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1. Introduction

Let $W$ be an open Riemann surface possessing a Green’s function. Consider a p-sheeted
unlimited covering surface $\overline{W}$ of $W$ with projection map $\pi$ . It is easily seen that $\overline{W}$ also

possesses a Geen’s function (cf. e.g. [A-S]). We denote by $HP(R)$ ( $HB(R)$ , resp.) the

class of positive (bounded, resp.) harmonic functions on an open Riemann surface $R$ . It is
obvious that the inclusion relation

$HX(W)0\pi:=\{h\mathrm{o}\pi : h\in HX(W)\}\subset HX(\overline{W})$

holds for $X=P,$ $B$ . The main purpose of this paper is to give a necessary and sufficient
condition, in terms of Martin boundary, in order that the relation $HX(W)0\pi=Hx(\overline{W})$

holds for $X=P,$ $B$ .
For an open Riemann surface $R$ , we denote by $R^{*},$

$\triangle^{R}$ and $\triangle_{1}^{R}$ the Martin compactifica-
tion, the Martin boundary and the minimal Martin boundary of $R$ , respectively. It is known
that the projection map $\pi$ of $\overline{W}$ to $W$ is extended to $\overline{W}^{*}$ continuously and $\pi(\triangle^{\tilde{W}})=\triangle^{W}$

(cf. [M-S2]). For each $\zeta\in\triangle^{W}$ , put

$\triangle_{1}^{\tilde{w}}(\zeta)=\triangle_{1}\tilde{W}\cap\pi-1(\zeta)=\{\tilde{\zeta}\in\triangle^{\tilde{W}} :1 \pi(\tilde{\zeta})=\zeta\}$ ,

which is the set of minimal boundary points of $\overline{W}$ lying over $\zeta\in\triangle^{W}$ . Our main results
are the followings.

Theorem 1. In order that the relation $HP(W)0\pi=HP(\overline{W})$ holds, it is necessary and

sufficient that $\triangle_{1}^{\tilde{W}}(\zeta)$ consists of a single point for every $\zeta\in\triangle_{1}^{W}$ .

Theorem 2. In order that the relation $HB(W)0\pi=HB(\overline{W})$ holds, it is $neceSSa_{W}rya.nd$

sufficient that $\triangle_{1}^{\tilde{W}}(\zeta)$ consists of a single point for $\omega_{z}^{W}$ almost all $\zeta\in\triangle_{12}^{W}$ where $\omega_{z}$ is a

harmonic measure on $\triangle^{W}$ with respect to $W$ and $z\in W$ .

Proofs of Theorems 1 and 2 will be given in \S 3 and \S 4, respectively.
Let $D$ be the unit disc $\{|z|<1\}$ . In \S 5, we will be concerned with $p$-sheeted unlimited

covering surfaces of $D$ which illustrate Theorems 1 and 2. We will prove the following.
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Proposition. Set $A=\{(1-2^{-n}-1)ei2\pi k/2^{n}+2 : n=1,2, \ldots, k=1, \ldots, 2^{n+2}\}$ . $If\overline{D}$ is a
$p$ -sheeted unlimited covering surface of $D$ with projection map $\pi$ such that there is a branch
point of $\overline{D}$ of order $p-1$ (or multiplicity $p$) over every $z\in A$ and there are no branch
$p_{oin}t_{\mathit{8}\mathit{0}}f\overline{D}$ over $D\backslash A$ , then $HP(D)0\pi=HP(\overline{D})$ .

We will show a bit more (cf. Theorem 5.1). Modifying the above $\overline{D}$ , we will also
give a $p$-sheeted unlimited covering surface $\overline{D}_{1}$ of $D$ with projection map $\pi$ such that
$HP(D)0\pi\neq HP(\overline{D}_{1})$ and $HB(D)0\pi=HB(\overline{D}_{1})$ .

2. Martin boundary of $p$-sheeted unlimited covering surfaces

Let $W$ be an open Riemann surface possessing a Green’s function and $\overline{W}$ a p-sheeted
unlimited covering surface of $W$ with projection map $\pi$ . Since the pullback of a Green’s
function on $W$ by $\pi$ is a nonconstant positive superharmonic function on $\overline{W}$ , we see that
$\overline{W}$ possesses a Green’s function (cf. e.g. [A-S], [S-N]). For Martin compactification, $\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{t}[mathring]_{\mathrm{l}}\mathrm{n}$

boundary and minimal Martin boundary, we follow the notation in Introduction. We first
note the following (cf. [M-S2]).

Proposition 2.1. The projection map $\pi$ of $\overline{W}$ onto $W$ is extended to the Martin com-
pactification $\overline{W}^{*}$ of $\overline{W}$ continuously and $\pi(\triangle^{\tilde{W}}.)=\triangle^{W}$ . ... .

We recall the definition of $\triangle_{1}^{\tilde{W}}(\zeta)(\zeta\in\triangle^{W})$ in Introduction:

$.\triangle_{1}^{\tilde{W}}(()=\triangle\tilde{W}\mathrm{n}1-\pi(1\zeta)=\{\tilde{\zeta}\in\triangle^{\overline{W}} :1 \pi(\tilde{\zeta})=\zeta\}$.

We denote by $\nu_{\tilde{W}}(\zeta)$ the (cardinal) number of $\triangle_{1}^{\tilde{W}}(\zeta)$ . We next fix a point $a\in\dot{W}$ and a
point $\tilde{a}\in W$ with

(2.1) $\pi(\tilde{a})=a$ .

