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ON GENERALIZED FRACTIONAL INTEGRALS
KREEKRY:  HH3E— (Eiichi Nakai)

It is known that the fractional integral I, is bounded from LP(R") to
LIY(R") when 0 < a < m, 1 < p < n/a and n/q = n/p — o as the Hardy-
Littlewood-Sobolev theorem. We introduce generalized fractional integrals
and extend the Hardy-Littlewood-Sobolev theorem to the Orlicz spaces. We
show that, for example, a generalized fractional integral I¢ is bounded from
exp L” to exp L? (see Example 1.2).

It is also known that the modified fractional integral I, is bounded from
LP(R™) to BMO(R") when 0 < a < n and p = n/a, from LP(R") to
Lipg_y/p(R™) when 0 < o < n and 0 < a —n/p < 1, from BMO(R") to
Lip,(R") when 0 < a < 1, and from Lipg(R") to Lip,,s(R") when 0 < a <
a+f < 1. We also investigate the boundedness of generalized fractional
integrals from the Orlicz space to BMOy, and from BMOy, to BMOy,, where
BMO, is the function space defined using the mean oscillation and a weight
function 1 : (0, +00) = (0,400). If ¢(r) = 1, then BMO,, = BMO. If
YP(r) =r* (0 < @ < 1), then BMO,, = Lip,. |

1. GENERALIZED FRACTIONAL INTEGRALS ON THE ORLICZ SPACES
For a function ¢ : (0, +00) — (0, +00), let

@) = [ 5 gy
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We consider the following conditions on ¢:

1 ¢(s) 1 s
(1.2) d’f:) < Az%) for s<w,
(1.3) /1 @ dt < 400,
0

where A; > 0 (4 = 1,2) are independent of 7, s > 0. If (1) =7%,0 < o < m,
then I, is the fractional integral or the Riesz potential denoted by I,.

A function ® : [0,+00) — [0,+00] is called a Young function if @ is
convex, lim, 1o ®(r) = ®(0) = 0 and lim,, 1o ®(r) = +o0o. Any Young
function is increasing. For a Young function ®, the complementary function
is defined by

U(r) =sup{rs — ®(s): s >0}, r2>0.
For example, if ®(r) = r?/p, 1 < p < oo, then ¥(r) =P /p, 1/p+1/p = 1.
If ®(r) =7, then ¥(r) =0(0 < r < 1),= +oo(r > 1).
For a Young function @, let

L*(R™) = {f € L (R") : / ®(e|f(x)]) dx < +o0 for some € > O} ,

1511 = inf{/\ 50 / 3 (@) iz < 1},

L2 (R") = {f € L (R") : sgg@(r) m(r, €f) < +oo for some € > 0} :

|| £l ®,weak = inf {)\ > O.: sup @(rj m (r, —‘;) < 1} ,

r>0
where m(r, f) = [{z € R™ : |f(z)| > 7}|.

If a Young function ® satisfies
(1.4) 0<®(r) <+oo for 0<r < +oo,

then ® is continuous and bijective from [0, +00) to itself. The inverse func-

tion ®~! is also increasing and continuous.
A function ® said to satisfy the Vj-condition, denoted ® € Vy, if

1
< — >
d(r) < Zk(f[)(kr), r _‘0,

for some k£ > 1.



Let M f(z) be the maximal function, i.e.

Mf —suplBlflf ) dy,

B>z
where the supremum is taken over all balls B containing z.

We assume that ® satisfies (1.4). Then M is bounded from L®(R™) to
L2 (R™). If & € V,, then M is bounded on L?(R").

weak
Our main results are as follows:

Theorem 1.1. Let ¢ satisfy (1.1)~(1.3). Let ®; (i = 1,2) be Young func-‘

tions with (1.4). Assume that there exist constants A, A’, A" > 0 such that,
for all v > 0,

e ¢(t) n—1 !
(1.5) f 0, (Afo 39 ds (1/r")t”)t dt < A,

(1.6) / $) 4t 3,1 <—n> < A", (%)

where WU, is the complementary function with respect to ®,. Then, for any
Cy > 0, there exzists a constant C; > 0 such that, for f € L®(R"),

|I¢f(:v)l) ( M f(x) )
) o (i) = * (@)
Therefore I4 is bounded from L*'(R™) to L2  (R™). Moreover, if ®1 € Vs,

then I, is bounded from L*(R™) to L**(R™).

For functions 6, x : (0,+o00) — (0,+00), we denote 6(r) ~ x(r) if there
exists a constant C > 0 such that |

C0(r) < k(r) < CO(r), 1 >0.

A function 8 : (0,+00) — (0, +00) is said to be almost increasing (almost
decreasing) if there exists a constant C' > 0 such that 6(r) < CO(s) (0(r) >
C(s)) for r < s.

Remark 1.1. From (1.1) it follows that

(1.8) <C/ () dt.

