Facial structure of convex sets and some applications

北海道教育大学旭川校 小室 直人 (Naoto Komuro)

§1 Introduction

Let Ω be a measure space and let $S(\Omega)$ be the space of all measurable functions f on Ω such that $f(t) < \infty \ (a.e.t \in \Omega)$. An operator $F : X \supset D(F) \rightarrow S(\Omega)$ is called a convex operator if $D(F)$ is a convex set in a real vector space X, and for each $x, y \in D(F)$ and $0 < \alpha < 1$,

$$F((1 - \alpha)x + \alpha y)(t) \leq (1 - \alpha)F(x)(t) + \alpha F(y)(t) \quad (a.e.t \in \Omega).$$

On the other hand, a function $f : X \times \Omega \rightarrow \mathbb{R} \cup \{\infty\}$ is called a convex integrand if for each $t \in \Omega$ the function $f(\cdot, t)$ is convex on \mathbb{R}. The convex integrand theory is well known and there are many applications. (See [7] for example.) We say that a convex integrand f represents a convex operator F if

$$f(x, t) = \begin{cases} F(x)(t) & \text{for a.e.} \ t \in \Omega \\ \infty & x \notin D(F) \end{cases} \quad x \in D(F)$$

In two of the author’s previous paper [3, 4], many applications of integrand representations of convex operators were demonstrated. However, the existense of integrand representation is nontrivial, and it is known only in some special cases. When X is the d-dimensional Euclidian space \mathbb{R}^d, the representation theorem has been proved in [3]. In this note, we apply the theory of the faces of convex sets, and give a new method of the proof which is expected to have an advantage in extending the representation theorem to infinite dimensional cases.

§2 Faces of convex sets

Let \mathbb{R}^d be the d-dimensional Euclidean space. When $x, y \in \mathbb{R}^d$ are distinct points, then the set $[x, y] = \{(1 - t)x + ty \mid 0 \leq t \leq 1\}$ is called the closed segment between x and y. Half open segments $(x, y\], [x, y)$ and open segments (x, y) are defined analogously. Through this section, we fix a nonempty closed convex set D in \mathbb{R}^d. A convex subset C of D is called a face of D if
$$\{(x,y) \in C \mid x, y \in D \} \neq \emptyset$$ implies $[x, y] \subset C$.

By $\mathfrak{F}(D)$, we denote the set of all faces of D. For $C \in \mathfrak{F}(D)$, dim C is defined to be the dimension of aff C (the affine hull of C). It is clear that $x \in D$ is an extreme point of D if and only if $\{x\}$ is a 0-dimensional face of D. For preparation, we will state some fundamental properties of faces in the following propositions whose proofs are given in [1].

Proposition 1. If $C_\lambda \in \mathfrak{F}(D)$, ($\lambda \in \Lambda$), then $\bigcap_{\lambda \in \Lambda} C_\lambda \in \mathfrak{F}(D)$, and also there exists a smallest face of D containing $\bigcup_{\lambda \in \Lambda} C_\lambda$. Hence $(\mathfrak{F}(D), \subset)$ forms a complete lattice.

Proposition 2. Let C_1 be a face of D and suppose that $C_2 \subset C_1$. Then $C_2 \in \mathfrak{F}(D)$ if and only if $C_2 \in \mathfrak{F}(C_1)$.

For a convex set C in \mathbb{R}^d, $\overset{\circ}{C}$ denotes the relative interior of C, which means the interior of C with respect to the relative topology of aff C. It is easy to see that every face of D is a closed set. Indeed, if x is a point of the closure of a face C and $x_0 \in \overset{\circ}{C}$, the convexity of C yields $[x_0, x] \subset \overset{\circ}{C} \subset C$. Since C is a face of D, x must be in C.

Proposition 3. If $C_1, C_2 \in \mathfrak{F}(D)$, and $C_1 \nsubseteq C_2$, then $C_1 \cap \overset{\circ}{C}_2 = \emptyset$.

Proposition 4. Let x be a point of D and let C be a face of D. Then C is the smallest face of D containing x if and only if $x \in \overset{\circ}{C}$.

