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1 Introduction
An efficient algorithm for sequencing a finite number of jobs through a single facility
to minimize the number of late jobs was discovered by Moore (1968) more than three
decades ago. It is also well known that a stochastic variant of this problem can be solved
efficiently [1].

Recently Itoh and Ishii (1999) considered this problem for several special cases of fuzzy
processing times and due dates. In this paper, open problems posed by Itoh and Ishii
(1999) and a more general problem are solved.

2 Previous Works
Moore (1968) considered the following problem. There are $n$ jobs $J_{1},$ $J_{2},$

$\ldots$ , $\sqrt n$ with
(crisp) processing times $t_{1},$ $t_{2},$

$\ldots,$
$t_{n}$ and (crisp) due dates $d_{1},$ $d_{2},$

$\ldots,$
$d_{n}$ . A schedule is a

sequence of jobs. For a given schedule $S=(J_{i_{1},i_{2},\ldots,i_{n}}\sqrt\sqrt)$ , completion time of job $J_{i_{j}}$

in $S$ is $c_{i_{j}}=\Sigma_{k=1}^{j}t_{i_{k}}$ . A job $J_{i_{j}}$ is late in schedule $S$ if $c_{i_{j}}>d_{i_{j}}$ .

Problem 1 Find a schedule $S$ such that the number of late jobs in $S$ is the $\mathit{8}mallest$ over
all schedules.

Moore (1968) presented and analyzed a polynomial time algorithm solving Problem 1.
Recently, Itoh and Ishii (1999) have considered this problem for the case with fuzzy

processing times and fuzzy due dates. Each job $J_{i}$ has a fuzzy processing time $\mathcal{T}_{i}$ and
a fuzzy due date $D_{i}$ . Each $\mathcal{T}_{i}=(t_{i}, \alpha, \beta)_{LR}$ is a L-R fuzzy number whose membership
function $\mu_{\mathcal{T}_{i}}$ is defined as follows:

$\mu_{\mathcal{T}_{i}}(x)=\{$

$L( \frac{t_{i}-x}{\alpha})$ if $x\leq t_{i}$ ,

$R( \frac{x-t_{i}}{\beta})$ if $x\geq t_{i}$ ,
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where $t_{i},$ $\alpha,$
$\beta$ are positive real numbers and $L$ and $R$ are decreasing functions from $[0, \infty]$

to $[0,1]$ satisfying $L(\mathrm{O})=R(\mathrm{O})=1$ . Each $D_{i}=(d_{i})_{U}$ is a fuzzy number whose membership
function $\mu_{D_{i}}$ is defined as follows:

$\mu_{D_{i}}(x)=\{$
1 if $x\leq d_{i}$ ,
$\max\{0, U(x-d_{i})\}$ if $x\geq d_{i}$ ,

where $d_{i}$ is a non-negative real number and $U$ is decreasing function from $[0, \infty]$ to $[0,1]$

satisfying $U(\mathrm{O})=1$ . Given a schedule $S=(J_{i_{1},i_{2}}J, \ldots, Ji_{n})$ , the completion time $C_{i_{j}}$ of
job $\sqrt i_{j}$ in $S$ is also a fuzzy number whose membership function $\mu c_{{}^{\mathrm{t}}\mathrm{j}}$ is defined as follows:

$C_{i_{1}}=\mathcal{T}_{i_{1}}$ and $C_{i_{j}}=C_{i_{\mathrm{j}-1}}\oplus \mathcal{T}_{i_{j}}$ for $1<j\leq n$ ,

where $\oplus$ is the extended addition defined by

$(t, \alpha, \beta)LR\oplus(t’’, \alpha, \beta/)LR=(t+t’, \alpha+\alpha’, \beta+\beta’)LR$ .

Thus, we have

$C_{i_{j}}= \bigoplus_{k=1}^{j}\mathcal{T}_{i_{k}}=(\sum_{k=1}^{j}t_{i_{k}},j\alpha,j\beta \mathrm{I}LR$ for $1\leq j\leq n$ .

The possibility measure of $D_{i}$ on $C_{i}$ is denoted by $\Pi_{C_{i}}(D_{i})$ , and is defined as follows
(see Figure 1):

$\Pi_{C_{i}}(D_{i})=\sup_{x}\min\{\mu C_{i}(x), \mu_{\mathcal{D}_{i}}(x)\}$ .

