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Abstract A stochastic version of a concentrator location problem is dealt with in which traffic demand at each terminal
location is uncertain. The concentrator Iocation problem is defined as to determine the following: (i) the numbers and
locations of concentrators that are to be open, and (ii) the allocation of terminals to concentrator sites. The problem is
formulated as a stochastic multi-stage integer linear program, with first stage binary variables concerning network design
and continuous recourse variables concerning expansion of capacity. Given a first stage decision, the series of realization
of traffic demand may possibly imply a violation of the capacity constraint of the concentrator. Therefore from the second
stage to the last stage, recourse action is taken to correct the violation. The objective function minimizes the cost of
connecting terrninals and the cost of opening concentrators and the expected recourse cost of capacity expansion. We
propose a new algorithm which combines an $\mathrm{L}$-shaped method and a branch-and-bound method. Under some assumptions
it decomposes the problem into a set of problems as many as the number of stages in parallel. FinaIly we demonstrate
the computational efficiency of our algorithm for the multi-stage model.

1 Introduction
This paper focuses on topological design of centralized computer networks (Ahuja [1]). The concentrator
location problem (Bertsekas and Gallager [4], Ahuja, Magnanti and Orlin [2]) is defined as determining
the following: (i) the number and locations of concentrators that are to be open, and (ii) the allocation
of terminals to concentrator sites without violating the capacities of concentrators.

Since the problem belongs to the class of $\mathrm{N}\mathrm{P}$-hard, most prior researches have developed heuristic
procedures to seek approximate solutions (Mirzaian [15], Pirkul [17], Pirkul et al. [18]). For this problem
a new algorithm (fractional cutting plane $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}/\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}$-and-bound (Nemhauser and Wolsey [16]))
that yields an exact solution was presented in our previous paper (Shiina [20]). In this approach
strong valid inequalities are used as cutting planes. The computational results show that this algorithm
performs reasonably well for relatively large problems involving up to 100 terminals.

However for many actual problems, the assumption that the traffic demands at each terminal are
deterministic known data is often unjustified. These data contain uncertainty and are thus represented
as random variables since the data represent information about the future. In this paper a stochastic
version of a concentrator location problem is dealt with in which traffic demand at each terminal location
is uncertain. Locating too few concentrators may result in shortage of capacity for the future demand.
On the other hand excessive investments will cause excess of capacity. Our problem is thus a strategic
decision problem under uncertainty and can be viewed as a stochastic programming problem (Kall
$[9, 10]$ , Kall and Wallace [11], Pr\’ekopa [19], Birge and Louveaux [6] $)$ .

Stochastic programming dates back to the pioneering study by Dantzig [7]. Stochastic programming
problem with recourse is referred to as two-stage stochastic problem. In the first stage, a decision has
to be made without complete information on random factors. After the value of random variables are
known, recourse action can be taken in the second stage. For the continuous stochastic programming
problem with recourse an $\mathrm{L}$-shaped method (Van Slyke and Wets [21]) is well-known. That approach
is based upon $\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{S}’[3]$ decomposition. Stochastic integer programs have both features of integer
programs and stochastic programs that are computationally intractable. Wollmer [23] used a cutting
plane algorithm for the case that first stage decision variables are restricted to integer. Louveaux and
Peeters [14] presented a dual-based heuristic procedure for stochastic facility location. Laporte and
Louveaux [12] proposed a $\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}_{- \mathrm{a}}\mathrm{n}\mathrm{d}$-cut procedure for stochastic integer programs with first stage
binary variables. Laporte, Louveaux and Hamme [13] solved a capacitated facility location problem to
optimality by means of a $\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}_{- \mathrm{a}}\mathrm{n}\mathrm{d}$-cut method. In section 2 we define the stochastic programming
model with recourse for concentrator location problem.

In section 3 we consider a multi-stage stochastic concentrator location problem with recourse. Many
real problems require that decisions are made subsequently over time. Birge [5] extended the L-shaped
method to the multi-stage method. Gassmann [8] solved the multi-stage programs by the nested decom-
position. The standard formulation for multi-stage stochastic concentrator location problem contains a
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lot of constraints because the total number of scenarios is very large. So it is necessary to decompose
the problem. Our decomposition differs from the nested decomposition. Under some assumptions it
decomposes the problem into a set of problems as many as the number of stages in parallel. We propose
a new framework of algorithm which combines an $\mathrm{L}$-shaped method and a $\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}_{- \mathrm{a}}\mathrm{n}\mathrm{d}-\mathrm{b}\mathrm{o}\mathfrak{U}\mathrm{n}\mathrm{d}$ method.

In section 4 we demonstrate the computational efficiency of our algorithm for multi-stage models.

2 Stochastic Programming Model with Recourse for Concen-
trator Location Problem

The following describes the symbols and notations used in the paper.

Table 1: Notation

$i\in I,$ $j\in j$

The mathematical formulation of the capacitated concentrator location problem is stated as follows.

