ON GENERALIZED FRACTIONAL INTEGRALS

大阪教育大学 中井英一 (Eiichi Nakai)

It is known that the fractional integral I_{α} is bounded from $L^{p}(\mathbb{R}^{n})$ to $L^{q}(\mathbb{R}^{n})$ when $0 < \alpha < n$, $1 and <math>n/q = n/p - \alpha$ as the Hardy-Littlewood-Sobolev theorem. We introduce generalized fractional integrals and extend the Hardy-Littlewood-Sobolev theorem to the Orlicz spaces. We show that, for example, a generalized fractional integral I_{ϕ} is bounded from $\exp L^{p}$ to $\exp L^{q}$ (see Example 1.2).

It is also known that the modified fractional integral \tilde{I}_{α} is bounded from $L^p(\mathbb{R}^n)$ to $\mathrm{BMO}(\mathbb{R}^n)$ when $0 < \alpha < n$ and $p = n/\alpha$, from $L^p(\mathbb{R}^n)$ to $\mathrm{Lip}_{\alpha-n/p}(\mathbb{R}^n)$ when $0 < \alpha < n$ and $0 < \alpha - n/p < 1$, from $\mathrm{BMO}(\mathbb{R}^n)$ to $\mathrm{Lip}_{\alpha}(\mathbb{R}^n)$ when $0 < \alpha < 1$, and from $\mathrm{Lip}_{\beta}(\mathbb{R}^n)$ to $\mathrm{Lip}_{\alpha+\beta}(\mathbb{R}^n)$ when $0 < \alpha < \alpha + \beta < 1$. We also investigate the boundedness of generalized fractional integrals from the Orlicz space to BMO_{ψ} and from BMO_{ψ_1} to BMO_{ψ_2} , where BMO_{ψ} is the function space defined using the mean oscillation and a weight function $\psi: (0, +\infty) \to (0, +\infty)$. If $\psi(r) \equiv 1$, then $\mathrm{BMO}_{\psi} = \mathrm{BMO}$. If $\psi(r) = r^{\alpha}$ $(0 < \alpha \leq 1)$, then $\mathrm{BMO}_{\psi} = \mathrm{Lip}_{\alpha}$.

1. Generalized fractional integrals on the Orlicz spaces

For a function $\phi:(0,+\infty)\to(0,+\infty)$, let

$$I_{\phi}f(x) = \int_{\mathbb{R}^n} f(y) \frac{\phi(|x-y|)}{|x-y|^n} dy.$$

¹⁹⁹¹ Mathematics Subject Classification. 26A33, 46E30, 46E15.

Key words and phrases. fractional integtal, Riesz potential, Orlicz space, BMO, Lipschitz space .

We consider the following conditions on ϕ :

(1.1)
$$\frac{1}{A_1} \le \frac{\phi(s)}{\phi(r)} \le A_1 \text{ for } \frac{1}{2} \le \frac{s}{r} \le 2,$$

(1.2)
$$\frac{\phi(r)}{r^n} \le A_2 \frac{\phi(s)}{s^n} \quad \text{for} \quad s \le r,$$

$$(1.3) \qquad \int_0^1 \frac{\phi(t)}{t} \, dt < +\infty,$$

where $A_i > 0$ (i = 1, 2) are independent of r, s > 0. If $\phi(r) = r^{\alpha}$, $0 < \alpha < n$, then I_{ϕ} is the fractional integral or the Riesz potential denoted by I_{α} .

A function $\Phi:[0,+\infty)\to[0,+\infty]$ is called a Young function if Φ is convex, $\lim_{r\to+0}\Phi(r)=\Phi(0)=0$ and $\lim_{r\to+\infty}\Phi(r)=+\infty$. Any Young function is increasing. For a Young function Φ , the complementary function is defined by

$$\Psi(r) = \sup\{rs - \Phi(s) : s \ge 0\}, \quad r \ge 0.$$

For example, if $\Phi(r) = r^p/p$, $1 , then <math>\Psi(r) = r^{p'}/p'$, 1/p + 1/p' = 1. If $\Phi(r) = r$, then $\Psi(r) = 0 (0 \le r \le 1), = +\infty (r > 1)$.

