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Abstract

In this paper, we consider a reverse convex programming problem constrained by a
convex set and a reverse convex set which is defined by the complement of the interior of
a compact convex set X. We propose an inner approximation method to solve the prob-
lem in case X is not necessarily a polytope. The algorithm utilizes inner approximation
of X by a sequence of polytopes to generate relaxed problems. It is shown that every
accumulation point of the sequence of optimal solutions of relaxed problems is an optimal
solution of the original problem.
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1 Introduction

In this paper, we consider a reverse convex programming problem constrained by a convex set
and a reverse convex set which is defined by the complement of the interior of a compact convex
set X. In case when X is a polytope in the problem, a solution method using duality has been
proposed (Horst and Tuy [4], Horst and Pardalos [5], Konno, Thach and Tuy [6], Tuy [8]).
Duality is one of the most powerful tools in dealing with a global optimization problem like the
problem described above. The dual problem to the problem is a quasi-convex maximization
problem over a convex set and solving one of the original and the dual problems is equivalent
to solving the other (Konno, Thach and Tuy [6], Tuy [8]). Since the feasible set of the dual
problem is a polytope, there exists a vertex which solves the dual problem. Moreover, since the
objective function of the dual problem is the quasi-conjugate function of the objective function
of the original problem, for every vertex, the objective function value is obtained by solving a
constrained convex minimization problem. Consequently, an optimal solution of the original
problem is obtained by solving a finite number of constrained convex minimization problems.

We propose an inner approximation method to solve the reverse convex programming
problem in case X is not necessarily a polytope. The algorithm utilizes inner approximation of
X by a sequence of polytopes. That is, at every iteration of the algorithm, a relaxed problem
in which X is replaced by a polytope contained in X is solved. Then, it is shown that every
accumulation point of the sequence of optimal solutions of relaxed problems is an optimal
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solution of the original problem. Every relaxed problem can be solved through a finite number
of constrained convex minimization problems. By using penalty functions, such constrained
problems can be transformed into unconstrained convex minimization problems. Thus, the
minimum of the optimal values of such unconstrained problems underestimates the optimal
value of the relaxed problem.

The organization of this paper is as follows: In Section 2, we explain a reverse convex
programming problem. Moreover, we describe an equivalent problem to the problem, and its
dual problem, where equivalence is understood in the sense that the sets of optimal solutions
coincide. In Section 3, we formulate an inner approximation algorithm for the problem, and
establish the convergence of the algorithm. In Section 4, we propose another inner approxi-
mation algorithm for the problem which is incorporating a penalty function method. By using
penalty functions, subproblems solved at every iterations are transformed into unconstrained
convex programming problems. In Section 5, we propose another inner approximation al-
gorithm using penalty functions. The algorithm guarantees the global convergence without
solving subproblems. ‘

Throughout this paper, we use the following notation: int X, bd X and co X denote the
interior set of X C R", the boundary set of X and the convex hull of X, respectively. Let
R = RU{—o0}U{+00}. Let for a,b € R", |a,b|= {x € R" : 2 = a+6(b—a), 0 <6 <1, § € R}
and Ja,b) = {cr € R*:z =a+6(b—a), 0 < <1, § € R}. Given a convex polyhedral set
(or polytope) X C R*, V(X) denotes the set of all vertices of X. For a subset X C R™,
X°={u€ R": (u,z) <1, Ve € X} is called the polar set of X. For a nonempty closed set
X C R™, Nx(y) denote the normal cone to X at y € X. For a subset X C R", the indicator
of X which is denoted by §( - |X) is an extended-real-valued function defined as follows:

0 fzeX
5($‘X)_{ too if z ¢ X.

Given a function f : R* - RU {+o00}, the quasi-conjugate of f is the function fH defined as
follows:

CpHy »——su‘pb{f(az):;’ceR"} ifu=0
i) = { —inf{f(z) : (u,z) > 1} if u £ 0.

The gradient of f at z is denoted by V f(z) and the subdifferential of f at = by 9f (z).

2 A Reverse Convex Programming Problem

Let us consider the following reverse convex programming problem problem:

minimize f(z),

(RCP)_{ subject to = € Y\int X,

where f : R* — R is a convex function, X is a compact convex set and Y is a closed convex
set in R™. In general, the feasible set of problem (RCP) is not convex. For problem (RCP),
we shall assume the following throughout this paper:

(A1) Y\int X # 0.