$|$
$\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{i}\mathrm{e}\mathrm{c}\min_{\mathrm{t}\mathrm{t}_{0}}$

$x_{i}j,y_{i} \in X_{i}j\leq yi,i\sum_{\in}^{j\in J}\sum^{ij}\sum\sum ci\in Ii\in Ij\in J\{xij=1,j\in aj(\tilde{\xi})x_{i}j\leq bI\in,j’\in Jij^{X+\sum f_{i}i}\mathrm{o},1\},iI,jii\in yiIj\in Jyi\in I$

$(5(4)(3(2)(1)))$

The objective function (1) minimizes the cost of connecting terminals to concentrators and the
cost of opening concentrators. Constraint (2) represents capacities of concentrators. Constraint (3)
ensures that each node is assigned to a single concentrator. Constraint (4) assures that no terminals are
connected to a concentrator that is not open. We assume the random vector $\tilde{\xi}$ is defined on a known
probability space $(\Omega, \mathcal{F}, P)$ and has a discrete distribution. Therefore possible finite scenarios can occur.
Let $—\mathrm{b}\mathrm{e}$ the support of $\tilde{\xi}$, i.e. the smallest closed set such that $P(\Xi)=1$ . Given a decision $x,$ $y$ , the
realization of traffic demand $a_{j}(\xi),j\in J$ of $a_{j}(\tilde{\xi}),j\in J$ may imply a violation of the capacity constraint
of the concentrator. Therefore after observing the realization $\xi$ , the corrective action $w(\xi)$ is taken to
compensate the violation. $w_{i}(\xi),$ $i\in I$ represent the amount of $\mathrm{e}\mathrm{x}\mathrm{p}.\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}$ capacity at concentrator site
$i$ and are assumed to cause penalty of $q_{i}(\geq 0)$ per unit.

The problem is formulated as a stochastic integer program, with first stage binary variables $x,$ $y$

concerning network design and second stage continuous variables $w_{i}(\xi),$ $i\in I$ concerning expansion
of capacity as follows. The symbol $E_{\overline{\xi}}$ represents the mathematical expectation with respect to $\tilde{\xi}$,
and $Q(x, y, \xi),$ $Q(x, y)$ are called the recourse function in state $\xi$ and the expected recourse function,
respectively. The objective function minimizes the cost of connecting terminals and the cost of opening
concentrators and the expected recourse cost of capacity expansion.
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$\min$
$\sum_{i\in I}\sum_{\in jj}cijx_{i}j+\sum_{i\in I}fiyi+Q(x, y)$

subject to $\sum_{i\in I}X_{ij}=1$
, $j\in J$

$x_{ij}\leq y_{i}$ , $i\in I,j\in J$

$x_{ij},$ $y_{i}\in\{0,1\}$ , $i\in I,j\in J$

where $Q(x, y)=E_{\overline{\xi}}[Q(x, y,\tilde{\xi})]$

$Q(x, y, \xi)=\min_{w}\{\sum_{i\in I}qiwi(\xi)|\sum a_{j}j\in J(\xi)xij\leq b_{i}y_{i}+w_{i}(\xi)$
,

$w_{i}(\xi)\geq 0,$ $i\in I\},$ $\xi\in---$

3 Multi-Stage Model

3.1 Decision-Observation Scheme in Multi-Stage Model
The previous section concerned stochastic programs with two stages. However most practical decision
problems involve a sequence of decisions that react to outcomes periodically over time. We define
$t=1,$ $\ldots,$

$T$ as planning periods and call them stages. Let $\tilde{\xi}^{1},\tilde{\xi}^{2},$ $\ldots,\tilde{\xi}^{T}$ be a sequence of random
vectors that are observed as $\xi^{1},$ $\xi^{2},$

$\ldots,$
$\xi^{T}$ , where $\xi^{t}$ is observed in stage $t$ . We assume the random

vector $\tilde{\xi}^{t}$ is defined on a known probability space $(_{-}^{-t}-, \mathcal{F}, P)$ and has a discrete distribution like the
two-stage model. We describe a decision-observation scheme as follows.

Decision-Observation Scheme. initial investment $x,$ $y$ concerning network design. observation of $\xi^{1}$

$\bullet$ corrective action $w^{1}(\xi^{1})\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{r}$ capacity expansion in stage 1
:. observation of $\xi^{T}$. corrective action $w^{\tau}(\xi^{1}, \ldots, \xi^{T})$ concerning capacity expansion in stage $\mathrm{T}$

Figure 1: Decision-Observation Scheme

We have to make a decision over a finite number of periods. Having fixed the initial investment
$x,$ $y$ and observed the random vector $\xi^{1}$ , we have to make the decision on $w^{1}(\xi^{1})$ concerning ca-
pacity expansion so that the constraints involving $x,$ $y,$

$w^{1}(,\xi^{1}..)$

.
$,\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}\mathrm{h}\mathrm{a}}\mathrm{f}\mathrm{i}\mathrm{e}_{\mathrm{t}}\mathrm{d}.\mathrm{S}\mathrm{i}\mathrm{m}\mathrm{i}1\mathrm{a}\mathrm{r}1\mathrm{y},\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{a}1\mathrm{S}\mathrm{o}\xi^{t}$

) $\mathrm{S}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}_{\mathrm{S}}\mathrm{i}\mathrm{n}\mathrm{V}\mathrm{o}1_{\mathrm{V}}\mathrm{i}\mathrm{n}\mathrm{g}$fixed $w^{t-1}(\xi 1, \ldots, \xi^{t-1})$ and observed $\xi^{t}$ , we decide on $w^{t}(\xi^{1}$

$x,$ $y,$ $w^{1}(\xi^{1}),$
$\ldots$ , $w^{t}(\xi^{1}, \ldots, \xi^{t})$ axe satisfied for $t=1,$ $\ldots,$

$T$ . The recourse variables $w^{t}(\xi^{1}, \ldots , \xi^{t}),$ $i\in$

$I,$ $t=1,$ $\ldots$ , $T$ cause penalty of $q_{i}^{t}$ per unit. We make the next two assumptions on the traffic demands
and the recourse costs.