Proposition 5. Let C_1 be a face of D and let x be a relative boundary point of C_1. If C_2 is the smallest face of D containing x, then C_2 is contained by the relative boundary of C_1.

From these propositions we obtain the following decomposition of a convex set by its faces.

Proposition 6. For a closed convex set D in \mathbb{R}^d,

$$D = \bigcup \{\overset{\circ}{C}_\lambda \mid C_\lambda \in \mathfrak{F}(D)\}$$
and the union is disjoint.

We say that a collection \(\{C_\lambda\}_{\lambda \in \Lambda} \subset \mathcal{F}(D) \) is normal if \(\lambda \in \Lambda \) and \(C_\lambda \subset C_\mu \in \mathcal{F}(D) \) imply \(\mu \in \Lambda \). Now we define

\[
\mathcal{A} = \{ A = \bigcup_{\lambda \in \Lambda} \overset{\circ}{C}_\lambda \mid \{C_\lambda\}_{\lambda \in \Lambda} \text{ is normal} \}.
\]

Since \(\{D\} \subset \mathcal{A} \), \(\mathcal{A} \) is at least nonempty. It is easy to see that if each \(A_\lambda \ (\lambda \in \Lambda) \) is a member of \(\mathcal{A} \), then so are \(\bigcup_{\lambda \in \Lambda} A_\lambda \) and \(\bigcap_{\lambda \in \Lambda} A_\lambda \), and therefore \((\mathcal{A}, \subset) \) is a complete lattice.

Lemma 1. If \(A \in \mathcal{A} \), then \(A \) is a convex set.

proof. We write \(A = \bigcup_{\lambda \in \Lambda} \overset{\circ}{C}_\lambda \) and let \(x, y \) be arbitrary points of \(A \). Then there exist \(\lambda \) and \(\mu \) such that \(x \in \overset{\circ}{C}_\lambda \) and \(y \in \overset{\circ}{C}_\mu \). Let \(z \) be an arbitrary point of the open segment \((x, y) \), and let \(C_\nu \) be the smallest face containing \(z \). Since \(C_\nu \) is a face, we have \([x, y] \subset C_\nu \). By Proposition 4, \(C_\lambda \) is the smallest face containing \(x \), and it follows that \(C_\lambda \subset C_\nu \). Since the collection \(\{C_\lambda\}_{\lambda \in \Lambda} \) is normal, we obtain \(\overset{\circ}{C}_\nu \subset A \). This means that \(z \in A \), and thus \(A \) is convex.

§3 Representation of Convex Operators

In this section, we prove a representation theorem of convex operators. Let \(D(F) \) be a convex set in \(\mathbb{R}^d \) and let \(F: D(F) \rightarrow S(\Omega) \) be a convex operator. We can assume without losing generality that the interior of \(D(F) \) is nonempty. Through this section, \(D \) denotes the closure of \(D(F) \). First we state the main theorem.

Theorem 1. Every convex operator \(F: \mathbb{R}^d \supset D(F) \rightarrow S(\Omega) \) has at least a representation. That is, there exists a convex integrand \(f: \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \cup \{\infty\} \) such that (1) holds.

For \(D = \overline{D(F)} \), we define \(\mathcal{A} \) as in §2. For \(A \in \mathcal{A} \), a convex integrand \(f: A \times \Omega \rightarrow \mathbb{R} \cup \{\infty\} \) is said to represent \(F \) on \(A \), if

\[
f(x, t) = \begin{cases} F(x)(t) & \text{for a.e.} \ t \in \Omega \\ \infty & x \in A \setminus D(F) \end{cases}
\]
Definition. For a convex operator F, we define

$$\tilde{\mathfrak{A}} = \{(A, f) \mid A \in \mathfrak{A}, \text{ and } f \text{ represents } F \text{ on } A\}.$$

Moreover, for $(A_1, f_1), (A_2, f_2) \in \tilde{\mathfrak{A}}$, we write $(A_1, f_1) \leq (A_2, f_2)$ when $A_1 \subset A_2$ and f_2 is an extension of f_1 to A_2.

