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Abstract

This paper gives a theoretical equilibrium analysis for a deterministic migration model
among $n\mathrm{r}\dot{\varphi}\mathrm{o}\mathrm{n}\mathrm{s}$ in the case of zero natural growth. First, this paper shows that a migration
$\alpha \mathrm{l}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{u}\mathrm{m}$ always exists if residents’ utility functions are continuous. Second, this paper
gives some conditions for the stability of a migration equilibrium. Specifically, extending the
necessary condition of Tabuchi (1986), this paper provides conditions which are sufficient to
ensure a stable migration equilibrium. Although the model is basic and simple, this paper
provides a complete theoretical analysis and derives concise results, which have very intuitive
ecplanations.
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1 Introduction

Economics theories of migration begin with the assumption that the migration decision is based
on a comparison of economic and social conditions in the origin and destination regions. This
paper assumes that residents are homogeneous and individual decisions to migrate depend on
the utility discrepancy of regions. Although a resident’s utihity depends on many factors, for the
sake of simplicity, this paper supposes that the utility of a resident is a function $u_{i}(P_{\dot{*}})$ , where
$P_{\dot{l}}$ is the population size of region $i$ . Let the total population be $\overline{P}$ . Although the number of
population in a region should be an integer, we suppose that $\overline{P}$ is larger enough so that we can
treat all $P_{\dot{*}}$ as continuous variables.

We call a population state of $n$ regions $\mathrm{p}*=\{P_{1}^{*},$ $\ldots,P_{*}^{*}\rangle*$ a (inigration) equilibrium if no
resident wants to migrate. In the words of utihty, it should hold at equilibrium $\mathrm{p}*$ that

$\{$

$u_{i}(P_{i}^{*})=u^{*}$ if $i$ is a region with $P_{i}^{*}>0$ ,
$u_{i}(0)\leq u^{*}$ if $i$ is a region $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}P_{i^{*}}*=0$,

(1)

where $u_{i}(0\rangle$ $=\mathrm{h}\mathrm{m}_{\epsilon>0,\epsilonarrow}0u_{i}(\epsilon),$ $i=1,$ $\ldots,n$ . If ffi $P^{*}.>0$ , we $\mathrm{c}\mathrm{a}\mathbb{I}\mathrm{p}^{*}$ an interior equilibrium.
Otherwise, we call $\mathrm{p}*$ a comer equilibrium.

To the $\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{h}\dot{\mathrm{o}}\mathrm{r}$’ knowledge, none gives any condition to ensure the existence of a migration
equihibrium. Therefore Section 2 provides an existence result, which says that an equilibrium
(interior or corner) always exists if utihty function $u:(\cdot)$ is continuous for $\mathrm{a}\mathbb{I}i$ .

An equilibrium may colapse if some residents migrate by accident. Therefore it is necessary
to consider the stability of an equilibrium. To do so, we have to derive a differential equation
as a dynamic modeL Migration equihibrium $\mathrm{p}*=(P_{1}^{*},$ $\ldots,P_{n}^{*}\rangle$ is called $staMe$ if the stationary
solution $P_{i}(t)=P_{i}^{*}$ of the dynamics is (locally) asymptobcally stable. In otherwards, even
if the population of the regions happens to run off $\mathrm{p}*$ a little, the population will return to
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$\mathrm{p}*$ . In mathematical terms, $\mathrm{p}*$ is stable if for any positive number $\epsilon$ and initial time $t_{0}$ ,
there exists a neighborhood $N(\mathrm{P}^{*})$ of $\mathrm{p}*$ such that for any $\mathrm{P}^{0}\in N(\mathrm{P}^{*})$ , every solution $\mathrm{P}(t)=$

($P_{1}(t),$ $\ldots,P_{n}(t)\rangle$ of the differentid equation with initial value $\mathrm{P}(t_{0})=\mathrm{P}^{0_{\mathrm{S}\mathrm{a}}}\mathrm{t}\mathrm{i}\mathrm{S}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{s}||\mathrm{P}(t)-\mathrm{P}*||(=\triangle$

$\max_{i=1,\ldots,n}|P_{i}(t)-P_{i^{*}}|)<\epsilon$ for $\mathrm{a}\mathrm{U}t\geq t_{0}$ and $\lim_{tarrow\infty}\mathrm{p}(t)=\mathrm{p}*$ .
It is important to find some convenient conditions to ensure the stability of an equilibrium.