We consider the Martin kernel $k_{\zeta}^{W}(\cdot)$ ( $k_{\overline{\zeta}}^{\tilde{W}}(\cdot)$ , resp.) on $W$ ( $\overline{W}$ , resp.) with pole at $\zeta(\tilde{\zeta}$ ,
resp.) and with reference point $a$ ( $\tilde{a}$ , resp.), that is,

$k_{\zeta}^{W}(z)= \frac{g^{W}(z,()}{g^{W}(a,()}$ ( $k_{\tilde{\zeta}}^{\tilde{W}}( \tilde{z})=\frac{g^{\tilde{W}}(\tilde{z},\tilde{\zeta})}{g^{\tilde{W}}(\tilde{a},\tilde{\zeta})}$ , resp.)

for $\zeta\in W$ ( $\tilde{\zeta}\in\overline{W}$ , resp.), where $g^{W}(\cdot, \zeta)(g^{\tilde{W}}(\cdot,\tilde{\zeta})$ , resp.) is a Green’s function on $W(\overline{W}$ ,
resp.) with pole at $\zeta$ ( $\tilde{\zeta}$ , resp.). Note that

(2.2) $k_{(}^{W}(a)=k_{\overline{\zeta}}^{\tilde{W}}(\tilde{a})=1$ .

In our previous paper [M-S2], we proved the following.
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Proposition 2.2. Suppose $\zeta\in\triangle^{W}$ . Then ’

$-$

(i) If $\zeta\in\triangle^{W}\backslash \Delta_{1\prime}^{W}$ then $\nu_{\tilde{W}}(\zeta)=0$ ;
(ii) If $\zeta\in\triangle_{1}^{W}$ , then $1\leq-\nu_{\tilde{W}}(\zeta)\leq p$ ;
(iii) If $\zeta\in\triangle_{1}^{W}$ and $\triangle_{1}^{W}(\zeta)=\{\tilde{\zeta}_{1},.\cdots,\tilde{\zeta}_{n}\}_{f}$ then there exist positive numbers $c_{1},$

$\ldots,$
$c_{n}$ such

that

(2.3) : $k_{(}^{W}\mathrm{o}\pi--C1k_{\overline{\zeta}1}^{\tilde{W}}+\cdots+c_{n}k_{\overline{\zeta}_{n}}^{\tilde{W}}$ .

In the relation (2.3) above, by (2.1) and (2.2), we have

(2.4) $\sum_{i=1}^{n}C_{n}=1$ .

Let $s$ be a positive superharmonic function on $W$ and $E$ is a subset of $W$ . We denote by
$W\hat{\mathrm{R}}_{s}^{E}$ the balayage of $s$ with respect to $E$ on $W$ . We here give the definitions of minimal
thinness and minimal fine neighborhood (cf. [B]). .

DEFINITION 2.1. Let (be a point of $\triangle_{1}^{W}$ and $E$ a subset of $W$ . We say that $E$ is
minimally thin at $\zeta$ if $W\hat{\mathrm{R}}_{k_{\zeta}^{W}}^{E}\neq k_{(}^{W}$ .

DEFINITION 2.2. Let (be a point of $\triangle_{1}^{W}$ and $U$ a subset of $W$ . We say that $U\cup\{\zeta\}$ is
a minimal fine neighborhood of $\zeta$ if $W\backslash U$ is minimally thin at $\zeta$ .

The following is easily verified from Proposition 3.1 of our previous paper [M-S2] (see
also [M] $)$ .

Proposition 2.3. $Let\sim\zeta be\in\triangle_{1}^{\tilde{W}}$ and $\tilde{U}$ a subset of $\overline{W}$ . Then $\overline{U}\cup\{\tilde{\zeta}\}$ is a minimal fine
neighborhood $of\zeta\sim$ if and only if $\pi(\tilde{U})\cup\{\pi(\zeta)\}\sim$ is a minimal fine neighborhood of $\pi(\tilde{\zeta})$ .

For $\zeta\in\triangle_{1}^{W}$ , we denote by $\mathcal{M}_{W}(\zeta)\dot{\mathrm{t}}\mathrm{h}\mathrm{e}$ class of connected open sets $M$ such that $W\backslash M$

is minimally thin at $\zeta$ . Moreover, for $M\in \mathcal{M}_{W}(\zeta)$ and a $p$-sheeted unlimited covering
surface $\overline{W}$ of $W$ with projection map $\pi$ , we denote by $n_{\tilde{W}}(M)$ the number of connected
components of $\pi^{-1}(M)$ . Then $\nu_{\tilde{W}}(\zeta)$ is characterized by $n_{\tilde{W}}(M)$ as follows, which is a main
result of our previous paper [M-S2].

Proposition 2.4. Suppose $\zeta\in\triangle_{1}^{W}$ . Then $\nu_{\tilde{W}}(\zeta)=M\in \mathcal{M}_{W}((\max)n\tilde{W}(M)$ .