Lemma 2. $(\tilde{\mathfrak{A}}, \leq)$ is inductively ordered.

proof. Let $\{(A_\lambda, f_\lambda)\}_{\lambda \in \Lambda}$ be a totally ordered subset of $\tilde{\mathfrak{A}}$. Then $A = \bigcup_{\lambda \in \Lambda} A_\lambda$ is an element of \mathfrak{A}. Moreover we can define a convex integrand f on $A \times \Omega$ satisfying $f = f_\lambda$ on $A_\lambda \times \Omega$ for every $\lambda \in \Lambda$. Clearly, $(A, f) \in \tilde{\mathfrak{A}}$ and it is an upper bound of $\{(A_\lambda, f_\lambda)\}_{\lambda \in \Lambda}$.

Lemma 3. For $A \in \mathfrak{A}$ such that $A \neq D$, we define $\mathfrak{S}_A = \{C \in \mathfrak{F}(D) \mid C \cap A = \emptyset\}$. Then $(\mathfrak{S}_A, \subset)$ is inductively ordered.

proof. Let $\{C_\lambda\}_{\lambda \in \Lambda}$ be a totally ordered subset of \mathfrak{S}_A. If we put $C = \bigcup_{\lambda \in \Lambda} C_\lambda$, then C is a convex set and $C \cap A \neq \emptyset$. Moreover $C \in \mathfrak{F}(D)$.

Indeed, if we assume $(x, y) \cap C \neq \emptyset$, then there exists $\lambda \in \Lambda$ such that $(x, y) \cap C_\lambda \neq \emptyset$. Hence it follows that $[x, y] \subset C_\lambda \subset C$. Thus $C \in \mathfrak{S}_A$ and it is an upper bound of $\{C_\lambda\}_{\lambda \in \Lambda}$.

Lemma 4. Let A be an element of \mathfrak{A}, and assume that $A \neq D$. Then there exists $C \in \mathfrak{S}_A$ such that $A \cup \overset{\circ}{C} \in \mathfrak{A}$.

proof. By Lemma 3 and Zorn’s lemma, \mathfrak{S}_A has at least a maximal element C. It is sufficient to show that $A \cup \overset{\circ}{C} \in \mathfrak{A}$. Put $A = \bigcup_{\lambda \in \Lambda} \overset{\circ}{C}_\lambda$, and take $C_1 \in \mathfrak{F}(D)$, such that $C_1 \supset C$. Since C is a maximal element of \mathfrak{S}_A, we have $C_1 \not\in \mathfrak{S}_A$ and hence $C_1 \cap A \neq \emptyset$. Therefore we can choose $\lambda \in \Lambda$ such that $\overset{\circ}{C}_\lambda \cap C_1 \neq \emptyset$. It follows from Proposition 3 that, $C_\lambda \subset C_1$ holds. Since the collection $\{C_\lambda\}_{\lambda \in \Lambda}$ is normal, $\overset{\circ}{C}_1 \subset A \subset A \cup \overset{\circ}{C}$. This shows that the collection $\{C_\lambda\}_{\lambda \in \Lambda} \cup \{C\}$ is also normal, and $A \cup \overset{\circ}{C} \in \mathfrak{A}$.

Lemma 5. $\tilde{\mathfrak{A}}$ is not empty. In other words, there exists $A \in \mathfrak{A}$ such that F has a representation f on $\overset{\circ}{D}$. The method of construction is an analogy of that in [4].
Lemma 6. Suppose that $(A, f) \in \tilde{\mathfrak{U}}$ and $A \neq D$. Let $C \in \mathfrak{S}_A$ is a face such that $A \cup \hat{C} \in \mathfrak{A}$ as in Lemma 4. Then f has an extension f_1 defined on $(A \cup \hat{C}) \times \Omega$ such that $(A \cup \hat{C}, f_1) \in \tilde{\mathfrak{U}}$.

The proof of this lemma is an analogy of one provide in a previous paper by the author [3].

proof of Theorem 1. By Lemma 3, Lemma 5 and Zorn’s lemma, $\tilde{\mathfrak{A}}$ has at least a maximal element (A_0, f_0). Moreover, Lemma 6 shows that $A_0 = D$, and this means that f_0 represents F on D. Defining $f_0 = \infty$ on $D^c \times \Omega$, we complete the construction of a representation of F.