(A2) For some a € R, {z € R": f(z) < a} is nonempty and compact.
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(A3) X ={z € R":pj(z) <0, j=1,...,tx}and Y = {x € R" : j(2) <0, j = 1,...,ty}

where p; : R* - R (j=1,...,tx)and r; : R* - R (j = 1,...,ty) are convex functions.
Moreover, there exists zx, xy € R™ such that p;j(zx) <0 (j =1,...,tx) and r;(zy) <0
(7=1,...,ty).

Let p(z) = max;_; ;. p;j(z) and r(z) = max;_;_; 7;j(z). Then, from assumption (A3),
X={zecR :p(x)<0},Y={z€eR":r(z) <0},int X ={z € R":p(z) <0} and int Y =
{z.€ R" : r(z) < 0}. From assumption (A2), the minimal value of f over R" exists. Moreover,
for any 8 > min{f(z) : = € R"}, {x € R" : f(z) < B} is nonempty and compact. From
assumption (A1), there exists a feasible solution ' of problem (RCP). Then, problem (RCP)
is equivalent to minimize f(z) subject to z € (Y\int X) N {z € R : f(z) < f(z')}. Since
{z € R* : f(z) < f(z)} is compact, problem (RCP) has an optimal solution. Denote by
min(RCP) the optimal value of problem (RCP). Then, we have min(RCP) < +oo From
assumptions (Al) and (A2), Y is nonempty and there exists a minimal solution 20 of f over
Y. Then, it is fairly easy to find z°. In case z° € R™\int X, z° solves problem (RCP). In the
other case, we propose a solution method in this paper. Throughout this paper, without loss
of generahty, we may assume the following: :

(A4) p(0) < 0 and r(0) < 0, that is, 0 € mt Xand0€Y. Moreover, 0 € R" is'a minimal
solution of f over Y.

By using the indicator of Y, problem (RCP) can be reformulated as

__( minimize g(z)
(MP) { subject to = € R™\int X

where g(z) := f(z) + 6(z|Y). The objective function g : R® — R is a quasi-convex function.
From assumption (A4), we have g(0) = inf{g(z) : z € R"}. The dual problem of problem
(MP) is formulated as

maximize g% (u)
(DP) { subject to u € X°.

Hence, by assumption (A4) and the principle of the duality, X° is a compact convex set.
Furthermore, since g¥ is a quasi-convex function (Konno, Thach and Tuy [6], Chapter 2), we
note that problem (DP) is a quasi-convex maximization problem over a compact convex set in
R™. Denote by min(MP) and max(DP) the optimal values of (M P) and (DP), respectively.
Since problem (MP) is equivalent to problem (RCP), we have min(MP) = min(RCP) <
+00. Moreover, it follows from the duality relation between problems (M P) and (DP) that
min(MP) = — max(DP) (cf., Konno, Thach and Tuy [6 ], Chapter 4).

3 An Inner Approximation Method for Problem (MP)

3.1 Relaxed Problems for Problems (M P) and (DP)

One of the reasons for difficulty in solving problem (M P) is that X is not a polytope. If X
is a polytope, then the feasible set of problem (M P) can be formulated as the union of finite
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halfspaces. In this case, problem (MP) is fairly easy to solve by minimizing g over every
halfspace.
In this subsection, we discuss the following problem:

minimize g(z),
( ){ subject to = € R™\int S,
where S is a polytope such that S C X and 0 € int S. Then, we get R™\int S O R™\int X.
Therefore, problem (P) is a relaxed problem for problem (MP). From the definition of g,
we note that problem (P) is equivalent to minimize f(z) subject to z € Y\int S. Since
(Y\int S) D (Y'\int X) # 0, by assumption (A2), a minimal solution of f on Y\int S exists
and solves problem (P). Denote by min(P) the optimal value of problem (P). Then, we have
min(P) < min(MP) < +00.
The dual problem of problem (P) is formulated as
maximize g7 (u),
(D){ subject to u € S°.

Since S C X, the feasible set of problem (D) includes X°. Therefore, problem (D) is a relaxed
problem of (DP). We note that the feasible set S° is a polytope because S is a polytope and
0 € int S. Hence, problem (D) is a quasi-convex maximization over a polytope S°. There
exists an optimal solution of problem (D) over the set of all vertices of S°. Denote by max(D)
the optimal value of problem (D). Since problem (D) is the dual problem of problem (P)
and a relaxed problem of problem (DP), we obtain max(D) = —min(P) > —min(MP) =
max(DP) > —oo (Konno, Thach and Tuy [6], Chapter 4). Consequently, we can choose an
optimal solution of problem (D) from V(S5°). Since 0 € int S, from the principle of duality, we
have

S°={ueR":(u,z) <1, Vze V(S)} and S ={z € R": (v,z) <1, Yw € V(5°)}. (1)
Hence, we obtain 0 ¢ V(5°).
For any v € V(5°), we have g¥(v) = —inf{g(z) : (v,z) > 1}. From the definition of g, for
any v € V(5°), '
Hiy) = —00, fYNn{zeR:(v,z) >1} =0,
g = —inf{f(z) : (v,z) > 1, 2 € Y} otherwise.