3. Proof of Theorem 1
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In this section, we give the proof of Theorem 1. For the sake of simplicity, we introduce
the following notation:

‘.
$\mathrm{Y}$

$\triangle=\triangle^{W},$ $\triangle_{1}=\triangle_{1}^{W},$
$\triangle=\triangle^{\tilde{W}}\sim,$ $\triangle_{1}\sim=\triangle_{1}^{\tilde{W}},$ $\triangle_{1}(()=\triangle_{1}^{\tilde{w}}(()\sim$

:. $\backslash \lambda$

’

and
$k_{\zeta}=k_{\zeta}^{W},\tilde{k}_{\overline{\zeta}}=k_{\overline{\zeta}}^{\tilde{W}}$.

Proof of Theorem 1. Assume that $HP(W)0\pi=HP(\overline{W})$ . Let $\zeta$ be an arbitrary point
in $\triangle_{1}$ . We need to show that $\triangle_{1}(\zeta)\sim$ consists of a single point. Take a point $\tilde{\zeta}\in\triangle_{1}(\zeta)-$ . By
Proposition 2.2 (iii), there exists a positive constant $c$ such that

(3.1) $c\tilde{k}_{\overline{\zeta}}\leq k_{\zeta}\mathrm{o}\pi$

on $\overline{W}$ . By assumption, there exists an $h\in HP(W)$ such that

(3.2) $\tilde{k}_{\overline{\zeta}}=h\mathrm{o}\pi$

on $\overline{W}$ . Hence, by (3.1), we see that $ch\leq k_{\zeta}$ on $W$ . This with minimality of $k_{(}$ implies that
there exists a positive constant $c_{1}$ such that

(3.3) $h=c_{1}k_{\zeta}$

on $W$ . Hence, by (3.2), we see that $\tilde{k}_{\overline{\zeta}}=c_{1}k_{\zeta}\mathrm{o}\pi$ on $\overline{W}$ . From this with (2.1) and (2.2), it
follows that $c_{1}=1$ . Therefore we obtain

(3.4) $\tilde{k}_{\overline{\zeta}}=k_{\zeta}\mathrm{o}\pi$

on $\overline{W}$ . This yields that $\triangle_{1}(\zeta)\sim=\{\tilde{\zeta}\}$ .
Conversely, assume that $\nu_{\tilde{W}}(\zeta)=1$ for every $\zeta\in\triangle_{1}$ . We only need to show $HP(\overline{W})\subset$

$HP(W)0\pi$ , since the reversed inclusion is trivial. By assumption, we set $\triangle_{1}(\zeta)\sim=\{\tilde{\zeta}\}$ for
each $\zeta\in\triangle_{1}$ . By Proposition 2.2 (iii) and (2.4), we have

(3.5) $\tilde{k}_{\overline{\zeta}}=k_{\zeta}\mathrm{o}\pi$

for every $\zeta\in\triangle \mathrm{l}$ . Take an arbitrary $\tilde{h}$ in $HP(\overline{W})$ . By the Martin representation theorem
(cf. e.g. [ ], [ ] and [ ]), there exists a Radon measure $\tilde{\mu}$ on $\triangle \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\tilde{\mu}-(\triangle-\backslash \triangle_{1})-=0$ such
that

(3.6) $\tilde{h}=\int\tilde{k}_{\overline{\zeta}}d\tilde{\mu}(\tilde{\zeta})$ .

Choose arbitrary two points $\tilde{z}_{1}$ and $\tilde{z}_{2}$ in $\overline{W}$ with $\pi(\tilde{z}_{1})=\pi(\tilde{z}_{2})$ . In view of (3.5) and (3.6),
we obtain

$\tilde{h}(\tilde{z}_{3})=\int\tilde{k}_{\overline{\zeta}}(\tilde{Z}_{1})d\tilde{\mu}(\tilde{\zeta})=\int\tilde{k}_{\overline{\zeta}}(_{\tilde{Z}_{2})}d\tilde{\mu}(\tilde{\zeta})=\tilde{h}(\tilde{\mathcal{Z}}_{2})$.
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Therefore we deduce that $\tilde{h}\in HP(W)0\pi$ for every $\tilde{h}\in HP(\overline{W})$ , and hence $HP(\overline{W})\subset$

$HP(W’)0\pi$ .
The proof is herewith complete. $\square$

4. Proof of Theorem 2

In this section, we give the proof of Theorem 2. Let $\omega_{z}(\cdot)$ ( $\tilde{\omega}-\overline{\prime}(\cdot)$ , resp.) be the harmonic
measure on $\triangle$ ( $\triangle\sim$

, resp.) with respect to $W$ ( $\overline{\nu|\nearrow}$ , resp.) and $z\in W$ ( $\tilde{z}\in\overline{W}$ , resp.).
It is well-known that harmonic measure is a Radon measure (cf. e.g. [C-C]). It is also
well-known that $\omega_{z}(\cdot)$ ( $\tilde{\omega}_{\overline{z}}(\cdot)$ , resp.) can be extended to the outer measure on $\triangle$ ( $\triangle\sim$ , resp.)
by

$\omega_{z}(E)=\inf$ { $\omega_{z}(B)$ : $B$ is a Borel set with $E\subset B$ }

($\tilde{\omega}_{\overline{z}}(\tilde{E})=\inf\{\tilde{\omega}_{\overline{z}}(\tilde{B}):\tilde{B}$ is a Borel set with $E\subset B\}$ , resp.)