For a Young function Φ , let

$$L^{\Phi}(\mathbb{R}^{n}) = \left\{ f \in L^{1}_{loc}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} \Phi(\epsilon | f(x)|) \, dx < +\infty \text{ for some } \epsilon > 0 \right\},$$

$$\|f\|_{\Phi} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^{n}} \Phi\left(\frac{|f(x)|}{\lambda}\right) \, dx \le 1 \right\},$$

$$L^{\Phi}_{weak}(\mathbb{R}^{n}) = \left\{ f \in L^{1}_{loc}(\mathbb{R}^{n}) : \sup_{r > 0} \Phi(r) \, m(r, \epsilon f) < +\infty \text{ for some } \epsilon > 0 \right\},$$

$$\|f\|_{\Phi,weak} = \inf \left\{ \lambda > 0 : \sup_{r > 0} \Phi(r) \, m\left(r, \frac{f}{\lambda}\right) \le 1 \right\},$$

where $m(r, f) = |\{x \in \mathbb{R}^n : |f(x)| > r\}|.$

If a Young function Φ satisfies

$$(1.4) 0 < \Phi(r) < +\infty for 0 < r < +\infty,$$

then Φ is continuous and bijective from $[0, +\infty)$ to itself. The inverse function Φ^{-1} is also increasing and continuous.

A function Φ said to satisfy the ∇_2 -condition, denoted $\Phi \in \nabla_2$, if

$$\Phi(r) \le \frac{1}{2k}\Phi(kr), \quad r \ge 0,$$

for some k > 1.

Let Mf(x) be the maximal function, i.e.

$$Mf(x) = \sup_{B \ni x} \frac{1}{|B|} \int_{B} |f(y)| \, dy,$$

where the supremum is taken over all balls B containing x.

We assume that Φ satisfies (1.4). Then M is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $L^{\Phi}_{weak}(\mathbb{R}^n)$. If $\Phi \in \nabla_2$, then M is bounded on $L^{\Phi}(\mathbb{R}^n)$.

Our main results are as follows:

Theorem 1.1. Let ϕ satisfy $(1.1)\sim(1.3)$. Let Φ_i (i=1,2) be Young functions with (1.4). Assume that there exist constants A, A', A'' > 0 such that, for all r > 0,

(1.5)
$$\int_{r}^{+\infty} \Psi_{1} \left(\frac{\phi(t)}{A \int_{0}^{r} (\phi(s)/s) ds \Phi_{1}^{-1}(1/r^{n}) t^{n}} \right) t^{n-1} dt \leq A',$$

(1.6)
$$\int_0^r \frac{\phi(t)}{t} dt \; \Phi_1^{-1} \left(\frac{1}{r^n} \right) \le A'' \; \Phi_2^{-1} \left(\frac{1}{r^n} \right),$$

where Ψ_1 is the complementary function with respect to Φ_1 . Then, for any $C_0 > 0$, there exists a constant $C_1 > 0$ such that, for $f \in L^{\Phi_1}(\mathbb{R}^n)$,

(1.7)
$$\Phi_2\left(\frac{|I_{\phi}f(x)|}{C_1||f||_{\Phi_1}}\right) \le \Phi_1\left(\frac{Mf(x)}{C_0||f||_{\Phi_1}}\right).$$

Therefore I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}_{weak}(\mathbb{R}^n)$. Moreover, if $\Phi_1 \in \nabla_2$, then I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}(\mathbb{R}^n)$.

For functions $\theta, \kappa : (0, +\infty) \to (0, +\infty)$, we denote $\theta(r) \sim \kappa(r)$ if there exists a constant C > 0 such that

$$C^{-1}\theta(r) \le \kappa(r) \le C\theta(r), \quad r > 0.$$

A function $\theta:(0,+\infty)\to(0,+\infty)$ is said to be almost increasing (almost decreasing) if there exists a constant C>0 such that $\theta(r)\leq C\theta(s)$ ($\theta(r)\geq C\theta(s)$) for $r\leq s$.

Remark 1.1. From (1.1) it follows that

(1.8)
$$\phi(r) \le C \int_0^r \frac{\phi(t)}{t} dt.$$

If $\phi(r)/r^{\varepsilon}$ is almost increasing for some $\varepsilon > 0$ and $\phi(t)/t^{n}$ is almost decreasing, then ϕ satisfies $(1.1)\sim(1.3)$ and $\int_{0}^{r}(\phi(t)/t) dt \sim \phi(r)$. Let, for

example, $\phi(r) = r^{\alpha}(\log(1/r))^{-\beta}$ for small r. If $\alpha = 0$ and $\beta > 1$, then $\int_0^r (\phi(t)/t) dt \sim (\log(1/r))^{-\beta+1}$. If $\alpha > 0$ and $-\infty < \beta < +\infty$, then $\int_0^r (\phi(t)/t) dt \sim \phi(r)$.