This implies that v € V(S°) is not optimal to problem (D) if Y N{z € R™: (v,z) > 1} = 0.
Lemma 3.1 There exists v € V(S°) such that Y N{z € R": (v,z) > 1} # 0.

Denote by I' the set of all v € V(S°) such that Y N {z € R™ : (v,z) > 1} # 0. From

Lemma 3.1, T # (. For every v € I', we consider the following convex minimization problem:
minimize  f(z)
(SP(v)){ subject to zeY N{z € R*: (v,z) > 1}.

From assumption (A2), for every v € T', problem (SP(v)) has an optimal solution z°. Then,
we have g% (v) = —min(SP(v)) = —f(«"), where min(SP(v)) is the optimal value of prob-
lem (SP(v)). Hence, ¢ € I is an optimal solution of problem (D) if f(z%) = min{f(z") : v €
V(S°)}. Moreover, z° is optimal to problem (P) (Konno, Thach and Tuy [6], Proposition 4.3).
However, it is hard to examine whether Y N{z € R": (v,z) > 1} is empty. This examination
is not necessary to execute the inner approximation algorithm proposed in Section 4.
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3.2 An Inner Approximation Algorithm

From the discussion in Subsection 3.1, we notice that inner approximation of X by a sequence
of polytopes is applicable in solving problem (MP). ,
We propose an inner approximation algorithm for problem (MP) as follows:

Algorithm IA

Initialization. Generate a finite set V; such that ¥} C X and that 0 € int (co V}). Let
S1 = co V1. Compute the vertex set V((51)°). For convenience, let V((S;)°) = 0. Set
k < 1 and go to Step 1.

Step 1. Let I'; be the set of all v € V((5:)°) satisfying Y N {z € R™ : (v,z) > 1} # (. For
every v € T'x\V((Sk-1)°), let =¥ be an optimal solution of problem (SP(v)). Choose
vk € T, satisfying f(z*") = min{f(2?) : v € T4 }. Let z(k) = =*".

Step 2.

a. If p(z(k)) > 0, then stop; z(k) solves problem (MP) and the optimal value of
problem (SP(v¥)) is the optimal value of problem (MP).

b. Otherwise, solve the following convex minimization problem:

minimize @(z;v*) = max{p(z), h(z,v*)} (2)
subject to =z € R" ;

where h(z,v*) = —(v*,z) + 1. Let 2* denote an optimal solution of problem (2). It
will be proved later in Lemmas 3.2 and 3.3 that problem (2) has an optimal solution
and that z¥ € X, respectively. Set Vi1 = Vi, U {z*}. Let Sk+1 = co Viy1. Compute
the vertex set V((Sk4+1)°). Set k + k + 1 and return to Step 1.

Note that Si, k = 1,2,..., are polytopes. Since 0 € int (co V;) = int Sy, Sk, k= 1,2,...,
satisfy that 0 € int Si. It follows from the following theorems that at every iteration of the
algorithm, problem (2) has an optimal solution and S;, is contained in X.

Lemma 3.2 For any v € R", the function ¢(z;v) attains its minimum over R™.

Lemma 3.3 At iteration k of Algorithm IA, assume that S, C X. Then
(1) v ¢ int X° for any v € V((Sk)°).
(1) ¢(2*;0%) <0,
(i) z* € X.
From Lemma 3.3 and the definition of S;, we have
¢ 5,CS5C...C5C...CX,

e (51)°D(52)°2...2(S)°D...D X"
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Hence, for every iteration k of the algorithm, the following problems (Py) and (Dy) are relaxed
problems of (M P) and (D P), respectively.

(P) minimize g(z)

k subject to z € R™\ int Sy,

(D) maximize g% (u)
¥/ subject to u € (Si)°.