For example, in the recent “economic geography” literature (Krugman, $1991|$ Fujita, Krugman
and Veneables, 1999), researchers are interested in the procaes of regions’ agglomeration, by
examining the change of a stable equilibrium when transportation cost converges to zero. How-
ever, since there is no useful theoretical conclusion to ensure equihbrium stabihty in the case
of multiple regions, researchers either restrict their study to the case of two regions, or only
concern some spaeial equilibria while setting the stability conditions aside. The purpose of this
paper is to fill the theory gap of stabihty research.

Recently, some developed countries have a trend toward a zero natural growth rate. Therefore
we suppose that $\overline{P}$ is a constant number. To investigate the stabihity of a migration equilibrium,
Section 3 derives the folowing migration dynamics, by assuming that the migratory population
size is proportional to the utility discrepancy.

$\frac{dP_{i}(t)}{dt}=\sum_{\mathrm{j}=1}^{n}[u_{i}(Pi(t))-u\mathrm{j}(P\mathrm{j}(t))]$ , $i=1,2,$ $\ldots,n$ , (2)

where $t$ denotes time.
The above model is not new. When $u:=u_{j}$ for all regions $i$ and $j$ , the above dynamics is used

in Okabe (1980) and Tabuchi (1986). This paper adopts this more general model because each
region $i$ may have its uncontrolable region specific factors including some natural amenities (see
the Appendix of Berglas (1984) $)$ . Besides, Boadway and Flatters (1982) consider a similar $\mathrm{t}\mathrm{w}\mathrm{c}\succ$

region migration model including public sector goods and mobile capital. Recently, Nakajima
(1995) provides a stability condition for a tworegion model including both mobile capital and
labor.

A similar dynamics, called “replicator dynamics”, which is routinely used in evolutionary
game theory (Weibull, 1995), was proposed in Chapter 5 $0.\mathrm{f}$ Fujita, Krugman and Veneables
(1999) as follows:

$\frac{dP_{i}(t)}{dt}=\kappa(u_{i}(P_{i})-\sum_{j=1}^{n}\frac{P_{i}(t)}{\overline{P}}u\dot{\iota}(Pi(t)))P_{i}(t)$,

where $\kappa$ is the speed of adjustment (see Section 3 later). Two dynamics are distinguished as
follows. First, our residents do not reproduce themselves. The only reason for the population
increase in a region is that some residents of other regions move in. Therefore the right side of
(2) (the increase speed) is not proportional to the present population $P_{i}(t)$ , which happens in the
replicator dynamics model. Second, the average utility is weighted by the population distribution
in the replicator dynamics, while the average in our dynamics is a simple one without weight.
Third, this paper derives a sufficient and necessary condition to ensure the equilibrium stability
of our dynamics but no similar result is known for the replicator dynamics. Finally, although
the dynamics are different, an.y migration equilibrium corresponds to a stationary solution of
both dynamics.

Although it is important to find some convenient conditions for evaluating the stability of
equilibrium $\mathrm{p}*=\langle P_{1’\cdots,n}^{*}P^{*}\rangle$ , such kin$\mathrm{d}$ of research in a general $r\succ$-region case seems to be quite
mathematically complex. Therefore Okabe (1980), Boadway and Flatters (1982), Nakajima
(1995) only consider the case of two regions. An essential development in this field was done
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by Tabuchi (1986), who gives a necessary condition in the general case of $n$ regions. It $\mathrm{w}\mathrm{i}\mathbb{I}$

be clear that Tabuchi’s condition is very important to fom a sufficient one. To ilustrate his
condition, we now assume that $u:(\cdot)$ is differentiable for all $i=1,$ $\ldots,n$ , and consider an interior
$\alpha_{1^{\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{b}}}\mathrm{r}\mathrm{i}\mathrm{u}\mathrm{m}\mathrm{p}*$. By renaming the regions if necessary, we let $u_{1}’(P_{1^{*}})\geq u_{2}’(P_{2^{*}})\geq\ldots\geq u_{n}’(P^{*})n$.
Then Tabuchi’s necessary condition is