Assumption 1 We assume the traffic demands are monotone nondecreasing in $t$ .

$a_{\mathcal{J}}(\xi^{t})\leq a_{j(\xi^{t+1}),\forall\xi^{t}}\in_{-,\forall}--t\xi t+1\in_{-}--t+1,j\in J,$ $t=1,$ $\ldots,$
$\tau-1$

Assumption 2 We assume the $recou\Gamma \mathit{8}e$ costs are monotone $noninc\Gamma easing$ in $t$ .

$q_{i}^{t}\geq q_{i}^{t+1}\geq 0,$ $i\in I,$ $t=1,$ $\ldots,$ $T-1$

Assumption 1 expresses an ideal situation in which the traffic demand grows monotonically and all of
the realizations of the traffic demand in some stage are greater than or equal to those in former stages.
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Taking the present worth factor into account, Assumption 2 is true of the case that the recourse costs are
constant. These Assumptions are required to characterize the optimal solution of the recourse problem
and to prove that the problem (MS-CLP) are equivalent to the reformulated prolem (RMS-CLP).

And we define $q_{i}^{0},$ $q_{i^{+1}}^{\tau}=0,$ $i\in I$ . The sets of possible sequences of observations $(\xi^{1}, \ldots , \xi^{T})$ are
called scenarios. The scenarios are often described using an event tree. We have a recourse function
$Q^{t}(x, y, w^{1}, \ldots, w^{t-1}, \xi^{1}, \ldots , \xi^{t}),$ $t=1,$ $\ldots,$

$T$ as follows.

$Q^{t}(x, y, w^{1}, \ldots, w-1, \xi t1, \ldots, \xi^{t})$

$=$
$\min_{w^{\mathrm{t}}}\{\sum_{i\in I}q_{i}w(\dot{x}\xi t1, \ldots, \xi t)|\sum_{j\in J}ta\mathrm{j}(\xi t)_{X_{i}}j\leq b_{i}y_{i}+w^{1}i(\xi^{1})+\cdot\ldots+wi(t\xi^{1..t},., \xi),$

$i\in I$

$w_{i}^{t}(\xi^{1}, \ldots, \xi^{t})\geq 0,$ $i\in I$

$w^{k}$ $(\xi^{1}, . . , \xi k)=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}Qk(X, y\rangle w1, \ldots,k-w1, \xi 1, \ldots, \epsilon k),$ $k=1,$ $\ldots,$ $t-1\}$ (6)

3.2 Formulation of the Multi-Stage Model
The multi-stage concentrator location problem with recourse takes the following form.

$\min$
$\sum_{i\in I}\sum_{j\in J}cijXij+\sum_{Ii\in}f_{i}yi$

$+ \sum E_{\tilde{\xi}^{1},\ldots,\overline{\xi}^{\mathrm{r}}}[Q^{t}(X, y, w,., w-1,\tilde{\xi}1..t1, \ldots,\tilde{\xi}^{t})]T$

subject $\sum_{i\in I}^{=}xt1ij=1$ , $j\in J$

to $x_{ij}\leq?i$ , $i\in I,j\in J$

$x_{ij},$ $y_{i}\in\{0,1\}$ , $i\in I,j\in J$

$Q^{t}(x, y, w^{1}, \ldots,w-1, \xi t1, \ldots, \xi t)$

$= \min_{w^{\ell}}\{\sum_{i\in I}q_{i}^{t}w_{i}(t\xi^{1}, \ldots, \xi^{t})|$

$j \in\sum_{j}a_{j(}\xi t)_{X_{i}}j\leq b_{i}y_{i}+w^{1}i(\xi 1)+\ldots+wi(t\xi 1, \ldots, \epsilon t),$
$i\in I$

$w_{i}^{t}\geq 0,$ $i\in I$

$w^{k}(\xi^{1}, \ldots, \xi^{k})=\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}Q^{k}(X, y,w^{1}, \ldots, w^{k-1}, \xi 1, \ldots, \xi k)$ ,
$k=1,$ $\ldots,$ $t-1\},$ $\xi^{1}\in_{-^{1}}--,$

$\ldots,$
$\xi^{t}\in_{-}--t,$ $t=1,$ $\ldots,$

$T$

The mathematical programming problem (MS-CLP) is equivalent to the next program.

$\min$ $\sum\sum c_{ij}X_{i}j+\sum_{Ji\in}fiy_{i}+\sum^{\tau}\theta t=1t$

subject to $\sum_{i\in I}^{i\in Ij}Xij=\in J1$ , $j\in J$

$x_{i\overline{g}}\leq y_{i}$ , $i\in I,j\in J$

$x_{ij},$ $y_{i}\in\{0,1\}$ , $i\in I,j\in J$

$\theta_{\xi^{1}},.,\epsilon^{\mathrm{t}}\geq\theta^{t}\geq..E_{\tilde{\xi}}1,$

$.., \tilde{\xi}\sum_{Ii\in}^{1}qirv’.i.(\xi t[\theta_{\overline{\xi t}t}.,\overline{\xi}^{t}1],’.t..=,1,.,\cdot., \tau\xi^{t})\xi 1-\in--1,$