From the discussion in Subsection 3.1, z(k) and v* obtained in Step 1 of the algorithm solve
problems (Py) and (D), respectively. Moreover, we note that max(Dy_;) > max(Dy) for any
k > 2, that is,

g (v') = g7 (v?)
and that min(Pj_;) < min(FPy) for any k > 2, that is,
9(2(1)) < 9(2(2)) < --- < g(=(k)

) <
Since g(z) = +oo for any z ¢ Y, z(k) belongs to Y. It follows from the following theorem
that z(k) solves problem (M P) if p(z(k)) >

> ... 2 g(v%) > -+ > max(DP), B

. < min(MP). (4)

Lemma 3.4 At iteration k of the algorithm, z(k) solvés problem (MP) if p(z(k)) > 0.
For any k, the following assertions are valid.
o V(Sk) C Vi
. (Se)°={u€ R":(u,z) <1Vz €V}
o (Skt1)° = (Sk)° N{u € R": {u,2*) <1}.
Moreover, the following lemma holds.
Lemma 3.5 At iteration k of Algorithm IA, if p(z(k)) < 0, then (v, 2F) > 1.

From Lemma 3.5, Siy; = co (Sk U {z*}) # S because Sy, C {z € R™: (vF,z) < 1} and
{(v*,2*) > 1 . Moreover, since V(Si;1) C V(Si) U {z*}, we have

(Se+1)® = (Sk)° N {u € R™: (u,2%) <1} # (S)° (5)

3.3 Convergence of Algorithm IA

Algorithm IA doesn’t necessarily terminate after finitely many iterations. In this subsection,
we consider the case that an infinite sequence {v*} is generated by the algorithm.
It follows from the following theorem that every accumulation point of {v*} belongs to the

feasible set of problem (DP).

Theorem 3.1 Assume that {v*} is an infinite sequence such that for all k, v* is an optimal
solution of (Dy) at iteration k of Algorithm IA and that v is an accumulation point of {v*}.
Then v belongs to X°.
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Corollary 3.1 Assume that {v*} is an infinite sequence such that for all k, v* is an optimal
solution of problem (Dy,) at iteration k of Algorithm IA and that ¥ is an accumulation point of
{v*}. Then v ¢ int X°.

Moreover, from the following theorem, every accumulatlon point of {v*} solves prob-

lem (DP).

Lemma 3.6 At iteration k of Algorithm IA, let v*F € V((Sk) ) be an optimal solution for
problem (Dk) Then, v* ¢ int Y° :

Lemma 3. 7 Assume that {:c( )} is an infinite sequence such that for all k, z(k) is an optimal
solution of problem (Py) at iteration k of Algorithm IA. Then, {z(k)} has an accumulation
point.

Theorem 3.2 Assume that {v*} is an infinite sequence such that for all k, v* is an optimal
solution of (D) at steration k of Algorithm IA and that % is an accumulation point of {vk}
Then % solves problem (DP). Furthermore, limy_,o g™ (v*) = max(DP).

By Theorems 3.1 and 3.2, we get that every accumulation point of {v*} belongs to the
feasible set of problem (DP) and solves problem (D P).

Theorem 3.3 Assume that {z(k)} is an infinite sequence such that for all k, z(k) is an
optimal solution of problem (Pi) at iteration k of Algorithm IA and that Z is an accumula-
tion point of {z(k)}. Then & belongs to R™\int X and solves problem (MP). Furthermore,
limy_, o g(z(k)) = min(MP).

From Theorem 3.3, we note that liminf,_,o p(z(k)) > 0. Hence, in order to terminate
Algorithm IA after finitely many iterations, using admissible tolerance v > 0, we propose the
following stopping criterion: '

If p(z(k)) > —~, then stop; z(k) is an appfoxima.te solution of problem (MP).

4 An Inner Approximation Method Incorporating
a Penalty Function Method |

4.1 Underestimation of the Optlmal Value of Relaxed Problems by
Using Penalty Functions

In order to obtain an optimal solution of problem (FPy), problem (SP(v)) has been solved
for each v € ['t\V((Sk-1)°) at every iteration of Algorithm IA discussed in Section 3. In
Subsection 3.1, we remarked that problem (SP(v)) is a convex minimization problem with
convex constraints. In this sectlon, we propose another inner approximation algorithm which
is incorporating a penalty function method. By using penalty functions, problem (SP(v))
can be transformed into an unconstrained convex minimization problem. That is, without
solving problem (SP(v)) at every iteration, the algorithm guarantees the global convergence
to an optimal solution of problem (MP). Furthermore, the problem is solvable for every
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v € V((Sk)°). Hence, by incorporating a penalty function method, the inner approximation
algorithm does not need to generate I';, at every iteration.