For a real number $\lambda(0\leq\lambda\leq 1)$ , job $J_{i}$ is $\lambda- P$ late in schedule $S$ if $\Pi_{C_{i}}(D_{i})<\lambda$ .

Problem 2 Given a real number $\lambda(0\leq\lambda\leq 1)_{f}$ find a schedule $S$ such that the number
of $\lambda- P$ late jobs in $S$ is the $\mathit{8}malle\mathit{8}t$ over all $\mathit{8}cheduleS$ .

Itoh and Ishii (1999) showed that Moore’s algorithm can be extended to solve Prob-
lem 2. Furthermore, they posed the following open problems.

$\bullet$ Problem 2 with jobwise different $\alpha,$
$\beta$ .

$\bullet$ Problem 2 with jobwise different $U$ .

In this paper, we solve these open problems and a more general problem.

47



$u\prime D.(_{X}1$

3 New Results
Suppose the fuzzy processing time $\mathcal{T}_{i}$ and the fuzzy due date $D_{i}$ of each job $\sqrt i$ are given
as $\mathcal{T}_{i}=(t_{i}, \alpha_{i}, \beta i)_{LR}$ and $D_{i}=(d_{i})_{U_{i}}$ . That is, $\alpha_{i},$

$\beta_{i}$ and $U_{i}$ are permitted to be jobwise
different.

In this case, completion time $C_{i_{j}}$ of $\sqrt i_{j}$ in schedule $S=(J_{i_{1}}, J_{i_{2}}, \ldots, J_{i_{n}})$ , can be
expressed as follows:

$C_{i_{\mathrm{j}}}= \bigoplus_{k=1}^{j}\mathcal{T}_{i_{k}}=(\sum_{k=1}^{j}t_{i},\sum_{k=1}^{j}\alpha ki_{k}$ , $\sum_{k=1}^{j}\beta i_{k}\mathrm{I}LR$ for $1\leq j\leq n$ .

Since $L$ and $U$ are decreasing functions, we have for $1\leq j\leq n,$ $\Pi_{C_{i_{j}}}(D_{i_{j}})<\lambda$ if and only
if

$\sum_{k=1}^{j}t_{i}-kx\mathrm{m}\mathrm{i}\mathrm{n}\{|L(x)=\lambda\}\sum_{k=1}^{j}\alpha_{i_{k}}>d_{i_{j}}+\max\{X|U(x)=\lambda\}$. (1)

Therefore, job $J_{i_{j}}$ is $\lambda- \mathrm{P}$ late in schedule $S$ if and only if (1) is satisfied (see Figure 2).

Theorem 1 Moore’s algorithm can be extended to solve Problem 2 with $jobwi\mathit{8}e$ different
$\alpha,$

$\beta$ , and $U$ .

Proof. Consider an instance of Problem 2 given by $\mathcal{T}_{i}=(t_{i}, \alpha_{i}, \beta i)_{LR},$ $D_{i}=(d_{i})_{U}\dot{.}$ for
$1\leq i\leq n$ , and $\lambda$ . Such an instance can be solved by applying Moore’s algorithm to the
(crisp) instance of Problem 1 with processing times $\hat{t}_{i}$ and due-dates $\hat{d}_{i}$ which are given
as follows: for $1\leq i\leq n$ ,

$\hat{t}_{i}=t_{i^{-\alpha_{i}}}\min\{X|L(x)--\lambda\}$

and
$\hat{d}_{i}=d_{i}-\max\{x|U_{i}(X)=\lambda\}$ .