$\ldots,$
$\xi^{t}\in_{-}--t$ ,

$t=1,$ $\ldots,$
$T$

$\sum_{j\in J}a_{j(}\xi t)_{X_{i}}j\leq b_{i}y_{i}\cdot\urcorner^{-}w_{i}^{1}|(\xi 1)+\ldots+w(it\xi^{\mathrm{i}}, \ldots, \xi t)$
,

$\xi^{1}\in_{-^{1}}--,$
$\ldots,$

$\xi^{t}\in_{-^{\iota}}--,$ $t=1,$ $\ldots,$
$T,$ $i\in I$

Though the problem $(\mathrm{M}\mathrm{S}- \mathrm{C}\mathrm{L}\mathrm{P}_{-}\mathrm{M}\mathrm{I}\mathrm{p})$ does not contain optimization over multi-stages, it contains many
constraints. Therefore we consider the problem (MS-CLP).

The recourse function of (MS-CLP) $Q^{t}(x, y, w^{1}, \ldots, w^{t-1}, \xi^{1}, \ldots, \xi^{t})$ indicates that the optimal re-
course action $w^{t}(\xi^{1}, \ldots , \xi^{t})$ at stage $t$ depends on the previous decisions and the realizations observed
until stage $t$ , i.e.

$w^{t}(\xi^{1}, \ldots, \epsilon t)=w^{t}(x, y, w^{1..t-1},., w, \xi 1, \ldots, \xi^{t})$ .
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Definition 1 In the history of $(\xi^{1}, \ldots , \xi^{t})$ up to stage $t$ , we define $u_{i}(x, y, \xi^{1}, \ldots, \xi^{t})$ as the minimum
$k(1\leq k\leq t)$ such that

$\sum_{j\in J}a_{j}(\xi k)x_{i}j\geq b_{i}y_{i}$
and $y_{x}=1$ . Else if $\sum_{j\in J}a_{j}(\xi t)x_{i}j<b_{i}y_{i}$

or $y_{i}=0$ , then we

define $u_{i}(x, y, \xi 1, \ldots, \xi t)=T+1$ .
$u_{i}(x, y, \xi^{1}, \ldots, \xi^{t})$ represents the stage in which it becomes necessary for concentrator $i$ to expand the
capacity.

Proposition 1 The solution of the recourse problem in stage $t$

$Q^{t}(x, y, w^{1}, \ldots, w-1, \xi t1, \ldots, \xi^{t})$

$= \min_{w^{t}}$
$\{\sum_{i\in I}q_{i}^{t}w_{i}t(\xi 1, \ldots, \xi t)|j\in\sum aJj(\xi t)_{X_{i}}j\leq b_{i}y_{i}+w^{1}i(\xi^{1})+\ldots+wit(\xi^{1..t},., \xi),$

$i\in I$

$w_{i}^{t}(\xi^{1}, \ldots, \xi^{t})\geq 0,$ $i\in I$

$w^{k}=argminQ^{k}(x, y, w,., w^{k-1}, \xi 1..1, \ldots, \xi^{k}),$ $k=1,$ $\ldots,$ $t-1\}$ ,
$\xi^{t}\in_{-,t=}--t1,$

$\ldots,$
$T$

is given as follows.

$w_{i}^{t}(\xi^{1}, \ldots, \xi^{t})=$

’

$0$ if $t<u_{i}(x_{:}y, \xi 1, \ldots, \xi t)$

$\sum a_{j}(\xi^{t})xij-biyi$ if $t=u_{i}(x, y, \xi 1, \ldots, \xi^{t})$

.
$\sum_{j\in J}^{j\in J}aj(\xi t)x_{ij}-\sum_{J\mathrm{j}\in}aj(\xi t-1)x_{i}j$ if $t>u_{i}(x, y, \xi^{1}, \ldots, \xi^{t})$

Proof. Because of $q_{i}^{t}\geq 0$ , from the definition of $Q^{t}(x, y, w^{1}, \ldots, w^{t-1}, \xi 1, \ldots, \xi t)$,

$w_{i}^{t}( \xi^{1}, \ldots, \xi^{t})=\max\{0,\sum_{Jj\in}aj(\xi t)_{X}ij-b_{i}yi-w^{1}i(\xi^{1})-\ldots-w^{t}-1(i\xi 1, \ldots, \xi t-1)\}$
.

The results are immediate if $t\leq u_{i}(x, y, \xi 1, \ldots, \xi^{t})$
from Assumption 1. We assume

$w_{i}^{l}= \sum_{j\in j}a_{j(}\xi^{l}$
) $x_{ij}-$

$\sum_{\mathrm{j}\in J}a_{j(}\xi^{l-}1)xij$
for

$l>u_{i}(x, y, \xi^{1}, \ldots , \xi^{t})$
. Then for $l+1$

$\sum_{j\in J}a_{j}(\xi\iota+1)x_{i}j-biy_{i}-w_{i}^{1}-\ldots-w_{i}^{l}$
$=$

$\sum_{j\in J}a_{j}(\xi^{l+}1)_{X}ij-biyi-(\sum_{jj\in}aj(\xi u_{i}(x,y,\epsilon^{1},\ldots,\epsilon^{t}))xij-biy_{i})$

-. . .
$-( \sum_{j\in J}aj(\xi l)xij-\sum_{j\in J}aj(\xi^{\iota}-1)_{X}ij)$

$=$
$\sum_{j\in j}a_{j(}\xi\iota+1)xij-j\in\sum_{J}aj(\xi\iota)Xij\geq 0$

Therefore by mathematical induction the result follows. 1
From Proposition 1 the recourse function is described as follows.