for a subset $E$ ( $\tilde{E}$ , resp.) of $\triangle$ ( $\triangle\sim$ , resp.). It is known that $h(z)=\omega_{z}(E)$ is a nonnegative
harmonic function on $W$ for every $E\subset\triangle$ . By minimum principle, it is obvious that, for
an arbitrary $E(\subset\triangle)$ ( $\tilde{E}\subset\triangle\sim$ , resp.), $\omega_{z}(E)=0$ ( $\tilde{\omega}_{\overline{z}}(\overline{E})=0$ , resp.) for a $z\in W(\tilde{z}\in\tilde{W}$ ,
resp.) if and only if $\omega_{z}(E)=0$ ( $\tilde{\omega}_{\overline{z}}(\tilde{E})=0$ , resp.) for all $z\in W$ ( $\tilde{z}\in\tilde{W}$ , resp.). Let
$f$ be a real-valued function on the Martin boundary $\triangle^{R}$ of an open Riemann surface $R$ .
We denote by $\underline{H}_{f}^{R}$ ( $\overline{H}_{f}^{R}$ , resp.) the solution (uppper solution, resp.) of Dirichlet problem
on $R$ ( $=\prime W$ or $W$) with boundary values $f$ in the sense of Perron-.Wien.er-Brelot. We first
prove the following.

Lemma 4.1. Let $\tilde{E}$ be a subset of $\triangle\sim$ . Then $\tilde{\omega}_{\overline{z}}(\tilde{E})=0$ if and only if $\omega_{z}(\pi(\tilde{E}))=0$ .

Proof. Suppose that $\tilde{\omega}_{\overline{z}}(\tilde{E})=0$ . By definition, there exists a Borel set $\tilde{B}\subset\triangle-\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$

$\tilde{E}\subset\tilde{B}$ such that

(4.1) $\tilde{\omega}_{\overline{z}}(\overline{B})=H_{1\sim,B}^{\tilde{W}}(\tilde{z})=0$ ,

where $1_{\tilde{B}}$ is the characteristic function of $\tilde{B}$ on $\triangle\sim$ . Let $\tilde{s}$ be an arbitrary positive superhar-
monic funtion on $\overline{W}$ such that $\lim\inf_{\overline{z}arrow\overline{\zeta}^{\tilde{S}(\tilde{z}}}$ ) $\geq 1$ for every $\tilde{\zeta}\in\tilde{B}$ . Set

$s(z):= \sum_{\overline{z}\in\pi^{-1}(z)}m(_{\tilde{\mathcal{Z}})\tilde{S}(_{Z)}^{\sim}}$
,

where $m(\tilde{z})$ is multiplicity of $\pi$ at $\tilde{z}$ . Then $s(z)$ is a positive superharmonic function on $W$

and $\lim\inf_{zarrow(^{S}}(z)\geq 1$ for every $\zeta\in\pi(\tilde{B})$ . Hence $s(z)\geq\overline{H}_{1\sim,\pi(B)}^{W}(z)$ . From this and the

fact $\overline{H}_{\mathrm{J}}W\pi(B-)(\mathcal{Z})\geq\omega_{z}(\pi(\tilde{B}))$ (cf. e.g. [C-C]), it follows that

$s(z)\geq\omega_{z}(\pi(\tilde{B}))\geq\omega_{z}(\pi(\tilde{E}))$ .
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Therefore, by letting $s(z)$ arbitrarily small in view of (4.1), we obtain $\omega_{z}(\pi(\tilde{E}))=0$ .
Suppose $\omega_{z}(\pi(\tilde{E}))=0$ . By definition, there exists a Borel set $B\subset\triangle$ with $B\supset\pi(\tilde{E})$

such that

(4.2) $\omega_{z}(B)=H_{1_{B}}^{W}(_{Z)=0}$ .

Let $s$ be an arbitrary positive superharmonic funtion on $W$ such that $\lim\inf_{zarrow(^{S}}(z)\geq 1$ for
every $(^{k}\in B$ . Then $s\mathrm{o}\pi(\tilde{z})$ is a positive superharmonic function on $\overline{W}$ and $\lim\inf_{\overline{z}arrow\overline{\zeta}}s\mathrm{o}$

$\pi(\tilde{z})\geq 1$ for every $\tilde{\zeta}\in\pi^{-1}(B)$ . Hence $s\mathrm{o}\pi(\tilde{z})\geq\overline{H}_{1_{\pi^{-1}(}B)}^{\tilde{W}}(\tilde{z})$. From this and the fact
$\overline{H}_{\mathrm{J}}^{\tilde{W}}\pi^{-1}(B)(\tilde{z})\geq\tilde{\omega}_{\overline{z}}(\pi^{-1}(B))$ , it follows that

$s\mathrm{o}\pi(\tilde{Z})\geq\tilde{\omega}(\overline{\mathcal{Z}}\pi^{-1}(B))\geq\tilde{\omega}_{\overline{z}}(\pi^{-}1(\pi(\tilde{E})))\geq\tilde{\omega}_{\overline{z}}(\tilde{E})$ .

Therefore, letting $s\mathrm{o}\pi(\tilde{z})$ arbitrarily small in view of (4.2), we obtain $\tilde{\omega}_{\overline{z}}(\tilde{E})=0$ .
The proof is herewith complete. $\square$

We next consider the sets

$N_{1}:=\{\zeta\in\triangle_{1} : \nu_{\tilde{W}}(\zeta)=1\}$

and
$N_{2}:=\triangle_{1}\backslash N_{1}=\{\zeta\in\triangle_{1} : \nu_{\tilde{W}}(\zeta)\geq 2\}$ .