Remark 1.2. In the case $\Phi_1(r) = r$, (1.5) is equivalent to

$$\frac{\phi(t)}{t^n} \le \frac{A \int_0^r (\phi(s)/s) \, ds}{r^n}, \quad 0 < r \le t.$$

This inequality follows from (1.2) and (1.8).

The following corollaries are stated without the complementary function.

Corollary 1.2. Let ϕ satisfy $(1.1)\sim(1.3)$. Let Φ_i (i=1,2) be Young functions with (1.4). Assume that

$$\int_0^r \frac{\phi(t)}{t} dt \; \Phi_1^{-1} \left(\frac{1}{r^n}\right)$$

is almost decreasing and that there exist constants A, A' > 0 such that, for all r > 0,

(1.9)
$$\int_{r}^{+\infty} \frac{\phi(t)}{t} \Phi_{1}^{-1} \left(\frac{1}{t^{n}}\right) dt \leq A \int_{0}^{r} \frac{\phi(t)}{t} dt \Phi_{1}^{-1} \left(\frac{1}{r^{n}}\right),$$

(1.10)
$$\int_0^r \frac{\phi(t)}{t} dt \, \Phi_1^{-1} \left(\frac{1}{r^n}\right) \le A' \, \Phi_2^{-1} \left(\frac{1}{r^n}\right).$$

Then (1.7) holds. Therefore I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}_{weak}(\mathbb{R}^n)$. Moreover, if $\Phi_1 \in \nabla_2$, then I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}(\mathbb{R}^n)$.

Remark 1.3. If $r^{\varepsilon}\phi(r)\Phi_1^{-1}(1/r^n)$ is almost decreasing for some $\varepsilon>0$, then

$$\int_{r}^{+\infty} \frac{\phi(t)}{t} \Phi_1^{-1} \left(\frac{1}{t^n}\right) dt \le C \phi(r) \Phi_1^{-1} \left(\frac{1}{r^n}\right).$$

This inequality and (1.8) yield (1.9).

Remark 1.4. We cannot replace (1.6) or (1.10) by

$$\phi(r) \Phi_1^{-1}\left(\frac{1}{r^n}\right) \le A \Phi_2^{-1}\left(\frac{1}{r^n}\right) \quad \text{for all } r > 0$$

(see Section 5 in [5]).

Corollary 1.3. Let $\phi(r) = r^{\alpha}$ with $0 < \alpha < n$. Let Φ_i (i = 1, 2) be Young functions with (1.4). Assume that there exist constants A, A' > 0 such that, for all r > 0,

(1.11)
$$\int_{r}^{+\infty} t^{\alpha-1} \Phi_1^{-1} \left(\frac{1}{t^n}\right) dt \leq A r^{\alpha} \Phi_1^{-1} \left(\frac{1}{r^n}\right),$$

(1.12)
$$r^{\alpha} \Phi_1^{-1} \left(\frac{1}{r^n} \right) \leq A' \Phi_2^{-1} \left(\frac{1}{r^n} \right).$$

Then (1.7) holds. Therefore I_{α} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}_{weak}(\mathbb{R}^n)$. Moreover, if $\Phi_1 \in \nabla_2$, then I_{α} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}(\mathbb{R}^n)$.

Remark 1.5. Results similar to this corollary are in [2] and [10]. Kokilashvili and Krbec [2] considered the boundedness of I_{α} with weights, and gave a necessary and sufficient condition on the weights so that weighted inequalities hold. Torchinsky [10] treated sublinear operators with weak type (p_i, q_i) (i = 1, 2) and used interpolation.