Let S C X be a polytope satisfying 0 € int S. For any v € V(S5°), we consider the following
problem:

minimize F, ,(z) = f(z) + pb,(z),
(SPl(v,,u)){ subject to = € R",

where 6,(z) = 3%, [max{0,r;(z)}]* + [{max{0,h(z,v)}]*, s > 1 and p > 0. We know that
the objective function F, , of problem (SP1(v,u)) is convex (Bazaraa, Sherali and Shetty [1],
Chapter 9). It follows from the following lemma that problem (SP1(v,u)) is solvable for every
v e V(S°).

Lemma 4.1 For every v € R and p > 0, the function F,, attains its minimum over R".

Denote by min(SP1(v,u)) the optimal value of problem (SP1(v,u)). From the definition
of g, min(SP1(v,p)) < —g¥(v) = 400 if v ¢ I'. In case v € [, since F, ,(z) = f(z) for any
reYN{zeR: (v,z)>1},

min(SP1(v,p)) = min{F, ,(z): :zc

€ R"} ‘
< min{F, ,(z) : (v,z) > 1, z €Y}
> 1,

= min{f(z) : (v, a:>, E Y} (6)
= min(SP(v))
= —g"(v).

Hence, we have the following relations between problem (SP1(v, u)) and relaxed problems (P)
and (D) described in Subsection 3.1:

min(P) = min{min(SP(v)):v €T}
> min{min(SP1(v,u)) :v € I'} (7)
> min{min(SP1(v,p)) : v € V(5°)},
and

max(D) = max{g®(v):v € V(5°)} (8)
< max{—min(SP1l(v,u)) : v e V(5°)}.

4.2 An Inner Approximation Algorithm Using Penalty Functions

An inner approximation algorithm for problem (M P) incorporating an exterior penalty method
is as follows:

Algorithm IA-P

Initialization. Choose a penalty parameter pu; > 0, a scalar B > 1 and s > 1. Generate a
polytope V; such that ¥; C X and that 0 € int (co V;). Let S; = co V;. Compute the
vertex set V((S1)°). Set k < 1 and go to Step 1.

Step 1. For every v € V((Sk+1)°), let A, and z” be the optimal value and an optimél solution
of problem (SP1(v,u)), respectively. Choose v* € V((Sk)°) satisfying A,x = min{A4, :
v € V((S)°)}. Let z(k) = z*°
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Step 2.

a. If p(z(k)) > 0 and r(z(k)) < 0, then stop; z(k) are optimal solutions of prob-
lem (MP). ' »

b. Otherwise, for v*, solve problem (2). Let z* and w; denote an optimal solution and
the optimal value of problem (2), respectively. Let

Vil = V},U{zk} if wp <0,
LARTN B 74 if we =0,

and let
| Bpg if 0(z(k)) >0,
HEtl = pe i Gp(z(k)) = 0.
Let Sigy1 = co Viy1. Compute the vertex set V((Sk+1)°). Replace k by k + 1, and
return to Step 1.

From the discussion of Subsection 4.1, at every iteration k of the algorithm, we have
f(z(k)) < Fye , (2(k)) = Apx < min(P) < min(MP). (9)

Lemma 4.2 At iteration k of algorithm IA-P, zfp( (k)) > 0 and r(z(k)) < 0, then z(k)
solves problem (MP). :

4.3 Convergence of Algorithm ITA-P

In this subsection, the convergence of Algorithm IA-P will be verified.

Let {z(k)} and {v*} be an infinite sequence generated by Algorithm IA-P. By Theorem 3.1,
every accumulation point of {v*} belongs to the feasible set X° of problem (DP). It follows
from the following theorems that every accumulation point is contained in R™\int X and solves

problem (RCP).

Lemma 4.3 Let {z(k)} and {v*} be infinite sequences generated by Algorithm IA-P. Then,
0, (z(k)) = 0 as k — oo.

Theorem 4.1 Let {z(k)} be an infinite sequence generated by Algorithm IA-P. Then, every
accumulation point T of {(k)} belongs to the feasible set R™\int X of problem (MP). Fur-
thermore, T is contained in the feasible set Y\int X of problem (RCP).

Theorem 4.2 Let {z(k)} be an infinite sequence generated by Algorithm IA-P. Then, every
accumulation point & of {z(k)} solves problem (M P).

Theorem 4.3 Let {v*} be an infinite sequence generated by Algorithm IA-P. Then, every
accumulation point v of {v*} solves problem (DP).