§4 Normal Representations

A convex integrand $f : \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \cup \{\infty\}$ is said to be normal if $f(\cdot, t)$ is lower semicontinuous for every $t \in \Omega$ and there exists a countable family of measurable functions $\xi_n : \Omega \rightarrow \mathbb{R}^d (n = 1, 2, \cdots)$ such that

1. for each n, $f(\xi_n(t), t)$ is measurable in $t \in \Omega$,
2. for each $t \in \Omega$, $\{\xi_n(t)\}_{n=1}^{\infty}$ is dense in $D(f(\cdot, t))$,

where $D(f(\cdot, t)) = \{x \in \mathbb{R}^d | f(x, t) < \infty\}$. If a convex integrand f is normal, then $f(\xi(t), t)$ is measurable in $t \in \Omega$ whenever $\xi : \Omega \rightarrow \mathbb{R}^d$ is measurable. A convex operator F is said to have a normal representation if there exists a normal convex integrand which represents F. We will find some conditions under which a convex operator has a normal representation. By the conjugate of a convex integrand f, we mean the convex integrand $f^* : \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \cup \{\infty\}$ defined by

$$f^*(\xi, t) = \sup_{x \in \mathbb{R}^d} \{<x, \xi> - f(x, t)\}.$$

Also the biconjugate $f^{**} : \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \cup \infty$ is given by

$$f^{**}(x, t) = \sup_{\xi \in \mathbb{R}^d} \{<x, \xi> - f^*(\xi, t)\}.$$

If a convex integrand f is normal, then so are f^* and f^{**}. We note that if a convex integrand f represents a convex operator F then $D(f(\cdot, t))$ does not depend on $t \in \Omega$.
Lemma 7. Let \(f : \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \cup \{\infty\} \) be a representation of some convex operator. Then \(f \) is normal if and only if \(f(\cdot, t) \) is lower semicontinuous, in other words, \(f^{**} = f \) on \(\mathbb{R}^d \times \Omega \).

proof. Let \(D = D(f(\cdot, t)) \) and take a countable subset \(\{a_n\} \) of \(D \). If we put \(\xi_n(t) = a_n \) for all \(t \in \Omega \) and \(n = 1, 2, \cdots \), then the family \(\{\xi_n\} \) satisfies the definition of normality.

Remark. If a convex integrand \(f \) satisfies

1. for each \(x \in \mathbb{R}^d \), \(f(x, \cdot) \) is measurable, and
2. \(D(\cdot, t)) \) does not depend on \(t \in \Omega \),

the conclusion of Lemma 7 is also valid.

Let \(L(\mathbb{R}^d, S(\Omega)) \) denotes the space of all linear mapping from \(\mathbb{R}^d \) to \(S(\Omega) \). We identify \(L(\mathbb{R}^d, S(\Omega)) \) with the set \(S(\Omega)^d = \{\xi = (\xi_1, \cdots, \xi_d) \mid \xi_i \in \xi(\Omega), i = 1, \cdots, d\} \) by corresponding \(S(\Omega)^d \ni (\xi_1, \cdots, \xi_d) \) to the mapping \(\varphi : \mathbb{R}^d \ni (x_1, \cdots, x_d) \rightarrow < x, \xi >= x_1\xi_1 + \cdots + x_d\xi_d \in S(\Omega) \). The conjugate operator \(F^* : L(\mathbb{R}^d, S(\Omega)) \supset D(F^*) \rightarrow S(\Omega) \) of \(F \) is defined by

\[
F^*(\xi) = \bigvee_{x \in D(F^*)} (\langle x, \xi \rangle - F(x))
\]