We state examples given by the theorem and corollaries as follows:

Example 1.1. Let ϕ satisfy (1.1) and

$$\phi(r) = egin{cases} r^{lpha_1} & ext{for small } r, \ r^{lpha_2} & ext{for large } r, \end{cases}$$

where $0 < \alpha_1 < n$ and $-\infty < \alpha_2 < n$. Let Φ_1 and Φ_2 be convex and

$$\Phi_1(\xi) = \begin{cases} \xi^{p_2}, & \text{for small } \xi, \\ \xi^{p_1}, & \text{for large } \xi, \end{cases}$$

$$\Phi_2(\xi) = \begin{cases} \xi^{q_2}, & \text{for small } \xi, \\ \xi^{q_1}, & \text{for large } \xi, \end{cases}$$

where

$$1 < p_1 < n/\alpha_1, \ q_1 > 1, \ n/q_1 \ge n/p_1 - \alpha_1,$$

$$\begin{cases} 1 < p_2 < n/\alpha_2, \ n/q_2 \le n/p_2 - \alpha_2, & \text{when } 0 < \alpha_2 < n, \\ 1 < p_2 < q_2 < \infty, & \text{when } \alpha_2 = 0, \\ 1 < p_2 \le q_2 < \infty, & \text{when } \alpha_2 < 0. \end{cases}$$

Then (1.7) holds and I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}(\mathbb{R}^n)$.

Remark 1.6. The case $(\alpha_1, p_1, q_1) = (\alpha_2, p_2, q_2) = (\alpha, p, q)$ is the Hardy-Littlewood-Sobolev theorem.

Example 1.2. Let ϕ satisfy (1.1) and

$$\phi(r) = \begin{cases} (\log(1/r))^{-(\alpha_1+1)} & \text{for small } r, \\ (\log r)^{\alpha_2-1} & \text{for large } r, \end{cases}$$

where $\alpha_1 > 0$ and $-\infty < \alpha_2 < +\infty$. Let Φ_1 and Φ_2 be convex and

$$\Phi_1(\xi) = \begin{cases}
1/\exp(1/\xi^{p_2}), & \text{for small } \xi, \\
\exp(\xi^{p_1}), & \text{for large } \xi,
\end{cases}$$

$$\Phi_2(\xi) = \begin{cases}
1/\exp(1/\xi^{q_2}), & \text{for small } \xi, \\
\exp(\xi^{q_1}), & \text{for large } \xi,
\end{cases}$$

where

$$(1.13) 0 < p_1 < 1/\alpha_1, \ 1/q_1 \ge 1/p_1 - \alpha_1,$$

(1.13)
$$0 < p_1 < 1/\alpha_1, \ 1/q_1 \ge 1/p_1 - \alpha_1,$$

$$\begin{cases} 0 < p_2 < 1/\alpha_2, \ 1/q_2 \le 1/p_2 - \alpha_2, & \text{when } \alpha_2 > 0, \\ 0 < p_2 < q_2 < \infty, & \text{when } \alpha_2 = 0, \\ 0 < p_2 \le q_2 < \infty, & \text{when } \alpha_2 < 0. \end{cases}$$

Then (1.7) holds and I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}(\mathbb{R}^n)$.

Example 1.3. Let ϕ satisfy (1.1) and

$$\phi(r) = \begin{cases} (\log(1/r))^{-1} (\log\log(1/r))^{-(\alpha_1+1)} & \text{for small } r, \\ (\log r)^{-1} (\log\log r)^{\alpha_2-1} & \text{for large } r, \end{cases}$$

where $\alpha_1 > 0$ and $-\infty < \alpha_2 < +\infty$. Let Φ_1 and Φ_2 be convex and

$$\Phi_1(\xi) = \begin{cases} 1/\exp\exp(1/\xi^{p_2}), & \text{for small } \xi, \\ \exp\exp(\xi^{p_1}), & \text{for large } \xi, \end{cases}$$

$$\Phi_2(\xi) = \begin{cases} 1/\exp\exp(1/\xi^{q_2}), & \text{for small } \xi, \\ \exp\exp(\xi^{q_1}), & \text{for large } \xi, \end{cases}$$

where p_1, p_2, q_1 and q_2 satisfy (1.13) and (1.14). Then (1.7) holds and I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}(\mathbb{R}^n)$.