If ¢(r)/r is almost increasing for some € > 0 and #(t)/t™ is almost de-
creasing, then ¢ satisfies (1.1)~(1.3) and fo (t)/t)dt ~ ¢(r). Let, for
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example ¢(r) = r(log(1/r))? for small r. If @ = 0 and § > 1, then
Jo (@) /t)dt ~ (log(1/r))™"*'. If & > 0 and ~c0 < B < +oo0, then

Jo (#(2)/t) dt ~ (r).
Remark 1.2. In the case ®,(r) = r, (1.5) is equivalent to

ot) _ ALy (8(s)/5) ds

AL rn

This inequality follows from (1.2) and (1.8).

, 0<r<it.

The following corollaries are stated without the complementary function.

Corollary 1.2. Let ¢ satisfy (1.1)~(1.3). Let ®; (i =1,2) be Young func-

tions with (1.4). Assume that

e (d)

s almost decreasmg and that there exist constants A, A’ > 0 such that, for

all 7 >0,
(1.9) /+m¢() 1" <'1>dt<A/ o) dt@“l(rln),
(110) /¢ dtcp—l( ><A’ ~1(-T%)

Then (1.7) holds. Therefore Iy is bounded from L*'(R™) to L2, (R™).
Moreover, if ®; € Vs, then I is bounded from L*'(R™) to L*2(R™).

Remark 1.3. If r¢¢(r)®; 1 (1/r™) is almost decreasing for some € > 0, then
0 o (t) 1 1
[ ?%@1_1 (t—n) dt S Cgb(’f') (bl_l (7‘_"> .
This inequality and (1.8) yield (1.9).

Remark 1.4. We cannot replace (1.6) or (1.10) by

1)
o(r) @, (—n> < APyt (rl") forall7 >0

r

(see Section b in [5]).
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Corollary 1.3. Let ¢(r) = r® with 0 < a < n. Let ®; (i = 1,2) be Young
functions with (1.4). Assume that there ezist constants A, A" > 0.such that,
for allr >0,

oo N N
(1.11) / Ctelg ! (t—n) dt < Ar® @71 (r_")

(1.12) et () < ae (_1_) .
. : rn rn

Then (1.7) holds. Therefore I, is bounded from L® (R™) to L

weak

Moreover, if &, € V4, then I, is bounded from,L‘I’l(R”) to L22(R").

(R™).

Remark 1.5. Results similar to this corollary are in [2] and [10]. Kokilashvili
and Krbec [2] considered the boundedness of I, with weights, and gave a
necessary and sufficient condition on the weights so that weighted inequakli—
ties hold. Torchinsky [10] treated sublinear operators with weak type (p;; ¢;)

(1 = 1,2) and used interpolation.
We state examples given by the theorem and cofollariés as follows:

Example 1.1. Let ¢ satisfy (1.1) and -
r*  for small 7,
qb(r) B { @2 for large r,

where 0 < a3 < n and —00 < oy < n. Let ®; and ®5 be convex and

56— gp2 ,' for small £,
16/ = &P for large &,

B €92 for small £,
Dy (§) = :
£ for large &,
where
| <py < njoy, q > 1, n/’ql >n/p1 — ai,

1 <py<n/ag, nfge <n/py—az, when0 < ay <n,
1 < py < qo <00, when ap = 0,
1 < py <o <00, - when ay < 0.

Then (1.7) holds and I is bounded from L% (R”)"to L22(R™).
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Remark 1.6. The case (a1,p1,q1) = (ag,p2,¢2) = (a,p,q) is the Hardy-

Littlewood-Sobolev theorem.

Example 1.2. Let ¢ satisfy (1.1) and
$(r) = {(log(l/r))_(alﬂ) for small r,

(log r)e2~1 for large r,
where a7 > 0 and —0o < ay < 4+00. Let ®; and ®5 be convex and

o,(¢) = 1/ exp(1/£P2), for small €,
S exp(&Pt), for large &,

By(8) = {l/exp(l/ng), for small &,

exp(&n), for large &,
where |
(113) ()<p1 <1/(1’1, 1/q1_>_1/p1—0l1,
0<pe<l/ag, 1/qs < 1/py — an, when ay > 0,
(1.14) 0 < p2 <qo < o0, when ay = 0,
' 0<py < gy <00, when ay, < 0.

Then (1.7) holds and I, is bounded from L*!(R") to L®2(R").

Example 1.3. Let ¢ satisfy (1.1) and

o(r) = (log(1/7))~(loglog(1/r))~(®1+D)  for small r,
] (log )~ (log log 7)1 for large r,

where a; > 0 and —00 < @y < +00. Let ®; and ®, be convex and

o _J1/expexp(1/£P?), for small &,
RS exp exp(&P), for large &,

D, (8) = {UQXP exp(1/£%), for small ¢,

exp exp(&™), for large &,

where p1, pa, 1 and g, satisfy (1.13) and (1.14). Then (1.7) holds and I, is
bounded from L®'(R") to L*2(R").