This follows directly from the fact that job $J_{i_{j}}$ is late in schedule $S=$ $(J_{i_{1},i_{2}}J, \ldots , J_{i_{n}})$ for
the constructed instance of Problem 1 if and only if (1) is satisfied, that is, if and only if
job $J_{i_{\mathrm{j}}}$ is $\lambda- \mathrm{P}$ late in the same schedule $S$ for the corresponding instance of Problen 2. $\blacksquare$
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4 Krther Extension
Now let us consider a more general situation such that jobwise different functions $L$ and $R$

are also permitted. Then, the fuzzy processing time $\mathcal{T}_{i}$ of job $J_{i}$ is denoted by $\mathcal{T}_{i}=(t_{i})_{L_{i}R_{\mathfrak{i}}}$

and its membership function $\mu_{\mathcal{T}_{t}}$ is defined as follows:

$\mu_{\mathcal{T}_{i}}(x)=\{$

$L_{i}(t_{i}-x)$ if $x\leq t_{i}$ ,
$R_{i}(x-t_{i})$ if $x\geq t_{i}$ ,

where $t_{i}$ is a positive real number, and $L_{i}$ and $R_{i}$ are decreasing functions from $[0, \infty]$

to $[0,1]$ satisfying $L_{i}(0)=h(0)=1$ . Notice that in this situation $\alpha_{i}$ and $\beta_{i}$ are not
necessary for definition of $\mathcal{T}_{i}$ .

In this case, in order to define the completion times ofjobs in a schedule, a more general
$\mathrm{s}\mathrm{u}\mathrm{m}\oplus\sim$ is used instead of the extended $\mathrm{s}\mathrm{u}\mathrm{m}\oplus$ . In a schedule $S=(J_{i_{1}}, J_{i_{2}}, \ldots, J_{i_{n}})$ , the
completion time $C_{i_{\mathrm{j}}}$ of job $J_{i_{j}}$ is defined as follows:

$C_{i_{1}}=\mathcal{T}_{i_{1}}$ and $C_{i_{j}}=C_{i_{j-1^{\oplus}}}\tau\sim i_{\mathrm{j}}$ for $1<j\leq n$ ,

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\oplus\sim$ is defined as follows:

$(t)_{L}R\oplus(t’)\sim L’R^{l}=(t+t’)_{L\hat{R}}\wedge$ ,

such that

$\hat{L}(z)=\sup_{=zx+y}\min\{L(X), L/(y)\}$ , and $\hat{R}(z)=\sup_{z=x+y}\min\{R(X), R’(y)\}$ .

Notice that $\oplus\sim$ is an extension of $\oplus$ , i.e., $\oplus\sim$ can be used instead $\mathrm{o}\mathrm{f}\oplus \mathrm{f}\mathrm{o}\mathrm{r}$ the problem
considered in the previous section.

Since for any real number $\lambda(0\leq\lambda\leq 1)$ ,

$\min\{z|\hat{L}(x)=\lambda\}=\min\{X|L(x)=\lambda\}+\min\{y|L’(y)=\lambda\}$ ,

job $J_{i_{j}}$ is $\lambda- \mathrm{P}$ late in schedule $S$ if and only if

$\sum_{k=1}^{j}t_{i_{k}}-\sum_{k=1}j\min\{x|\acute{L}_{i_{k}}(x)=\lambda\}>d_{i_{j}}$

.
$+ \max\{X|U_{i_{j}}(x)=\lambda\}$ . (2)

Theorem 2 Moore’s algorithm can be extended to solve Problem 2 with jobwise different
$L_{f}R$, and $U$ .

Proof. Consider an instance with $\mathcal{T}_{i}=(t_{i})_{L.R},$ $D_{i}=(d_{i})_{U_{i}}$ for $1\leq i\leq n$ , and $\lambda$ .
Such an instance can be solved by applying Moore’s algorithm to the crisp instance of
Problem 1 with processing times $\hat{t}_{i}$ and the due-dates $\hat{d}_{i}$ which are given as follows: for
$1\leq i\leq n$ ,

$\hat{t}_{i}=t_{i}-\min\{X|L_{i}(x)=\lambda\}$

and
$\hat{d}_{i}=d_{i}-\max\{x|U_{i}(x)=\lambda\}$ .

It is obvious that job $J_{i}$ is late in schedule $S$ if and only if (2) is satisfied. $\blacksquare$

49



References
[1] T.J. Hodgson (1977) A note on single machine sequencing with random processing

times, Management Science 23 (10), 1144-1146.

[2] T. Itoh and H. Ishii (1999) Fuzzy due-date scheduling problem with fuzzy processing
time, International bansactions in Operational Research (to appear).

[3] J.M. Moore (1968), An n job, one machine sequencing algorithm for minimizing the
number of late jobs, Management Science 15 (1), 102-109.

50