Example 1.4. Let ϕ satisfy (1.1) an

$$\phi(r) = \begin{cases} (\log(1/r))^{-(\alpha_1+1)} & \text{for small } r, \\ (\log r)^{\alpha_2-1} & \text{for large } r, \end{cases}$$

where $\alpha_i > 0$ (i = 1, 2). Let Φ_1 and Φ_2 be convex and

$$\Phi_1(\xi) = \xi^p, \quad \Phi_2(\xi) = \begin{cases} \xi^p (\log(1/\xi))^{-p\alpha_2} & \text{for small } \xi, \\ \xi^p (\log \xi)^{p\alpha_1} & \text{for large } \xi, \end{cases}$$

where $1 \leq p < \infty$. Then (1.7) holds and I_{ϕ} is bounded from $L^{1}(\mathbb{R}^{n})$ to $L^{\Phi_{2}}_{weak}(\mathbb{R}^{n})$ for p = 1 and from $L^{p}(\mathbb{R}^{n})$ to $L^{\Phi_{2}}(\mathbb{R}^{n})$ for 1 .

Example 1.5. Let ϕ satisfy (1.1) and

$$\phi(r) = \begin{cases} r^n (\log(1/r))^{\alpha_1} & \text{for small } r, \\ r^n (\log r)^{-\alpha_2} & \text{for large } r, \end{cases}$$

where $\alpha_i > 0$ (i = 1, 2). Let Φ_1 and Φ_2 be convex and

$$\Phi_1(\xi) = \xi, \quad \Phi_2(\xi) = \begin{cases} 1/\exp((1/\xi)^{1/\alpha_2}) & \text{for small } \xi, \\ \exp(\xi^{1/\alpha_1}) & \text{for large } \xi. \end{cases}$$

Then (1.7) holds and I_{ϕ} is bounded from $L^{\Phi_1}(\mathbb{R}^n)$ to $L^{\Phi_2}_{weak}(\mathbb{R}^n)$.

2. Generalized fractional integrals on the Orlicz spaces and ${\rm BMO}_{\psi}$

Let $B(a,r) = \{x \in \mathbb{R}^n : |x-a| < r\}$. We define the modified version of I_{ϕ} as follows:

$$\tilde{I}_{\phi}f(x) = \int_{\mathbb{R}^n} f(y) \left(\frac{\phi(|x-y|)}{|x-y|^n} - \frac{\phi(|y|)(1-\chi_{B(O,1)}(y))}{|y|^n} \right) dy,$$

where $\chi_{B(O,1)}$ is the characteristic function of B(O,1). We consider the following conditions on ϕ : (1.1), (1.3) and

(2.1)
$$\left|\frac{\phi(r)}{r^n} - \frac{\phi(s)}{s^n}\right| \le A_3 |r - s| \frac{\phi(r)}{r^{n+1}} \quad \text{for} \quad \frac{1}{2} \le \frac{s}{r} \le 2,$$

(2.2)
$$\frac{\phi(r)}{r^{n+1}} \le A_4 \frac{\phi(s)}{s^{n+1}} \quad \text{for} \quad s \le r,$$

(2.3)
$$\int_{r}^{+\infty} \frac{\phi(t)}{t^2} dt \le A_5 \frac{\phi(r)}{r},$$

where $A_i > 0$ (i = 3, 4, 5) is independent of r, s > 0. If $\phi(r)r^{\alpha}$ is increasing for some $\alpha \geq 0$ and $\phi(r)/r^{\beta}$ is decreasing for some $\beta \geq 0$, then ϕ satisfies (1.1) and (2.1). If $\phi(r) = r^{\alpha}$, $0 < \alpha \leq n + 1$, then $\tilde{I}_{\phi} = \tilde{I}_{\alpha}$ which is the modified version of the fractional integral I_{α} . If $\tilde{I}_{\phi}f$ and $I_{\phi}f$ are well defined, then $\tilde{I}_{\phi}f - I_{\phi}f$ is a constant.

For a function $\psi:(0,+\infty)\to(0,+\infty)$, let

$$BMO_{\psi}(\mathbb{R}^{n}) = \left\{ f \in L^{1}_{loc}(\mathbb{R}^{n}) : \sup_{B=B(a,r)} \frac{1}{\psi(r)} \frac{1}{|B|} \int_{B} |f(x) - f_{B}| \, dx < +\infty \right\},$$

$$\|f\|_{BMO_{\psi}} = \sup_{B=B(a,r)} \frac{1}{\psi(r)} \frac{1}{|B|} \int_{B} |f(x) - f_{B}| \, dx,$$
where
$$f_{B} = \frac{1}{|B|} \int_{B} f(x) \, dx.$$

If $\psi(r) \equiv 1$, then $BMO_{\psi}(\mathbb{R}^n) = BMO(\mathbb{R}^n)$. If $\psi(r) = r^{\alpha}$, $0 < \alpha \le 1$, then $BMO_{\psi}(\mathbb{R}^n) = \operatorname{Lip}_{\alpha}(\mathbb{R}^n)$.