$Q^{t}(x, y, w^{1}, \ldots, w-1, \xi t1, \ldots, \xi^{t})$
$=$

$i \in\{i|t=u:(,y\xi^{1},\ldots,\xi l)\}\sum_{x},(\sum aj(\xi t)X_{i}j-biyi)q^{t}j\in ji$

$+i \in\{it>u:x\sum_{1(,y\xi^{1},\ldots,\xi^{l})\}},(\sum aj\in Jj(\xi t)_{X_{i}}j-\sum_{j\in J}a_{j(}\xi t-1)_{X}ij)q_{i}t$
(7)

In a two-stage model with continuous first stage variables the recourse function is a piecewise linear
convex function. But in this case it is difficult to derive optimality cuts to the recourse function because
the structure of (7) is so complex that its analysis is very difficult.

Here we reformulate (MS-CLP) to obtain (RMS-CLP). We introduce variables $v_{i}^{t}(\xi^{t}),$ $i\in I,$ $\xi^{t}\in$

$–tt-,=1\text{ノ}’\ldots,$
$T$ equal to the amount of expanded capacity that were added from stage 1 to stage $t$ .
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$\min$ $\sum\sum C_{ij^{X+\sum_{I}f_{i}y\sum_{t}^{T}\tilde{\xi}^{t})]}}iji\in i+=1E\overline{\epsilon}t[R^{t}(X,y$,

subject to $\sum_{i\in I}^{i\in Ij}Xij=\in J1$ , $j\in J$

$x_{ij}\leq y_{i}$ , $i\in I,j\in J$

$X_{i\mathrm{j},y_{i}}\in\{0,1\}$ , $i\in I,j\in J$

$R^{t}(x, y, \xi^{t})$

$= \min_{v^{t}}\{\sum_{I\dot{x}\in}(q^{t}i-qi^{+})t1(v^{t}i\xi^{t})|$

$\sum_{j\in J}a_{j}(\xi t)_{X_{i}}j\leq b_{i}y_{i}+v^{t}i(\xi^{t}),$
$v_{i}^{t}(\xi^{t})\geq 0,$ $i\in I\}$ ,

$\xi^{t}\in_{-}--t,$ $t=1,$ $\ldots,$
$T$

Theorem 1 Problem (RMS-CLP) is equivalent to problem (MS-CLP) and the optimal value of $(RMS_{-}$

$CLP)$ equals to that of (MS-CLP).

3.3 $\mathrm{L}$-Shaped Decomposition Algorithm
We consider the problem (RMS-CLP) that is equvalent to (MS-CLP). The standard mixed integer
programming formulation (MS-CLP-MIP) contains $\prod_{t=1}^{T}|_{-}^{-t}-|$ scenarios. The algorithm of integer-L-
shaped method decomposes the problem (RMS-CLP) into $T$ subproblems in which we have $|_{-}^{-t}-|$ scenarios.

The master problem for (RMS-CLP) is stated as follows.

$|$
$\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{i}\mathrm{e}\mathrm{C}\min_{\mathrm{t}\mathrm{t}\mathrm{o}}$

$\theta\theta\theta Xxi\sum\sum_{\xi^{t\geq}}^{\cdot},’\sum_{\in_{-}^{\neg}}i\in Ii\in tjijI\geq{}^{t}\theta xj\in J\leq y_{i}\xi^{t}ij\sum_{xR’(,,\xi}^{\in}\overline{\xi}^{\mathrm{t}}-,{}_{\mathrm{e}}P’(y\geq_{t}0,\xi^{t}\in\in\{=C_{i}jx_{ij}i1,i\mathrm{o}^{i}1\}y+\sum_{\xi}*I,j\in t\tilde{\xi}\in Ji\in--,t-t),\xi^{t}\in t--\xi JIi\in fiy_{i},+,\cdot\sum_{T}=1It\underline{)=\theta j}i\in.Jtt=.1t=’ 1\tau\theta Tt,$

$\ldots$ ,

The recourse function $R^{t}(x, y, \xi^{t}),$ $t=1,$ $\ldots,$
$T$ are not given explicitly in advance. Therefore we

add the cut that corresponds to the constraint $\theta_{\xi^{\ell}}\geq R^{t}(x, y, \xi^{t})$ sequentially. The next theorem gives a
family of optimality cuts.

Theorem 2 Let $(\hat{x},\hat{y}),\hat{\pi}_{i}^{t}$ be the $fea\mathit{8}ible$ first stage solution of (RMS-CLP) and the optimal solution
of the program

$\max\{\sum_{Ii\in}(j\sum_{\in J}aj(\xi t)\hat{X}_{ij}-b_{i}\hat{y}i)\pi_{i}^{t}|0\leq\pi_{i}^{t}\leq q_{i}^{t}-q_{i^{+1}}, it\in I\}$
, respectively. Furthermo

$>re$
, let

$\theta_{\xi^{t}}$ be the upper bound of $R^{t}(x, y, \xi^{t})$ .
$\theta_{\xi^{t}}\geq\sum_{i\in Ij}\sum\in J\hat{\pi}_{i}ta_{j}(\xi^{t})x_{ij}-\sum_{i\in I}\hat{\pi}ibty_{i}?$

. is a valid inequality for the

feasible solution set of (RMS-CLP).