$(n-1)u’1(P_{1^{*}})+u_{\dot{*}}’(P_{i}^{*})\leq 0$ , $\forall i=2,$ $\ldots,n$ . (3)

To foml a sufficient one, this paper strengthens condition (3) by adding

The inequality of (3) holds strictly for at least one $i=2,$ $\ldots,n$ ; (4)

If $u_{1}’(P_{1^{*}})=0$ , then $u_{2}(\prime P_{2}*)<0$. (5)

When $n=2,$ (3) $-(5)$ degenerate to expression $u_{1}’(P_{1^{*}})+u_{2}’(\overline{P}-P_{1}^{*})<0$ , which appears in
Okabe (1980) ((10) of Lemma 1, pp. 357) and Boadway and Flatters (1982) (expression (6),
pp.619). Our conditions have a very intuitive explanation. Following Boadway and Flatters, we
call region $i$ with $P_{i}^{*}unde7\mathrm{P}^{O}pulated$ if $u_{\dot{l}}’(P)i^{*}>0$ and overpopulated if $u_{i}’(P_{i^{*}})<0$ . Tabuchi
(1986) says that if there are two or more underpopulated regions, then the equilibrium is not
stable. On the other hand, if all regions are overpopulated, then each resident’s utility decreases
if $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ migrates hence the equilibrium is stable. If region 1 is underpopulated and (3)$-(5)$

hold, then $u_{i}’(P_{i^{*}})<0$ for $i=2,$ $\ldots,n$ by (3), and the residents of regions 2, ... , $n$ may prefer
migration to region 1. In the case that each region of 2, ..., $n$ has one resident migrating to region
1, the utihty of a new comer of region 1 increases by approximately $(n-1)u^{;}1(P_{1}^{*})$ . However, the
utility of a remained resident in region $i$ increases approximately $\mathrm{b}\mathrm{y}-u_{\dot{l}}(\prime P_{i^{*}})\geq(n-1\rangle u_{1}’(P_{1}^{*})$,
where the inequality is implied by (3). If the inequality holds strictly for $i$ then no resident
of region $i_{\mathrm{P}}\mathrm{I}\mathrm{e}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{S}$ moving and the equilibrium becomes stable. Finally, (5) excludes the case
that $u_{1}’(P_{1^{*}})=u_{2}’(P_{2^{*}})=0$ , in which residents of regions 1 and 2 may migrate free to each
other without changing utihties. What we will do in Section 3 is to $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{C}\mathrm{a}\mathbb{I}\mathrm{y}$ prove that
(3) $-(5)$ actually form a set of conditions which is sufficient to ensure the stability of an interior
equilibrium $\mathrm{p}*$ , and further generalize the result to the case of corner equilibrium.

2 The existence of an equilibrium

The existence of an equilibrium is extensively discussed in the field of local public good economies.
For example, Nechyba (1997), Konishi (1996) and Bewky (1981). Since public good and tax
are considered in their models, a resident’s utility function depends on at least (i) the region $i$

where the resident lives; (ii) the public goods distribution and (iii) the amoumt of private good
consumption. To ensure the existence, some standard conditions for the utihity functions are
required, for example, the continuity, the monotony and quasi-convexity in the public goods and
private goods.

Our migration model (1) is similar but different, because we assume that a resident’s utility
is only related to the region (where the resident lives) and the population in the region. Our
model seems to be simpler, hence we can expect a conclusion with fewer conditions. In fact, this
section shows, to ensure the existence of a migration equilibrium, we only need the continuity
of fimctions $u:(\cdot)$ for all $i=1,$ $\ldots,$

$n$ .

Theorem 1 If utility fiunction $u_{i}(\cdot)$ is continuous for any mgion $i$ , then then exists at least one
equilibrium $\mathrm{p}*=(P_{1}^{*}, \ldots,P_{n}^{*})$ .
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It is important to note that our conclusion does not affirm the existence of an interior equi-
librium. In fact, it may happen that there are only some corner equilibria. A corner equilibrium
is important in the study of core-periphery structure of $\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{o}\mathrm{n}8$

’ agglomeration (Fujita, Krugman
and Venables, 1999).