From Theorem 4.1, we have liminfy_,o, p(z(k)) > 0. Moreover, from Lemma 4.3, we get
limg_, o 0,4 (z(k)) = 0, so that lim sup,_, . 7(z(k)) < 0. Hence, in order to terminate Algorithm
IA-P after finitely many iterations, using admissible tolerances My V2 > 0, we propose the
following stopping criterion:

If p(z(k)) > —v1 and r(z(k)) < 72, then stop; z(k) is an approximate solution of
problem (MP).
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5 An Inner Approximation Algorithm Incorporating a
.Penalty Function Method (2)

In this section, we assume that ‘
(A5) Areal number M > A(X) is given, where A(X) is the diameter of X defined by A(X) :=
max{[|z — y|| : 2,y € X}.

Moreover, we set s > 1. Then, we note that for each v € R™ and p > 0, F, ,(z) is continuously
differentiable on R".

5.1 Algorithm

An inner approximation algorithm for problem (M P) incorporating an exterior penalty method
is as follows: '

Algorithm IA-P2
Let {7x} be a sequence satisfying lim;_,o, 7, = 0 and 7, > 0 for all k.

Initialization. Choose a penalty parameter y; > 0, a scalar B > 1 and s > 1. Generate a
polytope V; such that Vi C X and that 0 € int (co V3). Let S; = co V;. Compute the
vertex set V((S51)°). Set k < 1 and go to Step 1. '

Step 1. For every v € V((Sk41)°), find z¥ satisfying
1V Fou ()] < 7. ()
Choose v* € arg min{Fy uy(2%) — |V Fop(24)]] - M(24) 5 v € V(S4)°)}, where

M if zF e X
ky __ v ’
M(z,) = { M + ||z¥|| otherwise.

- Let o(k) = z¥, and
A= Fora(0l)) — [V P ()] - M(a()).
Step 2.

a. If A = Fp, (), p(z(k)) > 0 and r(z(k)) < 0, then stop; z(k) is an optimal
solution of problem (MP).

b. Otherwise, for v*, solve problem (2). Let z* and w;, denote an optimal solution and
the optimal value of problem (2), respectively. Let

Vi = Vi U {Zk} if wy, <0,
k+1 — ) V}c lf W, = 0,
“and let

[ B if G,(z(k)) > 0,
Hetl =\ g if B (2(k)) = 0.

Let Sgy1 = co V;c+1 Compute the vértex set V((Sk+1)°).- Replace k by k + 1, and
return to Step 1. '
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By Lemma 4.1, for each v € V((Sk)°), k = 1,2,..., a minimum value of F, ,, (z) over R"
exists. For each v € V((Sk)°), k = 1,2,..., since F,, ( ) is continuously differentiable, there
exists z* satisfying (10). By using a descent method, z* satisfying (10) can be obtained.

Lemma 5.1 For any k, A, < min(RCP).

Theorem 5.1 At iteration k of the algorithm, if Ay = Fy ,, (z(k)), p(z(k)) > 0 and‘r(m(k)-) <
0, then z(k) solves problem (RCP). :

Proof. Since p(z(k)) > 0 and r(z(k)) < 0, (k) is a feasible solution of problem (RCP).
Hence, f(z) > min(RCP). Moreover, since f(z(k)) = Fu, (z(k)) = Ag, by Lemma 5.1,
f(z(k)) < min(RCP), so that f(z(k)) = min(RCP). Consequently, z(k) is an optimal solution
of problem (RCP). O

5.2 Convergence of Algorithm TA-P2
Lemma 5.2 limy_,o ||F,x ,, (2(k))]| - M(2(k)) = 0.

Proof. We shall show that limsup,_, ||z(k)|| < +0c. In order to obtain a contradiction,
suppose that limsup,_ . ||z(k)|| = 4+o00. By assumption (A2), {x € R" : f(z) < a} is
compact for any a > f(0). Without loss of generality, for some a > f(0), we can assume that
f(z(k)) > a for any k. From the compactness of {z € R" : f(z) < a}, there exists 8 > 0 such
that {z € R* : f(z) < a} C B(0,8). Since Vf(z) is continuous, there exist emin, Emax > 0
such that emim = min{||Vf(z)|| : f(z) = a} and enax = max{||Vf(z)| : f(z) = a}. Then,
0 < €min < Emax because a > f(0). For any k, let y* € arg max{(z(k),z) : f(z) < a}. From
the optimal condition of convex programming, V f(y*) = vzz(k) (vx > 0). Then, by (10) and
the definitions of A, and Fx ,, (z), we have _

Ap = Foep ((k );—HVka (k)| - M(=2(k))