We propose a new framework of algorithm which combines an $\mathrm{L}$-shaped method and a branch-and-
bound method. The algorithm repeats the iteration until the difference between the upper bound and
the lower bound for the optimal value reaches the tolerance we set beforehand. In Step 1 we solve a
master problem yielding the first stage solution. This first stage solution is feasible because the problem
has complete recourse. In Step 4 we add the optimality cut to approximate the recourse function.
Since the framework is simpler than the branch-and-cut method, it is easy to implement the algorithm.

The $\mathrm{L}$-shaped method (Van Slyke and Wets [21]) is a linearlization method using cutting planes
(optimality cuts). The optimality cut is derived based upon the Benders’ decomposition. Benders’
decomposition has been applied to deterministic mixed integer programming problems or stochastic
programming problems with continuous variables.

Our algorithm solves the integer master problem using a branch-and-bound method repeatedly. It
is not very difficult to implement the algorithm since it does not require the branching operation and
complicated fathoming rules.
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Algorithm of Integer $\mathrm{L}$-Shaped Method for (RMS-CLP). Step $0$ . Initialization
Set temporary objective value $\overline{z}=+\infty$ and lower bound for optimal objective value zz $0$ .. Step 1. Solve Master Problem for (RMS-CLP)
Solve Master Problem for (RMS-CLP) to obtain optimal solution $(\hat{x},\hat{y},\hat{\theta}^{t},\hat{\theta}\epsilon^{t}(\xi^{t}\in--tt-,=1, \ldots, T))$.. Step 2. Refinement of temporary objective value and lower bound for optimal objec-
tive value

If $\sum_{i\in I}\sum_{j\in J}C_{ij}\hat{x}_{i\mathrm{j}}+\sum_{i\in I}f_{i\hat{y}i}+\sum_{t=1}^{T}\hat{\theta^{t}.}->\underline{\mathrm{z}}$ , then $\sum_{i\in I}\sum_{j\in J}Cij\hat{X}ij+\sum_{i\in I}f_{i}\hat{y}i+\sum_{t=1}^{\tau}\hat{\theta}^{t}=\underline{\mathrm{z}}$. If
$\sum_{i\in I}\sum_{j\in J}\mathrm{q}_{j}\hat{x}_{i}j+$

$\sum_{i\in I}f_{i}\hat{y}i+\sum_{t=1}^{T}R^{t}(\hat{x},\hat{y})<\overline{z}$ , then $\sum_{i\in I}\sum_{j\in J}Ci\mathrm{j}\hat{x}_{ij}+\sum_{i\in\prime I}f_{i}\hat{y}_{i}+\sum_{t=1}^{T}R^{t}(\hat{x},\hat{y})=\overline{z}$ , where $R^{t}(\hat{x},\hat{y})=$

$E_{\overline{\xi}^{t}}[R^{t}(\hat{x},\hat{y},\tilde{\xi}^{t})]$ .

$\bullet$ Step 3. Check of convergence
If $\overline{z}\leq$

.
$(1+\epsilon)\underline{\mathrm{z}}$ , then stop. ( $\epsilon:$ toler.ance). Step 4. Add optimality cuts

If $\hat{\theta}_{\xi^{t}}<R^{t}(\hat{x},\hat{y}, \xi)$ for $\xi^{t}\in---t,$ $t=1,$ $\ldots,T$ , then add the optimality cuts to Master Problem for
(RMS-CLP) and go to Step 1.

Figure 2: Algorithm of Integer $\mathrm{L}$-Shaped Method for (RMS-CLP)

4 Numerical Experiments
We utilized the integer $\mathrm{L}$-shaped method to solve the problem. The whole framework of the al-
gorithm was coded in Perl (Wall and Schwartz [22]) and XPRESS-MP [24] was used as a linear
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}$ -and-bound solver. Computational experiments were carried out on a SPARC
Station 2.

Coordinates for sites of terminals and concentrator locations were generated from a uniform dis-
tribution over a rectangle of $[0,100]\cross[0,100],$ $[10,90])\zeta[10,90]$ , respectively. The Euclidean distance
between terminal $j$ and concentrator $i$ was used to define cost coefficient $\mathrm{q}_{j}$ .

$c_{ij}=\lfloor$ (distance between $i$ and $j$ ) $\cross 0.15\rfloor+1$ (8)

In the multi-stage model we assume $\tilde{\xi}^{t},t=1,$
$\ldots,$

$T$ has a discrete distribution and set $|_{-}^{-t}-|=3$ ,
$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}---t=\{1,2, \ldots , |_{\cup}^{-}-^{t}|\},$ $t=1,$ $\ldots,$

$T$ is a support of the probability measure $P$ . We define $P(\tilde{\xi}^{t}=k)$

as follows.
$P( \tilde{\xi}^{t}=k)=\frac{1}{|_{-}^{-t}-|},$ $k=1,2,$ $\ldots,$

$|_{-}^{-t}-|,$ $t=1,$ $\ldots,$
$T$ (9)

Traffic data from every terminal were defined as:

$a_{j}(\tilde{\xi}^{t}=k)=\lfloor U(150)+50\rfloor,$ $k=1,2,$ $\ldots,$
$|_{-}^{-t}-|,$ $t=1,$ $\ldots$ , T. (10)

where $U(150)$ was a number drawn from a uniform distribution between $0$ and 150. These data $\lfloor U(150)+$

$50\rfloor,$ $k=1,2,$ $\ldots,$
$|_{-}^{-t}-|,$ $t=1,$ $\ldots,$

$T$ are sorted so as to satisfy $\mathrm{A}_{\mathrm{S}\mathrm{S}\mathrm{u}}\mathrm{m}\mathrm{p}\mathrm{t}_{}\mathrm{i}\mathrm{o}\mathrm{n}1$ .