Also, the $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}_{8}\mathrm{a}\mathrm{y}8$ nothing about the $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{e}88$ of an equilibrium. For example, in the
case of two regions shown in Figure 1, there are three equilibria, one interior and two corners.

$\overline{P\uparrow}$ $P\overline{2-\not\simeq-P-}\{$

Figure 1: Three equilibria

3 Stability Analysis

This $8\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ provides a set of convenient conditions to ensure the stability of a migration equi-
librium, which may be interior or corner. Specifically, we show that an interior migration
equilibrium $\mathrm{i}8$ stable if (3)$-(5)$ holds at the equilibrium, and a similar result holds for a corner
equilibrium. To the author’s knowledge, this is the first result concerning a sufficient condition
for a stable migration equilibrium in a general case of $n$ regions, although the model is basic
and $8\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}$ .

$\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}8\mathrm{e}8$ that $u_{i}(\cdot)$ is differentiable and hence continuous. Therefore there always exists an
equilibrium $\mathrm{p}*=(P_{1}^{*},$

$\ldots$ , $P_{n}^{*}\rangle$ by Theorem 1. Furthermore we suppose that $u_{\dot{l}}(\cdot)$ satisfies the
so-called Lipschitz condition (P. 306 of Ihkayama (1985)).

We first cbnsider the case of interior equilibrium. Since $P_{i}^{*}>0\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}8$ for any region $i$ , we can
limit our concern to a neighbor of $\mathrm{p}*$ such that $P_{i}(t)>0$ , where $t$ is the $\mathrm{c}\mathrm{o}\mathrm{n}8\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}$ time. Let
$\Delta t$ be a $8\mathrm{m}\mathrm{a}\mathrm{U}$ time period such that $p_{i}(t+\Delta)>0$ for all region $i$ , and denote $P_{ji}(t,t+\Delta t)$ as
the population moving from region $j\neq l$ to region $i$ during the time period from $t$ to $t+\Delta t$ . A
$\mathrm{p}\mathrm{o}8\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ value of $P_{ji}(t,t+\Delta t)$ means that some residents move from $j$ to $i$ , and a negative value
means that some residents move from $i$ to $j$ , therefore $P_{j:}(t,t+\Delta t)=-P_{ij}(t, t+\Delta t)$ . Since
$\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}_{8}$ move from a low-utility region to a high-utility region, we suppose that the migration
population $\mathrm{i}_{8}$ proportional to the utility discrepancy. Then for sufficiently small $\Delta t$ , it holds
that

$P_{ji}\mathrm{t}t,t+\Delta t)=\kappa_{j}:\Delta t[ui(P_{\dot{|}(}t))-uj(P_{j}(t))]$ , for $i,j=1,$ $\ldots,n,$ $i\neq j$ , (6)
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where $\kappa_{ji}$ is the so-callal speed of adjustment (Metzler, 1945), which measures the speed with
which residents migrate between regions $i$ and $j$ corresponding to a given utility discrepancy
between regions $i$ and $j$ . Since $P_{ji}(t,t+\Delta t)=-P_{\dot{e}j}(t,t+\Delta t)$ , it holds that $\kappa_{ji}=\kappa_{\dot{e}j}$ . Since
all the features of a region is included in its utility function and all residents are homogeneous,
residents’ decisions to migrate only depend on the utility $\mathrm{d}\mathrm{i}\dot{\mathrm{s}}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{m}\mathrm{c}\mathrm{y}$. Therefore, independent of
the names of regions, residents in region $i$ respond to the utihity discrepancy of any other region
with the same speed of adjustment. That is $\kappa_{ij_{1}}=\kappa_{\dot{\iota}\dot{p}}$ for $\mathrm{a}\mathrm{U}j_{1},j_{2}\neq i$ . Therefore, $\kappa_{ij}=\kappa$ for
all $i$ and $j\neq i$ . We can simply nomalize residents’ utihity function so that $\kappa=1$ . So in the
following arguments, we always let $\dot{\kappa}_{ij}=1$ .