ZFv",pk(m(k) — Tk ( ( ))
2 f(z(k)) — 7 - M( (k)) ,
> F) + (VI alk) )~ Ma(h) )
:a+<yle(() z(k)) — (vez(k),y*) — m(M + ||z(k)])) |

o+ V||

k)|1? = (v (k), y*) — (M + ||=(K)]])

& + Emin|2(k) || = Emaxlly*|| — 7w(M + ||z (K)]))
> a+ (Smin - Tk)”w(k)” - Emaxﬂ - TkM-

Hence, by (11),

liminfe e A 2 liminfyo0(@ + (€min — 7i)l|2(K) || — Emaxl — 7 M)
= 0 — Emaxld + W infi o0 (Emin — ) ||2(k)|| — lim sup, oo M
= & — Emaxf + lim infk._,oo(n‘-‘min - Tk)Hw(k)”
= +o00.

AV

This contradicts to Lemma 5.1. Therefore, there exists § > 0 such that lim sup,_,, ||z(k)|| < é.
Then, we have
Lim sup || Fok o, (2(k)|| - M(2(k)) < limsup 7.(M 4 §) = 0.
k—yoo k—yo00

The proof is complete. | O
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Lemma 5.3 Let {z(k)} and {v*} be infinite sequences generated by Algorithm IA-P2. Then,
,x(z(k)) = 0 as k — oo.

Proof. From the definition of 8., x(z) > 0 for any z € R™, k € {1,2,...}. Hence,
liminfy_,o 0,x(z(k)) > 0. We shall show that limsup,_, . 0,x(z(k)) < 0. Suppose to the
contrary that 8 := limsup,_., 0,x(z(k)) > 0. Then, there exists a subsequence {z(k,)} C
{z(k)} such that lim,_,e 8,x,(z(ky)) = B. Without loss of generality, we can assume that
6, (z(ky)) > 0 for all g. Therefore, from the definition of u in Step 2b) of Algorithm IA-P2,

we have,
Pigyr = Blikg > g vq.
Thus, limg_,e pr, = +00. From assumption (A2), there exists ' € R™ such that f(z') =
inf{f(z) : = € R"}. By Lemma 5.2, we have
liminf Ay, = liminf (Fyu ,, (2(ko)) = [V e, (2(k))I| - M(=(ky))
ko)) —limsup [V Eyee,,, (2(ko)]] - M (z(k,))

> liﬂglfkaq,#kq (z(kq))
= liminf (f(2(ko)) + pa b, (2(,)))
> liminf (f(2') + e, by0a (2(k2))
= f(;z:') + liggglfpkﬁvkq(m(kq))
= f(&) 4008

= 00.

> hggglf kaq,ukq (=(

This contradicts Lemma 5.1. Therefore, limsup,_, 6,x(z(k)) < 0. Consequently, we have
limk_)oo avk(ill(k)) = 0. » [

Lemma 5.4 Let {z(k)} be an infinite sequence generated by Algorithm IA-P2. Then, {z(k)}

has an accumulation point.

Proof. From Lemmas 5.1, 5.2 and the definition of F, ,(z), we have

min(RCP) > limsup A4
k—o0

— limsup (Fy ., (2(k)) — [V Foe,p (2(R))] - M(2()))

> limsup For . (2(k)) — lim inf ||V e, ((k))[| - M(2(k))
(k)

l"lk(
k—o0
> limsup Fie ,, (z
k—oo
= limsup f(z(k)).
k—co
This implies that for given ¢ > 0, there exists k such that {z(k)}s>z C {z € R" : f(z) <
min(RCP) + ¢}. By assumption (A2), {z € R": f(z) < min(RCP) + ¢} is compact. Conse-
quently, {z(k)} has an accumulation point. O



159

Theorem 5.2 Let {z(k)} be an infinite sequence generated by Algorithm IA-P2. Then, every
accumulation point Z of {z(k)} belongs to the feasible set Y\int X of problem (RCP).

Proof. Since {v*} C (51)° and {z(k)} has an accumulation point, we can assume that {v*}
and {z(k)} converge to ¥ and Z, respectively. By Theorem 3.1, ¥ belongs to X°. Therefore,
X C{z € R*: (v,z) < 1}. Since [max{0,7;(z(ky))}]* > 0, by Lemma 5.3,

0 = klg{.lo 6.+ (z(k))

= Jim (é[max{o,rj(m(k))}r + [max{o,h(vk,w(k)}r)

> klir{.lo[max{o, — (v, z(k)) + 1}]°
= [max{0,—(9,z) + 1}]°.