$a_{j}(\xi^{t})\leq a_{j}(\xi^{t}+1),\forall\xi^{t}\in_{-,\forall\xi}--tt+1\in_{-}--t+1,j\in J,$ $t=1,$ $\ldots,$ $T-1$ (11)

Recourse costs are defined as follows, where $\frac{1}{(1+\alpha)t-1}$ is a present worth factor. We set $\alpha=0.01$ .

$q_{i}^{t}= \frac{q_{i}}{(1+\alpha)^{t1}-},$ $i\in I,$ $t=1,$ $\ldots,$
$T$ (12)
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As we can see recourse costs $q_{i}^{t},$ $i\in I,$ $t=1,$ $\ldots,$
$T$ satisfy Assumption 2. The number of concentrators

to which each terminal can connect is restricted to 10 in the case that the number of terminal is 40 or
8 in the case of 60. The capacity of every concentrator was set as $b_{i}=1600,$ $i\in I$ . The fixed setup cost
was set as $f_{i}=180,$ $i\in I$ .

We compare the integer $\mathrm{L}$-shaped method $(\mathrm{I}_{-}\mathrm{L}-\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{d})$ for (RMS-CLP) with the branch-and-bound
method (B&B) for (MS-CLP-MIP) with $T=3,4,$ $|J|=40,60$ for the next two cases. In I-L-Shaped we
set the tolerance e=l(%).

. Low Recourse Cost Case $q_{i}= \frac{180\cross 4}{1600\cross 3}=0.15,$ $i\in I$

Recourse cost $q_{i}$ is $\frac{4}{3}$ times larger than the initial investment cost of concentrator per capacity.

$\mathrm{R}\mathrm{e}\mathrm{c}\mathrm{H}\mathrm{i}\mathrm{g}_{\mathrm{O}}\mathrm{h}\mathrm{R}\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{S}\mathrm{e}_{\mathrm{i}_{\mathrm{S}\mathrm{t}_{\mathrm{W}}}}\mathrm{C}\mathrm{o}\mathrm{S}\mathrm{t}\mathrm{C}\mathrm{a}\mathrm{u}\mathrm{r}\mathrm{S}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}q_{i}\mathrm{i}_{\mathrm{C}\mathrm{e}}\mathrm{a}\mathrm{s}1\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{a}\mathrm{S}\mathrm{i}=\mathrm{s}\mathrm{e}qi\frac{180\cross 2}{16,\mathrm{t}\mathrm{h}\mathrm{e}00}=0225,i\mathrm{s}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}1\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{t}\mathrm{m}\mathrm{e}\mathrm{n}I\in \mathrm{t}$

cost of concentrator per capacity.

Figure 3: Two Cost Cases of the Problem

Computational time includes the time for problem generaton in XPRESS-MP [24]. The error of the
I-L-Shaped algorithm for (RMS-CLP) is defined as follows.

Error of $\mathrm{I}- \mathrm{L}-\mathrm{S}\mathrm{h}\mathrm{a}_{\mathrm{P}^{\mathrm{e}}}\mathrm{d}$ algorithm for (RMS-CLP)
$=$ {Approximated objective value for (RMS-CLP) by (I-L-Shaped)

-Optimal objective value of $(\mathrm{M}\mathrm{S}- \mathrm{C}\mathrm{L}\mathrm{P}_{-}\mathrm{M}\mathrm{I}\mathrm{p})$ by (B&B) $\}$

/(Optimal objective value of (MS-CLP-MIP) by (B&B)) $\cross$ 100(%)

The problems considered in this paper consist of 40 to 60 terminal sites and 20 potential concentrator
locations. The results show that the integer $\mathrm{L}$-shaped performs reasonably well on relatively large
problems. The computing time tends to rise as the size of the problem increases. It is observed that in
all cases the computing time of integer $\mathrm{L}$-shaped are less than that of the usual B&B. Especially in the
high recourse cost case with 20 potential sites and 60 terminals the computing time of integer L-shaped
is nearly $13.5 \approx\frac{7418}{549}$ times faster than that of B&B (Table 2).

Table 2: Computational Results
Number of $\mathrm{N}\mathrm{u}\sim$mber Number Number Recourse (I-L-Shaped) (B&B)

Concentrator of of of Cost Computing Computing
Locations Terminals Stages Scenarios Time Time

$|I|$ $|J|$ $T$ $|_{-}^{-t}-|$
$q_{i}$ $(\sec)$ $(\sec)$

20 40 3 3 0.15 100 194
20 40 4 3 0.15 149 201
20 40 3 3 0.225 197 329
20 40 4 3 0.225 246 1138
20 60 3 3 0.15 213 1691
20 60 4 3 0.15 348 3193
20 60 3 3 0.225 292 2912
20 60 4 3 0.225 549 7418

Table 2 indicates that problems become more difficult wheh recourse cost $q$ becomes larger. This can
be explained as follows. When $q$ is large, the relative importance of recourse function $R^{t}(x, y)$ increases
in the total objective function. Because the function $R^{t}(x,y)$ is convex, convexity of the total cost rises.
Though we set the tolerance $\epsilon=1(\%)$ in (I-L-Shaped), it should be noted that our algorithm yields
good solutions. From Table 3 the error of integer $\mathrm{L}$-shaped ranges from 0.0 to 0.85.
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A $\mathrm{T}$ I- X $\mathrm{Y}$ $—-\mathrm{L}$ $—$