It is known that \tilde{I}_{α} is bounded from $L^{p}(\mathbb{R}^{n})$ to BMO(\mathbb{R}^{n}) when $0 < \alpha < n$ and $p = n/\alpha$, and from $L^{p}(\mathbb{R}^{n})$ to $\text{Lip}_{\alpha-n/p}(\mathbb{R}^{n})$ when $0 < \alpha < n$ and $0 < \alpha - n/p < 1$. We extend these as follows:

Theorem 2.1. Let ϕ satisfy (1.1), (1.3), (2.1) and (2.2). Let Φ be Young function with (1.4), ψ be almost increasing and $\psi(r) \sim \psi(2r)$. Assume that there exist constants A, A', A'' > 0 such that, for all r > 0,

(2.4)
$$\int_{r}^{+\infty} \Psi\left(\frac{r\phi(t)}{A\int_{0}^{r}(\phi(s)/s)\,ds\,\Phi^{-1}(1/r^{n})t^{n+1}}\right)t^{n-1}\,dt \le A',$$
(2.5)
$$\int_{0}^{r}\frac{\phi(t)}{t}\,dt\,\Phi^{-1}\left(\frac{1}{r^{n}}\right) \le A''\psi(r),$$

where Ψ is the complementary function with respect to Φ . Then \tilde{I}_{ϕ} is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $BMO_{\psi}(\mathbb{R}^n)$.

It is known that \tilde{I}_{α} is bounded from $BMO(\mathbb{R}^n)$ to $Lip_{\alpha}(\mathbb{R}^n)$ when $0 < \alpha < 1$, and from $Lip_{\beta}(\mathbb{R}^n)$ to $Lip_{\alpha+\beta}(\mathbb{R}^n)$ when $0 < \alpha < \alpha + \beta < 1$. We extend these as follows:

Theorem 2.2. Let ϕ satisfy (1.1), (1.3), (2.1) and (2.3). Let ψ_i be almost increasing and $\psi_i(r) \sim \psi_i(2r)$ (i = 1, 2). Assume that there exist constants A, A' > 0 such that, for all r > 0,

(2.6)
$$\int_{r}^{+\infty} \frac{\phi(t)\psi_1(t)}{t^2} dt \le A \frac{\phi(r)\psi_1(r)}{r},$$

(2.7)
$$\int_0^r \frac{\phi(t)}{t} dt \ \psi_1(r) \le A' \psi_2(r).$$

Then \tilde{I}_{ϕ} is bounded from $BMO_{\psi_1}(\mathbb{R}^n)$ to $BMO_{\psi_2}(\mathbb{R}^n)$.

The results in Figure 1 are known. By Theorems 2.1 and 2.2 we have the results in Figure 2.

FIGURE 1. Boundedness of fractional integrals

Figure 2. Boundedness of generalized fractional integrals

REFERENCES

[1] A. E. Gatto and S. Vági, Fractional integrals on spaces of homogeneous type, in Analysis and Partial Differential Equations, edited by Cora Sadosky, Marcel Dekker, New York, 1990, 171–216.

- [2] V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific, Singapore, New Jersey, London and Hong Kong, 1991.
- [3] E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, preprint.
- [4] _____ Generalized fractional integrals on the Orlicz spaces, BMO_{ψ} and Hölder spaces, in preparation.
- [5] E. Nakai and H. Sumitomo, On generalized Riesz potentials and spaces of some smooth functions, preprint.
- [6] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, Basel and Hong Kong, 1991.
- [7] B. Rubin, Fractional integrals and potentials, Addison Wesley Longman Limited, Essex, 1996.
- [8] E. M. Stein, Singular integrals and differentiability Properties of functions, Princeton University Press, Princeton, NJ, 1970.
- [9] ______Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.
- [10] A. Torchinsky, Interpolation of operations and Orlicz classes, Studia Math. **59** (1976), 177–207.

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA 582-8582, JAPAN

E-mail address: enakai@cc.osaka-kyoiku.ac.jp