Put $\overline{N}_{\mathrm{l}}=\pi^{-1}(N_{1})\cap\triangle_{1}\sim$ and $\overline{N}_{2}=\pi^{-1}(N_{2})\cap\triangle_{1}\sim$ . By means of Proposition 2.2, it is easily
seen that $\overline{N}_{1}\mathrm{U}\overline{N}_{2}=\triangle_{1}\sim$ and $\pi(\overline{N}_{i})=N_{i}(i=1,2)$ . We denote by $\tilde{d}(\cdot, \cdot)$ the metric on $\overline{W}^{*}$

defined by

$d(z, \zeta)=n=1\sum\frac{1}{2^{n}}\infty|\frac{k_{z}(z_{n})}{1+k_{z}(z_{n})}-\frac{k_{\zeta}(z_{n})}{1+k_{(}(z_{n})}|$ ,

where $\{z_{n} : n=1,2, \ldots\}$ is a dense subset of $\overline{W}$ . Set $\tilde{U}_{r}(\tilde{z}_{0})=\{\tilde{z}\in\overline{W}^{*} : \tilde{d}(\tilde{z},\tilde{z}_{0})<r\}$ for
$\tilde{z}_{0}\in\overline{W}^{*}$ and $r>0$ .

Lemma 4.2. Suppose $\omega_{z}(N_{2})>0$ . Then there exists a $\tilde{\zeta}_{0}\in\overline{N}_{2}$ such that $\tilde{\omega}_{\overline{z}}(\overline{N}_{2}\cap$

$\tilde{U}_{r}(\tilde{\zeta}_{0}))>0$ for every $r>0$ .

Proof. By virtue of Lemma 4.1, we have $\tilde{\omega}_{\overline{z}}(\overline{N}_{2})>0$ , since $\pi(\overline{N}_{2})=N_{2}$ . Contrary to the
assertion, assume that, for every $\tilde{\zeta}\in\overline{N}_{2}$ , there exists an $r_{\overline{\zeta}}>0$ such that $\tilde{\omega}_{\overline{\mathcal{Z}}}(\overline{N}_{2}\cap\tilde{U}r_{\tilde{\zeta}}(\tilde{\zeta}))=$

$0$ . Then, by the Lindel\"of covering theorem, there exists a sequence $\{\tilde{\zeta}_{j}\}_{j=1}\infty$ in $\overline{N}_{2}$ such that
$\overline{N}_{2}\subset\bigcup_{j=1}^{\infty}\tilde{U}r_{\tilde{\zeta}j}(\tilde{\zeta}_{j})$. Hence we have

$\tilde{\omega}_{\overline{z}}(\overline{N}_{2})\leq\sum_{j=1}^{\infty}\tilde{\omega}_{\overline{z}}(\overline{N}2\mathrm{n}\tilde{U}r(\overline{\zeta}j\tilde{\zeta}_{j}))=^{\mathrm{o}}$,
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which is a contradiction. $\square$

Here, we again recall the definition of $\triangle_{1}(\zeta):\sim$

$\triangle_{1}(\zeta)=\triangle_{1^{\cap\pi^{-}}}1(\zeta)--\sim\sim\{(\in\triangle\sim\sim 1 : \pi(\tilde{\zeta})=\zeta\}$ .

Lemma 4.3. Let $\tilde{\xi}$ be a point in $\overline{N}_{2}$ . Then there exists a $\rho>0$ such that $\triangle_{1}(\zeta)\sim\backslash \tilde{U}_{\rho}(\tilde{\xi})$

is not empty for every $(\in N_{2}\cap\pi(\tilde{U}_{\rho}(\tilde{\xi}))$ .

Proof. Set $\pi(\tilde{\xi})=\xi$ . Then, by definition, $\xi\in N_{2}$ . Assume that the assertion is false.
Then there exists a sequence $\{\zeta_{j}\}_{j=1}^{\infty}$ in $N_{2}\backslash \{\pi(\tilde{\xi})\}$ such that ,

(4.3) $\tilde{d}(\triangle_{1}(\zeta\sim j),\tilde{\xi})<1/j$ .

From this it follows that

(4.4) $\lim_{jarrow\infty}k_{(_{J}}=k_{\xi}$ .

By Proposition 2.2 and (2.4), for each $j$ , there exist positive constants $c_{j1},$ $\ldots,$ $c_{i}n_{g}$ with
$\Sigma_{i=1ji}^{n_{j}}c=1$ such that

(4.5) $k_{\zeta_{j}} \mathrm{o}\pi=\sum_{=i1}^{n}C_{ji}\tilde{k}_{\overline{\zeta}_{ji}}J$ ,

where $\triangle_{1}(\zeta_{j})-=\{\tilde{\zeta}_{j1}, \ldots,\tilde{\zeta}_{jn_{j}}\}$ . Then, in view of (4.3), we see that

$\lim_{iarrow\infty}\tilde{k}\overline{\zeta}_{j}i_{j}=\tilde{k}_{\overline{\xi}}$

independently of choice of $i_{j}$ in $\{1, \ldots, n_{j}\}$ . This with (4.4) and (4.5) implies that

$k_{\xi}\mathrm{o}\pi=\tilde{k}_{\overline{\xi}}$ .