For convenience, define $P_{\dot{\iota}i}(t,t+\Delta t)=0$ for any $i,$ $t$ and $\Delta t$ . Then (6) holds for all $i$ and $j$ .
Hence

$P_{i}(t+ \Delta t)=P_{i}(t)+\sum_{j=1}^{n}P_{j}i(t,t+\Delta t)=P_{i}(t)+\Delta t\sum_{j=1}[u_{i}(Pi(t))-uj(Pj(t))]n$ ,

and

$\frac{dP_{i}(t)}{dt}=\lim_{\Delta tarrow 0}\frac{P_{i}(t+\Delta t)-P_{i}(t)}{\Delta t}=\sum_{1\mathrm{j}=}^{n}[u_{i}(Pi(t))-u_{j}(Pj(t))]$,

which leads to dynamics (2). Since we have supposed that $u_{i}(\cdot)$ is differentiable and satisfies
the Lipschitz condition, by extending the domain of definition of $u_{i}(\cdot)$ from $[0,\overline{P}]$ to $(-\infty, \infty)$

suitably, we know that there is a unique and continuous solution of (2) with any initial value
around $\mathrm{p}*$ (Theorem 3. $\mathrm{B}.1$ and its Remarks of Takayama (1985)).

Summing up all the equations of (2), we find $\sum_{i=1}^{n}dP_{i}(t)/dt=0$, which is consistent with
the fact that $\sum_{=1}^{n}P_{i}(t\rangle$ $=\overline{P}$ is a constant. Therefore we can revise (2) as $\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{w}\mathrm{S}$.

$\frac{dP_{i}}{dt}=(n-1)u_{i}(P\dot{\iota})-j-1\sum_{j\overline{\neq}i}^{\mathfrak{n}-1}u_{j}(P_{j})-u_{n}(\overline{P}-n-j=1\sum P_{j})1$
, $i=1,$

$...\cdot,n-1$
, (7)

Following Tabuchi (1986), we denote $\mu:=u_{i}’(P_{i^{*}})$ and denote the characteristic polynomial of
matrix $A$ as $\Psi_{A}(\lambda)=\det[A(\lambda)]$ , where $A=[a_{ij}]_{\mathrm{t}^{n}}-1)\mathrm{x}\mathrm{t}^{n-}1)’ A(\lambda)=[a(\lambda)_{i}j]_{\mathrm{t}n-}1)\mathrm{X}(n-1)$ ’ and

$a_{ij}=\{$
$(n-1)\mu_{i}+\mu_{n}$ , fori $=j$

$-\mu_{j}+\mu_{n}$ , for $i\neq j$
’ (8)

$a(\lambda)_{\dot{\iota}j}=\{$

$(n-1)\mu_{\dot{l}}+\mu_{n}-\lambda$ , for $i=j$
$-\mu_{j}+\mu_{n}$ , $\mathrm{f}\mathrm{o}\mathrm{r}i\neq j$

After renamin$\mathrm{g}$ the regions if necessary, we suppose that $\mu_{1}\geq\mu_{2}\geq\ldots\geq\mu_{n}$. There are $n-1$
roots (possibly multiple) of the characteristic equation $\Psi_{A}(\lambda)=0$, which are $\mathrm{c}\mathrm{a}\mathrm{U}\alpha 1$ eigenvalues.
It is known that equilibrium $\mathrm{p}*$ of $\langle$7) is stable if all the Ieal parts of the eigenvalues of $A$ are
negative (Gantmacher, 1960), and is unstable if there is at least one eigenvalue is with positive
real part. We can show that $\mathrm{g}$ the eigenvalues of $A$ are real numbers, which are all negative
if and only if (3)$-(5)$ hold. Rrthermore, from Tabuchi (1986), we know that if (3) is violated
then there is at least one positive eigenvalue and the dynamics is unstable. Therefore, we affirm

Theorem 2 An interior equilibrium is stable if (3) $-(5)$ hold at the equilibriumj if (3) is violated,
then the equilibrium is unstable.
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Remark We can further show that if (3) holds but (4) or (5) is violated, then $0$ is an eigenvalue
of $A$ . Since the differential equation theory does not completely disclose the critical case with a
zero eigenvalue, we are not sure whether the dynamics is stable or unstable in this case. However,
almost $\mathrm{a}\mathrm{U}$ economics researches (Okabe, 1980; Nakajima, 1995) omit the discussion of this case
and think that having a zero eigenvalue implies that the dynamics is unstable. In this sense,
(3) $-(5)$ become necessary and sufficient conditions for the stability.

