{r})\cap P_{i}=\emptyset$ (2.2)

for each player $i\in N$ and his decision point $x\in P_{i}$ . Here, $K(x_{r})$ denotes the subtree with
the initial point $x_{r}$ .

Let $\overline{P}_{1,)}\ldots\overline{P}_{n},$ $\overline{P}_{n+1}$ be the player partition on $\overline{K}(x_{0}))\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\dot{\mathrm{e}}\overline{P}_{n+1}$ is the set of endpoints.
By the condition (2.2) there is $\mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{t}\mathrm{o}$-one correspondence between the sets $L$ and $\overline{P}_{n+1}$ .
Define a payoff function $\overline{h}$ : $\overline{P}_{n+1}arrow R_{+}^{n}$ by

$\overline{h}(\hat{x})=r(s)$ , $\hat{x}\in\overline{P}_{n+1}$ (2.3)

where $\hat{x}$ related to $s$ . Consider a non-cooperative game $\overline{\Gamma}=\langle\overline{K}(x_{0}), \overline{P},\overline{h}\rangle$ . Let $\pi=$
$(\pi_{1}, \ldots, \pi_{n})$ denote a situation in $\overline{\Gamma}$, where $\pi_{i},$ $i\in N$ , is a player $i’ \mathrm{s}$ strategy. Denote the
set of all situations in $\overline{\Gamma}$ by II. Suppose that $\pi^{*}$ is the Nash equilibrium in $\overline{\Gamma}$. From the
construction of the game $\overline{\Gamma}$ it follows that there is $\mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{t}\mathrm{o}$-one correspondence between $\Pi$

$\Gamma_{L}(x_{0})\mathrm{a}\mathrm{n}\mathrm{d}L.$

.
Hence, the vector $s^{*}$ related to $\pi^{*}$ satisfies the definition of the Nash equilibrium

$\mathrm{i}\mathrm{n}\square$

Remark. During the theorem proof a construction method of the Nash equilibrium in
$\Gamma_{L}(x_{0})$ was proposed.

Example. Consider a three person non-cooperative game $\Gamma$ with the game tree $K(x_{0})$

given in Figure 1. $N=\{1,2,3\}$ . The player l’s decision points are denoted by single circle,
player $2’ \mathrm{s}-\mathrm{b}\mathrm{y}$ double circle and player $3’ \mathrm{s}-\mathrm{b}\mathrm{y}$ triple circle. The vectors at the endpoints
are the terminal payoffs of players, with the first components being the payoff of player 1
and so on. There are two stages in $\Gamma$ . The initial stage starts in $x_{0}$ . The stage 1 starts in
$x_{7},$ $x_{8},$ $x_{9},$ $x_{10},$ $x_{11},$ $x_{12},$ $x_{13},$ $x_{14}$ . $\overline{L}=\{0,1,2\}$ . For each $s\in L$ consider the game $\Gamma_{s}(x_{0})$

and find the value $r(s)$ . All possible values $r(s),$ $s\in L$ , are given in Table 1.
Find the Nash equilibrium $s^{*}$ of the game $\Gamma_{L}(x_{0})$ . Construct the tree $\overline{K}(x_{0})$ (see in

Figure 2) which satisfies the condition (2.2).
We shall say that player 1 goes Up in $x_{0}\in\overline{K}(x_{0})$ , if he cooperates in $\Gamma_{L}(x_{0})$ since the

initial stage. Player 1 goes Down in $x_{0}\in\overline{K}_{(}x_{0}$ ), if he does not cooperate in $\Gamma_{L}(x_{0})$ in the
initial stage. In $x_{11},$ $x_{12},x_{13}$ and $x_{14}$ of $\overline{K}(x_{0})$ player 1 goes Up, if he cooperates in $\Gamma_{L}(x_{0})$

since the stage 1. If player 1 does not cooperate $\Gamma_{L}(x_{0})$ , then he goes Down in $x_{11},$ $x_{12},x_{13}$

and $x_{14}\mathrm{o}\mathrm{f}\overline{K}(x_{0})$ .
Player 2 goes Up in $x_{1},$ $x_{2}$ of $\overline{K}(x_{0})$ , if he cooperates in $\Gamma_{L}(x_{0})$ since the initial stage $x_{1}$ ,

$x_{2}\mathrm{o}\mathrm{f}\overline{K}(x_{0})$ . If player 2 does not cooperate in $\Gamma_{L}(x_{0})$ in the initial stage, then he goes Down
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in $x_{1},$ $x_{2}$ of $\overline{K}(x_{0})$ . Player 2 goes Up in $x_{9},$ $x_{10},$ $x_{25},$ $x_{26},$ $x_{27},$ $x_{28}$ of $\overline{K}(x_{0})$ , if he cooperates
in $\Gamma_{L}(x_{0})$ since the stage 1. If player 2 does not cooperate in $\Gamma_{L}(x_{0})$ , then he goes Down in
$x_{9},$ $x_{10},$ $x_{25},$ $x_{26},$ $x_{27},$ $x_{28}$ of $\overline{K}(x_{0})$ .