Therefore, by means of Proposition 2.2, we obtain $\triangle_{1}\sim(\xi)=\{\tilde{\xi}\}$ , which contradicts $\xi\in\backslash N_{2}$ .
This completes the proof. $\square$

We can restate Theorem 2, in terms of the set $N_{2}$ , as follows: The relation $HB(W)0\pi=$
$HB(\overline{W})hold_{\mathit{8}}$ if and only if $\omega_{z}(N_{2})=0$ .

Proof of Theroem 2. We first prove ‘if’ part. Suppose $\omega_{z}(N_{2})=0$ . Then, by Lemma 4.1,

(4.6) $\tilde{\omega}_{\overline{z}}(\overline{N}_{2})=^{\mathrm{o}}$.

Take an arbitrary $\tilde{h}\in HB(\overline{W})$ . We only need to show $\tilde{h}\in HB(W)0\pi$ . Adding a
constant to $\tilde{h}$ , we may assume that $\tilde{h}>0$ on $\overline{W}$ . Let $c(>0)$ be the supremum of $\tilde{h}$ on
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$\overline{W}$ . By the Martin representation theorem, there exist Radon measures $\tilde{\mu}$ and $\tilde{\chi}$ on $\triangle\sim$ with
$\tilde{\mu}(\triangle\sim\backslash \triangle_{1})\sim=0$ and $\tilde{\chi}(\triangle\sim\backslash \triangle_{1})\sim=0$ such that

(4.7) $\tilde{h}(\tilde{z})=\int\tilde{k}_{(}-(\tilde{z})d\tilde{\mu}(()\sim$

and

(4.8) $1= \int\tilde{k}_{(}-(\tilde{Z})d\tilde{\chi}(\tilde{\zeta})$ .

Then
$c \int\tilde{k}_{(}-(\tilde{Z})d\tilde{x}(\tilde{\zeta})=C\geq\tilde{h}(\tilde{Z})=\int\tilde{k}_{\overline{\zeta}}(\tilde{Z})d\tilde{\mu}(\tilde{\zeta})$.

Hence, by uniqeness of representing measure, we have

(4.9) $c\tilde{\chi}\geq\tilde{\mu}$ .

Note that $\tilde{k}_{(}-(\tilde{z})d\tilde{\chi}(\tilde{\zeta})=d\tilde{\omega}_{\overline{z}}(\tilde{\zeta})$ (cf. [C-C, p.140]). From this and (4.9) it follows that

$\int_{\tilde{N}_{2}}\tilde{k}_{\overline{\zeta}}(\tilde{z})d\tilde{\mu}(\tilde{\zeta})\leq c\int_{\tilde{N}_{2}}\tilde{k}_{\overline{\zeta}}(\tilde{z})d\tilde{\chi}(\tilde{\zeta})=C\int\tilde{N}2)d\tilde{\omega}\overline{z}(\tilde{\zeta})=C\tilde{\omega}(\overline{z}\overline{N}_{2}$.

This with (4.6) yields that
$\int_{\tilde{N}_{2}}\tilde{k}_{\overline{\zeta}}(\tilde{z})d\tilde{\mu}(\tilde{\zeta})=0$ .

Therefore, by (4.7) and the fact $\overline{N_{1}\ldots}\mathrm{U}\overline{N}_{2}=\triangle_{1}\sim$ , we have

$\tilde{h}(\tilde{z})=\int_{\tilde{N}_{1}}\tilde{k}_{\overline{\zeta}}(\tilde{z})d\tilde{\mu}(\tilde{\zeta})$ .

Since $\tilde{k}_{\overline{\zeta}}\in HP(W)0\pi$ for every $\tilde{\zeta}\in\overline{N}_{1}$ , this implies that $\tilde{h}\in HP(W)0\pi\cap HB(\overline{W})\subset$

$HB(W)\circ\pi$ .
We next prove ‘only if’ part. Suppose $\omega_{z}(N_{2},)>0$ . Then, by Lemma 4.2, there exists a

$\tilde{\xi}\in\overline{N}_{2}$ such that

(4.10) $\tilde{\omega}_{\overline{z}}(\overline{N}_{2}\cap\overline{U}r(\tilde{\xi}))>0$

for every $r>0$ . Moreover, by Lemma 4.3, there exists $\rho>0$ such that

(4.11) $\triangle_{1}(\zeta)\sim\backslash \overline{U}_{\rho}(\tilde{\xi})\neq\emptyset$

for every $\zeta\in N_{2}\cap\pi(\tilde{U}_{\rho}(\tilde{\xi}))$ . Set

$\tilde{E}_{1}=\overline{N}_{2^{\cap\tilde{U}}\rho/2}(\tilde{\xi})$ .

Then, by (4.10) and Lemlna 4.1, we have

(4.12) $\omega_{z}(\pi(\tilde{E}_{\mathrm{J}}))>0$ .
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Set
$\tilde{E}_{2}=\overline{N}_{2}\cap\pi^{-}(1(\pi\tilde{U}\rho/2(\tilde{\xi})))\backslash \tilde{U}_{\beta}(\tilde{\xi})$.

Inview of (4.11), we find that

(4.13) $\pi(\tilde{E}_{1})=\pi(\tilde{E}_{2})$ .