Example 1.4. Let ¢ satisfy (1.1) and
o(r) = {(log(l/r))‘(‘““) for small r,

(logr)e2~1 for large r,
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where a; > 0 (i = 1,2). Let &; and ®, be convex and
P(log(1 ~po2 for small &,
®,(8) = &, (I)2(f) _ &P (log( /i)) §
£P(log £)P for large &,
where 1 < p < oo. Then (1.7) holds and I is bounded from L'(R") to
LY (R") for p =1 and from LP(R") to L?*(R") for 1 < p < oo.

weak
Example 1.5. Let ¢ satisfy (1.1) and
o(r) = r*(log(1/r))* for small r,
| (log )~ for large r,
where a; > 0 (1 = 1,2). Let ®; and &, be convex and

P1(6) =€, By(8) = {1/ eXP((l/f)l/af) for small &,

exp(£1/1) for large €.
Then (1.7) holds and I is bounded from L% (R"™) to L22_, (R").

2. GENERALIZED FRACTIONAL INTEGRALS
ON THE ORLICZ SPACES AND BMO,,

Let B(a,r) = {z € R": |z — a| < r}. We define the modified version of
I, as follows:
f¢f(a:) _ / () (¢I(|%” - ynl) _ ¢(ly))(1 - )iB(O,I)(y))) dy,
Jre z —yl ||
where Xxp(o,1) is the characteristic function of B(O,1). We consider the
following conditions on ¢: (1.1), (1.3) and

(2.1) ?:—:—)— - d)s(:) < Aslr —-31% for %— < ; <2,
(2.2) fgz < Ay Ziff_z for s<r,
' +00 (b ¢ ¢

where A; > 0 (i = 3,4,5) is independent of r,s. > 0. If #(r)r® is increasing
for some o > 0 and ¢(r)/r? is decreasing for some 3 > 0, then ¢ satisfies
(1.1) and (2.1). If ¢(r) = r*, 0 < a < n+ 1, then I, = I, which is the
modified version of the fractional integral I,. If I~¢f and I, f are well defined,
then I,f — I,f is a constant.
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For a function 1 : (0,400) — (0, +oo) let

BMOy,(R") = {fe LL (R™): S Sg(p )¢ 1B / |f(z) — fldz < +oo} ,

[Fllowo, = sup —— g 5 [ @) = folds,

B= B(m)ll)
where fB= |B| / f(z)dz.
If (r) = 1, then BMOy(R") = BMO(R"). If 9(r) = 7%, 0 < a < 1, then

BMO, (R™) = Lip,(R").

It is known that I, is bounded from LP(R") to BMO(R™) when 0 < a <7
and p = n/a, and from LP(R") to Lip,_,/,(R") when 0 < a < n and
0 < a—n/p < 1. We extend these as follows:

Theorem 2.1. Let ¢ satisfy (1.1), (1.3), (2.1) and (2.2). Let & be Young
function with (1.4), ¥ be almost increasing and 1(r) ~ ¥(2r). Assume that
there exist constants A, A', A" > 0 such that, for allr > 0,

(24 / - ( AT (40) rf;g o /,m)vtnﬂ)t”*l d;gA’,
(2.5) | /¢t) dt @7 ( ><A”w()

where W is the complementary function with respect to ®. Then I¢ is bounded
from L®(R™) to BMOy(R™).

It is known that I, is bounded from BMO(R") to Lip,(R") when 0 <
o < 1, and from Lips(R") to Lip,;4(R™) when 0 < o < o + 0 < 1. We

extend these as follows:

Theorem 2.2. Let ¢ satisfy (1.1), (1.3), (2.1) and (2.3). Let 9); be almost
increasing and ¥;(r) ~ ¥;(2r) (i = 1,2). Assume that there exist constants
A, A" > 0 such that, for all T > 0,

(2.6) /+°° ot )ﬁl()dtﬁAw,
(27) /OT ¢_§£t)— dt wl(’l“) < A,’l/)g(r).

Then Iy is bounded from BMOy, (R™) to BMOy, (R™).
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The results in Figure 1 are known. By Theorems 2.1 and 2.2 we have the

results in Figure 2.

(1<p<gq<o0)

Lr

(0<B<y<])
Lip,,

1o

I

—n/p+a=-n/q

Io

—n/p+a=0

e

oy

Q’\n

—n/p+a=4 |

Y

Bt+a=

=3 2

FIGURE 1. Boundedness of fractional integrals

¢(r) = (log(1/r))~(@+D for small 7 > 0 (a > 0)

(0<p<q<o00)

0<B<7)

exp L? BMO BMO(]Og(l/T))"‘" BMO (10g(1/r))-
I, Iy
~1/p+a=-1/q a=p
I, . Iy
~1/p+a=0 ] B+a=r7
I
—1l/p+a=p ]

FI1GURE 2. Boundedness of generalized fractional integrals
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