Next we turn to the case of corner equihibrium. In migration study, it is reasonable to suppose
that the inequality in (1) holds strictly1. That is,

$u^{*}>u_{j}(0\rangle$ for all $j$ such that $P_{j}^{*}=0$ . (9)

By (1) and (9), we can rename the regions so that

$\{$

$P_{i}^{*}\neq 0$ and $u_{i}(P_{i^{*}})=u^{*}$ , for $i=1,$ $\ldots,$
$n_{1}$ ;

$P_{j}^{*}=0$ and $u_{\mathrm{j}}(0)<u^{*}$ , for $j=n_{1}+1,$ $\ldots$ , $n$ ;

$u_{1}’(P_{1^{*}})\geq\cdots\geq ui(\prime P_{i}*)\geq\cdots\geq u_{\mathrm{b}}’(1P^{*})n1^{\cdot}$

(10)

Consider an initial population distribution $\mathrm{P}(t)=\langle P_{1(t),\ldots,P_{n}(t\rangle}\rangle$ . If $P_{\mathrm{j}}(t)=0$, then none
moves from region $j$ to other regions but some residents may migrate into region $j$ . Therefore
(6) should be revised as follows

$P_{J^{i}}’(t,t+\Delta t)=\{$

$\Delta t[u_{i}(Pi(t))-uj(P_{j}(t))1$ , if $P_{i}(t)>0,P_{j}(t\rangle>0$ ,
$\Delta t\min\{0,u_{i(}Pi(t))-u\mathrm{j}(P_{j}(t))\}$, if $P_{i}(t)>0,P_{j}(t)=0$,
$\Delta t\max\{0,u_{i}(P_{i(t)})-uj(P_{j}(t))\}$ , if $P.(t)=0,P_{j}(t)>0$ ,
$0$ , if $P_{i}(t)=P_{j}(t)=0$ .

Hence the dynamics for a corner equilibrium takes the $\dot{\mathrm{f}}\mathrm{o}$llowing form: for $\mathrm{i}=1,$
$\ldots,$

$\mathrm{n}$ ,

$\frac{dP_{i}(t)}{dt}=\{$

$j=1, \ldots,n\mathrm{I}P_{\tilde{g}}\mathrm{t}\sum_{0t)>}[u_{i(P_{i}}(t))-uj(Pj(t))]$
if $P_{i}(t)>0$ ,

$+ \sum_{0j=1,\ldots,n|P_{j}\mathrm{t}^{t})=}\min\{0,ui(Pi(t))-u_{\mathrm{j}}(Pj(t))\}$
,

$j=1, \ldots,n|P_{j}(\sum_{t)>0}\max,\mathrm{t}0,u\dot{*}(P_{i}(t))-u_{j}(Pj(t))\}$
, if $P_{i}(t)=0$.

(11)

Note that the above equations imply that $\sum_{i=1}^{n}dP_{i}(t)/dt=0$ for all $t$ , which is consistent with
the assumption of constant popuhtion $\overline{P}$ .

Remember that $u_{i}(\cdot)$ satisfies the Lipschitz condition, by extending the domain of definition
of $u_{i}(\cdot)$ from $[0,\overline{P}]$ to $(-\infty, \infty)$ suitably, we know that there is a unique and continuous solution
of (11) with any initial condition around $\mathrm{p}*$ . Our stabihty conclusion for a corner equilibrium
is stated in the $\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{W}\dot{\mathrm{m}}\mathrm{g}$ theorem. The result is also very intuitive. Starting from initial
distribution around $\mathrm{p}*$ , the residents in regions $n_{1}+1,$ $\ldots,n$ will migrate to regions 1, ..., $n_{1}$

because the utihties in Iegions $n_{1}+1,$ $\ldots,n$ are lower. Conditions (12) $-(14)$ are similar to
(3) $-(5)$ , which ensure that the population distribution ($P_{1}^{*},$ $\ldots,P_{\mathrm{n}_{1}}^{*}\rangle$ will be stable if there are
only $n_{1}$ regions totally.