Put $\tilde{h}(\tilde{z})=\tilde{\omega}_{\overline{z}}(\tilde{E}_{1})$ . Then $\tilde{h}(\tilde{z})$ is a bounded harmonic function on $\overline{W}$ . $1\mathrm{V}\mathrm{e}$ only need to
show $\tilde{h}\not\in HB(W)0\pi$ . By the $\mathrm{F}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{u}-\mathrm{N}\mathrm{a}\acute{\mathrm{i}}\mathrm{m}$’-Dood theorem (cf. [C-C, p.152]), $\underline{\tilde{h}(}\tilde{z})\underline{\mathrm{h}\mathrm{a}}\mathrm{s}$ fine
limit 1 ( $0$ , resp.) at almost all $\tilde{\zeta}$ in $\tilde{E}\mathrm{l}$ ( $\overline{E}_{2}$ , resp.) with respect to $\tilde{\omega}_{\overline{z}}$ , since $\tilde{E}_{1}\cap\tilde{E}_{2}=\emptyset$ .

Accordingly there exists a subset $\tilde{F}_{1}$ ( $\tilde{F}_{2}$ , resp.) of $\tilde{E}_{1}$ ( $\tilde{E}_{2}$ , resp.) with $\tilde{\omega}_{\overline{z}}(\tilde{F}_{1})=0$

( $\tilde{\omega}_{\overline{\mathcal{Z}}}(\tilde{F}_{2})=0$ , resp.) such that, for every $\tilde{\zeta}$ in $\tilde{E}_{1}\backslash \tilde{F}_{1}$ ( $\tilde{E}_{2}\backslash \overline{F}_{2}$ , resp.),

(4.14) $\mathcal{F}-\mathrm{i}\mathrm{m}\tilde{h}(\tilde{Z}\frac{1}{z}arrow\overline{\zeta})=1$ ( $\mathcal{F}-.\mathrm{i}\mathrm{m}-\tilde{h}$ ($\tilde{Z}\frac{1}{z}arrow()=0$
, resp.)

Then, by Lemma 4.1, $\omega_{z}(\pi(\overline{F}_{1})\cup\pi(\tilde{F}_{2}))=0$ . Hence, by (4.12) and (4.13), there exist
points $\tilde{\zeta}_{1}\in\tilde{E}_{1}\backslash \tilde{F}_{1}$ and $\tilde{\zeta}_{2}\in\tilde{E}_{2}\backslash \overline{F}_{2}$ with $\pi(\tilde{\zeta}\mathrm{J})=\pi(\tilde{\zeta}_{2})$ . This with (4.14) implies that
there exists an open subset $\tilde{O}_{1}$ ( $\overline{O}_{2}$ , resp.) of $\overline{W}$ such that $\overline{O}_{1}\cup\{\tilde{\zeta}_{1}\}$ ( $\tilde{O}_{2}\cup\{\tilde{\zeta}_{2}\}$ , resp.) is
a minimal fine neighborhood of $\tilde{\zeta}_{1}$ ( $\tilde{\zeta}_{2}$ , resp.) and that

(4.15) $\inf_{\overline{z}\in\tilde{O}_{1}}\tilde{h}(\tilde{z})\geq\frac{2}{3}$ ( $\sup_{\overline{z}\in\tilde{O}_{2}}\tilde{h}(\tilde{Z})\leq\frac{1}{3}$ resp.).

Then, by virtue of Proposition 2.3, we see that $(\pi(\overline{O}_{1})\cap\pi(\tilde{o}_{2}))\cup\{\tau_{1}(\tilde{\zeta}1)\}$ is a minimal fine
neighborhood of $\pi(\tilde{\zeta}_{1})=\pi(\tilde{\zeta}_{2})$ , and hence $\pi(\tilde{O}_{1})\cap\pi(\tilde{O}_{2})\neq\emptyset$ . Therefore, by (4.15), there
exists a subset $\tilde{U}_{j}$ of $\tilde{O}_{j}(j=1,2)$ with $\pi(\tilde{U}\mathrm{l})=\pi(\tilde{U}_{2})$ such that

$\overline{z}\in \mathrm{i}\mathrm{n}_{\frac{\mathrm{f}}{U}}\tilde{h}(\tilde{z})1\geq\frac{2}{3}$ ( $\sup_{\overline{z}\in\tilde{U}2}\tilde{h}(\tilde{Z})\leq\frac{1}{3’}$ resp.).

This means that $\tilde{h}\not\in HB(W)0\pi$ .
The proof is herewith complete. $\square$

5. Harmonic functions on covering surfaces of the unit disc

Let $D$ be the unit disc $\{|z|<1\}$ . In this section, we are concerned with application
of Theorem 1 and Therem 2 in case base surface is $D$ . As is wellknown7 the Martin
compactification $D^{*}$ of $D$ is identified with the $\mathrm{c}1_{\mathrm{o}\mathrm{S}}\mathrm{u}\mathrm{r}\mathrm{e}\overline{D}$ of $D$ with respect to Euclidian
topology and the Martin boundary $\triangle^{D}$ of $D$ consists of only minimal points. In this view,
we regard $\partial D=\{|z|=1\}$ as the (minimal) Martin boundary of $D$ .

To state our main result of this section, we introduce some notations. For a discrete
subset $A$ of $D$ , we denote by $B_{p}(A)$ the class of $p$-sheeted unlimited covering surface $\overline{D}$ of
$D$ such that there exists a branch point in $\overline{D}$ of order $p-1$ (or multiplicity $p$ ) over every
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$z\in A$ and there exist no branch points in $\overline{D}$ over $D\backslash A$ . In addition to the Euclidean
metric, we consider the pseudohyperbolic metric on $D$ given by

$\rho(z, w)=|\frac{z-w}{1-\overline{w}z}|$ .