This implies that (9,Z) > 1. Therefore, Z is not contained in int X.
From Lemma 5.3 and the continuity of r;, j = 1,...,ty, we have

0 = lim 6,(z(k))
= lim (i[max{ﬂ,?‘j(w(k))}]’ + [max{ﬂ,h(vk,x(k)}]’)

> Jim 3 lmax{0,r;(=(k) }

= Z[max{o,rj(i:))}]’
7j=1
Hence, r;(2) <0, j = 1,...,ty. Consequently, we get Z € Y\int X. , - O

Theorem 5.3 Let {z(k)} be an infinite sequence generated by Algorithm IA-P2. Then, every
accumulation point Z of {z(k)} solves problem (RCP).

Proof. By Theorem 5.2, Z € Y\int X. Hence, f(Z) > min(RCP). Since {v*} C (5;)° and
{z(k)} has an accumulation point, we can assume that {v*} and {z(k)} converge to © and z,
respectively. Since pif,x(z(k)) > 0 for any k, from Lemmas 5.1 and 5.2, we have

min(RCP) > ’}anlo Ay
= Timm (Pt (2(F)) — [V Eye o (2(8)]] - M(a(8))
k

k—oo
lim Fx , (z

H

ARV,
ele e
BgBghE
=S
N
E =

Consequently, we get f(Z) = min(RCP). v O
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Corollary 5.1 Let{z(k)} and {v*} be infinite sequences generated by Algorithm IA-P2. Then,
prbox(z(k)) = 0 as k — oo.

Theorem 5.4 Let {v*} be an infinite sequence generated by Algorithm IA-P2. Then, every
accumulation point T of {v*} solves problem (DP).

Proof. By Theorem 3.1, v belongs to the feasible set of problem (DP). Hence, g H(y )
max(DP). Let {v*1} be a subsequence of {v*} satisfying v® — v as ¢ — oo and let {z(k,)}
be a subsequence of {z(k)} for {v*1}. Without loss of generality, we can assume that {z(k,)}
converges to z. By Lemma 5.2,

qli%e e (z(kg)) = ql—i+12> Zj:[max{(),rj(:c(k))}]s + [max{O,h(;c(kq)., v*1]* = 0

Henée, 0 > limg_ ;e h(z(ky),v*) = limyy oo (—(v*, 2(k,)) +1) = —(7,2)+1. That is, (2, 5, 3) > 1.
From Theorems 5.2 and 5.3, we get that z € Y\int X C Y and that f(z) = mm(RCP) Then,

we have

(5) = —inf{g(z) : (3,2) > 1}
= —inf{f(z) : (s,2) > 1, z € Y}
> —f(z)
= —min(RCP)
= max(DP).
Consequently, g (%) = max(DP). : O

Corollary 5.2 Let {v*} be an infinite sequence generated by Algorithm IA-P2. Then, every
accumulation point o of {v*} belongs to (bd X°)\int Y.

From Theorem 5.2, we have liminf,_,., p(z(k)) > 0. Moreover, from Lemma 5.3, we get
limy_, o0 O, (z(k)) = 0, so that lim sup,_, ., 7(z(k)) < 0. Hence, in order to terminate Algorithm
IA-P2 after finitely many iterations, using admissible tolerances v, y2 > 0, y3 > 0, we propose
the following stopping criterion:

If Py, (2(k)) = Ar = [[VE , (2(K)) |- M(2(k)) < 11, p(2(k)) = —72 and r(z(k)) <
~3, then stop; z(k) is an approximate solution of problem (RCP).

6 Conclusion

In this paper, instead of solving problem (RC P) directly, we have presented two inner approx-
imation algorithms for problem (M P).

To execute the algorithms, a convex minimization problem (2) is solved at each iteration.
However, we note that it is not necessary to obtain an optimal solution for problem (2) at each
step. At iteration k of the algorithms, it suffices to get a point which is contained in X and is
not contained in Si. That is, at each step, we can compromise solving problem (2) by getting
a point z* satisfying ¢(z*;v*) < 0, because z* belongs to X\ Sk if ¢(z*;v*) < 0.
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From the discussion of Section 3, by solving two kinds of convex minimization problems
(SP(v)) and (2) successively, it is possible to obtain an optimal solution of problem (RC P). In
Section 4, the proposed method using penalty functions transforms problem (SP(v)) into the
unconstrained problem (SP1(v,u)). Moreover, from the discussion in Section 5, without loss
of the global convergence of the algorithm, we'can compromise solving problem (SP1(v,pu))
by getting z* satisfying (10). | ‘ '
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