1 An equihbrium may be either stable or unstable if $u^{*}=u_{\overline{\mathrm{J}}}(\mathrm{o})$ instead of (9) $\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}8$ for a region $j$ . The
mathematical $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}8\mathrm{i}8$ for $\mathrm{t}\mathrm{h}\mathrm{i}8$ case is very troublesome and this case seems to be unhkely in a mmigration eqmilibrium
of real $\mathbb{R}$ . Therefore almost $\mathrm{a}\mathrm{U}$ economics researchers (for example, Rjita, Krugnan and Veneables, 1999) omit
the diseussion of this case, even when $n=2$.
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Theorem 3 If $n_{1}=1$ , then equiliffium $\mathrm{p}*=\mathrm{t}P_{1}^{*},$ $\ldots,P_{n}^{*}$ ) satishing (10) is always stable. If
$n_{1}\geq 2$, then equihbrium $\mathrm{p}*sabf\dot{w}ng(10)$ is stable if

$(n_{1}-1)u_{1}(\prime P_{1^{*}})+u_{\dot{l}}’(P_{i^{*}})\leq 0$, $\forall i=2,$ $\ldots,n_{1}$ , (12)

the inequality of (12) hous $Sm_{ctly}$ for at least one $i=2,$ $\ldots,n_{1}$ , (13)

if $u_{1}’(P_{1^{*}})=0$ , then $u_{2}’(P_{2^{*}})<0$ . (14)

If (12) is niolated, then $\mathrm{p}*$ is unstable.

Similar to the remark after $\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}2$, if we treat the critical case of zero eigenvalue as
unstable, then (12) $-(14)$ become necessary and sufficient conditions.

Rom Theorems 2 and 3, we know that in the case of Figure 1, two corner equilibria are stable
and the interior one is not. Althoug Theorem 1 ensures that at least one equilibrium, it does
not ensure the existence of a stable equihibrium. In the case that $n=2,$ $u_{1}(P_{1})=u_{2}(\overline{P}-P_{1})$,
each residential distribution forms an equilibrium but none is (asymptoticffiy) stable.

4 Conclusions

This paper investigates a deterministic migration model among $n$ regions in the case of zero
natural growth. First, it is shown that the continuity of residents’ utility functions ensures the
existence of a migration equilibrium. Then sufficient conditions are given for the stability of
such an equilibrium.

Although the model used in this paper is basic and simple, but the discussion here is rigorous.
To the author’s knowledge, no other paper shows the existence of a migration equilibrium
explicitly and none has given any sufficient condition for the stabihity of a migration equilibrium
in the case of $n$ regions before.

It is known that the recent economic geography literature is strongly related to stability
analysis of a migration equilibrium, the results of this paper is expected to be applicable in the
research of economic geography.

Finally, the results of this paper are valuable to be $\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}$

’

to some more realistic and more
complex models. First, our results depend strongly on the assumption that the utility function
$u:(P_{\dot{l}})$ is only related to the population size of region $i$ . A general function may be related to
the population sizes of other regions. The stabihity conditions derived in this paper do not hold
in this general $\mathrm{m}o\mathrm{d}\mathrm{e}\mathrm{L}$ Second, our model is deterministic but there are many good stochastic
models (Tabuchi, 1986; Weidlich and Haag, 1988; O’Connel, 1997). The stabihity research on
some stochastic models may reveal more $i\mathrm{m}\mathrm{p}_{\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{n}}\mathrm{a}\mathrm{t}\backslash$ facts.

A&nowledgement: The author thanks T. Tabuchi of The University of Tokyo, Y. Yamamura
and H. Takatsuka of Kagawa Univerisity and two anonymous referees for beneficial discussions
and comments.
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