where \(\bigvee \) means the lattice supremum in the space \(S(\Omega) \), and \(D(F^*) \) is the set of all \(\xi \in S(\Omega)^d \) such that the supremum \(F^* \) exists. The bi-conjugate operator \(F^{**} \) is defined on the space \(L(L(\mathbb{R}^d, S(\Omega)), S(\Omega)) = L(S(\Omega)^d, S(\Omega)) \), and we regard \(S(\Omega)^d \) and \(\mathbb{R}^d \) as the subspaces of this by corresponding \(\eta \in S(\Omega)^d \) and \(x \in \mathbb{R}^d \) to \(< \eta, \cdot > \) and \(< x, \cdot > \in L(S(\Omega)^d, S(\Omega)) \) respectively. For \(x \in \mathbb{R}^d \) and \(\eta \in S(\Omega) \), \(F^{**} \) is defined by

\[
F^{**}(x) = \bigvee_{\xi \in D(F^*)} (\langle x, \xi \rangle - F^*(\xi)), \quad \quad F^{**}(\eta) = \bigvee_{\xi \in D(F^*)} (\langle \eta, \xi \rangle - F^*(\xi)).
\]

They are only defined on the domain \(D(F^{**}) \) where these suprema exist.

Theoem 2. Let \(F : \mathbb{R}^d \supset D(F) \rightarrow S(\Omega) \) be a convex operator and let \(f : \mathbb{R}^d \times \Omega \rightarrow \mathbb{R} \cup \{\infty\} \) be a representation of \(F \). Then the convex integrand \(f^* \) and \(f^{**} \) are normal representations of \(F^* \) and \(F^{**} \) respectively. Moreover for \(\xi \in D(F^*) \) and \(\eta \in D(F^{**}) \),

\[
(F^*(\xi))(t) = f^*(\xi(t), t)
\]

\[
(F^{**}(\eta))(t) = f^{**}(\xi(t), t)
\]
\[(F^{**}(\eta))(t) = f^{**}(\eta(t), t)\]
holds for almost every \(t \in \Omega\).

This theorem is due to the following lemma.

Lemma 8. Let \(F : \mathbb{R}^d \supset D(F) \rightarrow S(\Omega)\) be a convex operator, and let \(f : \mathbb{R}^d \times \Omega \rightarrow \mathbb{R}^d \cup \{\infty\}\) be a representation of \(F\). Let \(U\) be a convex subset of \(D(F)\) and suppose that \(\inf_{x \in U} f(x, t) > -\infty\) for almost every \(t \in \Omega\). Then \(\bigwedge_{x \in U} F(x) \in S(\Omega)\) exists and

\[
(\bigwedge_{x \in U} F(x))(t) = \inf_{x \in U} f(x, t).
\]

Proof. Let \(E\) be a countable dense set in \(U\). Then we have

\[
\inf_{x \in U} f(x, t) = \inf_{x \in E} f(x, t)
\]

for a.e.\(t \in \Omega\). Hence \(\inf_{x \in U} f(x, t)\) is measurable in \(t\) and

\[
(\bigwedge_{x \in U} F(x))(t) \leq (\bigwedge_{x \in E} F(x))(t) = \inf_{x \in E} f(x, t) = \inf_{x \in U} f(x, t) = (\bigwedge_{x \in U} F(x))(t)
\]

for a.e.\(t \in \Omega\), and the lemma is proved.

Proof of Theorem 2. By Lemma 8 we have

\[
(F^*(\xi))(t) = \bigvee_{x \in D(F)} (\langle \xi, x \rangle - F(x))(t) = \sup_{x \in D(F)} (\langle \xi(t), x \rangle - f(x, t)) = f^*(\xi(t), t) \quad (a.e. t \in \Omega),
\]

for every \(\xi \in D(F^*) \subset S(\Omega)^d\). The latter statement can be obtained by analogy.

Combining Lemma 7 and Theorem 2, we obtain the following result.

Theorem 3. A convex operator \(F : \mathbb{R}^d \supset D(F) \rightarrow S(\Omega)\) satisfies

\[
F^{**}(x) = F(x)
\]

for every \(x \in D(F)\), if and only if \(F\) has a normal representation.
REFERENCES

N. Komuro
Hokkaido University of Education at Asahikawa
Hokumoncho 9 chome Asahikawa
070 Japan
e-mail: komuro@atson.asa.hokkyodai.ac.jp