Player 3 goes Up in $x_{3},$ $x_{4},$ $x_{5},$ $x_{6}$ of $\overline{K}(x_{0})$ , if he cooperates in $\Gamma_{L}(x_{0})$ since the initial
stage. If player 3 does not cooperate in $\Gamma_{L}(x_{0})$ in the initial stage, then he goes Down in $x_{3}$ ,
$x_{4},$ $x_{5},$ $x_{6}$ of $\overline{K}(x_{0})$ . Player 3 goes Up in $x_{8},$ $x_{19},$ $x_{20},$ $x_{23},$ $x_{24},$ $x_{41},$ $x_{42},$ $x_{43},$ $x_{44}$ of $\overline{K}(x_{0})$ , if
he cooperates in $\Gamma_{L}(x_{0})$ since the stage 1. If player 3 does not cooperate in $\Gamma_{L}(x_{0})$ , then he
goes Down in $x_{8},$ $x_{19},$ $x_{20},$ $x_{23},$ $x_{24},$ $x_{41},$ $x_{42},$ $x_{43},$

$x_{44}\mathrm{o}\mathrm{f}\overline{K}(x_{0})$ .
Using the given interpretation of players’ behavior, we put the values $r(s),$ $s\in L$ , at

the endpoints of $\overline{K}(x_{0})$ . Define the non-cooperative game $\overline{\Gamma}$ on $\overline{K}(x_{0})$ and find the Nash
equilibrium $\mathrm{o}\mathrm{f}\overline{\Gamma}$ .

There are tree Nash equilibrium in $\overline{\Gamma}$ . The trajectories related to the Nash equilibrium
situations are $\{x_{0}, \ldots , x_{23}\},$ $\{x_{0}, \ldots, x_{35}\}$ and $\{x_{0}, \ldots, x_{45}\}$ . Hence, the Nash equilibriums
in $\Gamma_{L}(x_{0})$ are $(0,2,1),$ $(0,1,2)$ and $(0,1,1)$ . For all cases players get payoffs $(9, 4 \frac{1}{2},5\frac{1}{2})$ . We
can see that for player 1 it is optimal (in the sense of the Nash equilibrium) not to cooperate
in $\Gamma_{L}(x_{0})$ . Note, that if all players cooperate since the start of $\Gamma_{L}(x_{0})$ , then we have a usual
cooperative game on $K(x_{0})$ . In this case, the Shapley value is (7, 7, 6).

$s=(s_{1}, s_{2}, s_{3})$ $r(s)$ $s=(s_{1}, s_{2}, s_{3})$ $r(s)$ $s=(s_{1}, s_{2}, s_{3})$ $r(s)$

$(0,0,0)$

$(1,0,0)$

$(0,1,0)$

$(0,0,1)$

$(1,1,0)$

$(1,0,1)$

$(0,1,1)$

$(1,1,1)$

$(2,1,1)$

$(5, 2, 5)$

$(5, 2, 5)$

$(5, 2, 5)$

$(5, 2, 5)$

$(9,4 \frac{1}{2},5\frac{\frac{1}{\not\in}}{2})(5\frac{\frac{1}{\not\in}}{2},4,3)(4,4\frac{1}{2},6)$

$(5,6,7)(5\underline{\frac{1}{\int}}.,6\underline{\frac{1}{21}},7)$

$(2, 0,0)$

$(0,2,0)$

$(0,0,2)$

$(2,1,0)$

$(1,2,0)$

$(0,2,1)$

$(0,1,2)$

$(2,0,1)$

$(1,2,1)$

$(5, 2, 5)$

$(5, 2, 5)$

$(5, 2, 5)$

$(4,4,6)(4 \frac{\frac{1}{\not\in}}{2},4\frac{\frac{1}{\not\in}}{2},6)$

$(9,4,5 \frac{1}{\not\in})(5\frac{1}{\underline\not\in},,,3)(9,4\frac{\frac{1}{\not\in}}{42},5\frac{}{\frac{\not\in}{2}})(5,6^{\underline{1}},7)$

$(1, 0,2)$

$(2,2,0)$

$(0,2,2)$

$(2,0,2)$

$(2,2,1)$

$(1,2,2)$

$(2,1,2)$

$(2,2,2)$

$(1,1,2)$

$(4 \frac{\overline\not\in}{\frac{\not\in}{2}},4\frac{1}{2},,6)(6,7,5\frac{1}{2})(5,4,3_{\overline{2}})$

$(4 \frac{1}{2},8,5\frac{1}{2}$

$(5,7 \frac{1}{2},7\frac{1}{2})$

$(5 \frac{1}{2},6\frac{1}{2},7)$

$(5,7 \frac{1}{2},7\frac{1}{2})$

$(7,7,6)$
$(5^{\underline{1}},6^{\underline{1}},7)$

Table 1: Players’ payoffs

We supposed that each player use the following criteria when he make decision in $\overline{\Gamma}$.
1) to maximize own payoff,
2) if criterion 1 is fulfilled, then to maximize the common payoff of all players;
3) if criteria 1, 2 are fulfilled, then to maximize the payoff of player 1 (if the player is not

player $1$ );
4) if criteria 1, . . . , 3 are fulfilled, then to maximize the payoff of player 2 (if the player is

not player 2) and so on;
$n+2)$ if criteria 1, . . . , $n+1$ are fulfilled, then to maximize the payoff of player $n$ (if the

player is not player $n$);
$n+3)$ if criteria 1, . . . , $n+2$ are fulfilled, then to choose any of the remain strategies.
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Figure 1: The game tree $K(x_{0})$
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Figure 2: The game tree $\overline{K}(x_{0})$
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