$\mathrm{h}\mathrm{T}_{--}-\mathrm{L}-- \mathrm{T}\mathrm{a}\mathrm{b}1\mathrm{e}3\cdot.\mathrm{o}\mathrm{b}.\mathrm{i}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{V}\mathrm{e}.\mathrm{v}_{\wedge}\mathrm{a}1\mathrm{R}\mathrm{T}---\mathrm{L}\wedge-\mathrm{D}\wedge\wedge\wedge\cdot-\mathrm{u}\mathrm{e}\mathrm{s}/\mathrm{T}\mathrm{T}\circ \mathrm{h}_{\cap--}A\backslash$

$/\mathrm{I}l\mathrm{p},$ $\mathrm{Q})$

Let $(\hat{x},\hat{y},\hat{\theta},\hat{\theta}\epsilon (\xi\in -))$ be the optimal solution of the master problem for (RMS-CLP), then the upper
and lower bound for the optimal objective value of (RMS-CLP) are shown as follows.

Upper Bound $= \sum_{i\in I}\sum_{j\in J}cij\hat{x}ij+\sum_{i\in I}f_{i\hat{y}}i+\sum_{t=1}^{T}R^{t}(\hat{x},\hat{y})$ (13)

Lower Bound $= \sum_{i\in I}\sum_{j\in J}Cij\hat{x}_{ij}+\sum_{i\in I}fi\hat{y}i+\sum_{t=1}\hat{\theta}^{t}\tau$ (14)

In the algorithm of I-L-Shaped we adopt the best upper bound up to the current iteration as the
temporary solution.

Table 4: Iteration of I-L-Shaped $(|J|=40,T=3)$
Low Recourse Cost Case High Recourse Cost Case

$q_{i}=0.15$ $q_{i}=0.225$

Iteration Lower Upper Added Iteration Lower Upper Added
Bound Bound Cuts Bound Bound Cuts

1389 836.0 91389 1059.5 9
2695.0 741.1 42712.0 766.1 4
3695.5 741.1 43712.8 766.1 4
4705.0 709.6 14722.0 730.4 1

5722.0 729.9 1
6723.0 723.0 $0$

Because the standard mixed integer programming formulation (MS-CLP-MIP) contains $\prod_{t=1}^{T}|_{-}^{-t}-|$

scenarios the computational time of (B&B) rises rapidly when the number of stages increases. The
algorithm of integer $\mathrm{L}$-shaped decomposes the problem (RMS-CLP) into $T$ subproblems in which we
have $|_{-}^{-t}-|$ scenarios. Further, these networks would represent a large computer network in which each
one of these terminals is likely to be a cluster of connected smaller computer systems. It is thus obvious
that we can treat larger network problems as well.
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Table 5: Iteration of I-L-Shaped $(|J|=40, T=4)$
Low Recourse Cost Case High Recourse Cost Case

$q_{i}=0$ . i5 $q_{i}=0.225$

Iteration Lower Upper Added Iteration Lower Upper Added
Bound Bound Cuts Bound Bound Cuts

1451 924.7 12 1451 1161.7 12
2 734.0 795.0 82757.4 849.5 8
3740.0 784.4 73763.4 830.1 7
4 740.0 753.1 44763.4 808.5 6
5 745.9 745.9 $0$ 5 769.4 769.4 $0$

Table 6: Iteration of I-L-Shaped $(|J|=60, T=3)$
Low Recourse Cost Case High Recourse Cost Case

$q_{i}=0.15$ $q_{i}=0.225$

Iteration Lower Upper Added Iteration Lower Upper Added
Bound Bound Cuts Bound Bound Cuts

1660 1297.0 71660 1616.0 7
21118.0 1140.6 421147.6 1232.3 4
31119.0 1126.0 231152.6 1175.6 2

41152.6 1260.4 3
51154.6 1164.5 2

5 Concluding Remarks
In this paper a stochastic version of a concentrator location problem is dealt with in which traffic demand
at each terminal location is uncertain. The problem is formulated as a stochastic multi-stage integer
linear program, with first stage binary variables concerning network design and continuous recourse
variables concerning expansion of capacity. Given a first stage decision, the series of realizations of
traffic demand may possibly imply a violation of the capacity constraint of the concentrator. Therefore
the recourse action is taken to correct the violation. The, objective function minimizes the cost of
connecting terminals and the cost of opening concentrators and the expected recourse cost of capacity
expansion. We proposed a new algorithm which combines an $\mathrm{L}$-shaped method and a $\mathrm{b}_{\Gamma \mathrm{a}\mathrm{n}\mathrm{C}}\mathrm{h}- \mathrm{a}\mathrm{n}\mathrm{d}$-bound
method. Finally we demonstrated the computational efficiency of our algorithm. Computer codes for
the algorithm were applied to a set of problems. The results show that our method solves these problems
in less time than a standard mixed integer programming approach.

The following points are left as future problems. In real problems there might be some possibiiity
that Assumption 1 does not hold true. The measures which decompose scenarios without Assumption
1 will have to be taken. It seems to $\mathrm{b}\mathrm{e}_{}$ a wothwhile problem to investigate.
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