For $\zeta\in\partial D$ and a positive number $C(<1)$ , we also consider the Stolz type domain with
vertex (given by

$S_{C}(\zeta)=\{Z\in D$ : $C|z-\zeta|<1-|_{Z1\}}$ .

Theorem 5.1. Let $A=\{a_{n} : n\in \mathrm{N}\}$ be a discrete subset of $D$ and $\overline{D}$ belong to $B_{p}(A)$ .
Suppose that there exists a positive constant $C(<1)$ satisfying the following two conditions
(i) for every pair $(a_{m}, a_{n})$ in $A$ with $a_{m}\neq a_{n)}\rho(a_{m}, a_{n})\geq C$ ;
(ii) for every $\zeta\in\partial D$ , there exists a subset $B_{(}=\{b_{n} : n\geq n_{0}.\}(n_{0}=n_{0}(\zeta).).of$ $A$ such
that $b_{n}\in\{z:2^{-n-1}\leq|z-\zeta|\leq 2^{-n}\}\cap S_{C}(\zeta)$ for every $n\geq n_{0}$ .
Then $HP(\overline{D})=HP(D)0\pi_{2}$ where $\pi$ is the projection map.

For a bounded Borel subset $K$ of $\mathrm{C}$ , we denote by $\lambda(K)$ the logarithmic capacity. As a
necessary condition for minimal thinness, the following is available (cf. $[\mathrm{L}\mathrm{F}],[\mathrm{J}]$ ).

Lemma 5.1. Let (be in $\partial D=\triangle_{1}^{D}$ and $E$ a relatively closed subset of $S_{C}(\zeta)$ . If $E$ is
minimally thin at (, then

$\sum_{n=1}^{\infty}\frac{1}{\log\frac{1}{\lambda(E_{n})}}<\infty$
,

where $E_{n}=E\cap\{z:2^{-n-1}\leq|z-\zeta|\leq 2^{-n}\}$ .

Proof of Theorem 5.1. Let $\zeta$ be an arbitrary point in $\partial D$ . By virtue of Theorem 1, we
only have to show that $\triangle_{1}^{\tilde{D}}(\zeta)$ consists of a sigle point. Take an arbitrary $M\in \mathcal{M}_{D}(\zeta)$ . Our
goal is to show that $\pi^{-1}(M)$ is connected. In fact, in view of Proposition 2.4, connectivity
of $\pi^{-1}(M)$ for all $M\in \mathcal{M}_{D}(\zeta)$ implies $\triangle_{1}^{\tilde{D}}(\zeta)$ consists of a single point.

We first assume that there exists an $a_{n}\in M\cap A\neq\emptyset$ . Then, it is easily seen that $\pi^{-1}(M)$

is connected, $\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{e}\overline{D}$ has a branch point of order $p-1$ over $a_{n}\in M$ and $M$ is connected.
We next assume $M\cap A=\emptyset$ . Put $F=D\backslash M$ . Note that $F$ is minimally thin at (and

relatively closed in $D$ . For each $n(\geq n_{0})$ , let $F_{n}$ be the connencted component of $F$ which
contains $b_{n}\in B_{\zeta}$ . We also assume that there exists an $F_{n}(n\geq n_{0})$ such that

(5.1) $d(F_{n})<C^{2}2^{-n-}1,-$

where $d(F_{n})$ indicates the diameter of $F_{n}$ . Then there exists a closed Jordan curve $\gamma_{n}$ in
$M\backslash A$ such that $\gamma_{n}$ surrounds $F_{n}$ and

(5.2) $d(F_{n})<d(\gamma_{n})<C22^{-n-}1$ .
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By (i) and (ii), we have

$|a_{m}-b_{n}|\geq C|1-\overline{b}a|nm\geq’ C(1-’\ell:|b_{n}’|)\geq C^{2}2^{-n-1}$ ,

for every $a_{m}\in A\backslash \{b_{n}\}$ . Hence, by. means of (5.2), we see that $\gamma_{n}$ surrounds only one point
$b_{n}$ in $A$ . Therefore, $\pi^{-1}(\gamma_{n})$ is connected, $\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{e}\overline{D}$ has a branch point of order $p-1$ over $b_{n}$ .
This with $\gamma_{n}\in M$ and connectivity of $M\mathrm{y}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{d}\mathrm{s}$

’

that $\pi^{-1}(M)$ is connected. Accordingly,
we completes the proof if we show that there exists an $F_{n}(n\geq n_{0})$ satifying (5.1).

We assume that

(5.3) $d(F_{n})\geq c^{2}2^{-n}-1$

for every $n(\geq n_{0})$ . Set $E=F\cap S_{\frac{c}{2}}(\zeta)$ . Note that $E$ is minimally thin at (. We denote by
$F_{n}^{*}$ the connected $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}_{\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}}$

. of $E$ which contains $b_{n}$ . Then, in view of (ii) $\mathrm{a}\mathrm{n}\mathrm{d}.-(5.3)$ : we
find that there exists a positive $\mathrm{c}\mathrm{o}’ \mathrm{n}$ stant $C_{1}(\leq C^{2}/2)$ such that

(5.4) $d(F_{n}^{*})\geq^{c_{1}}2^{-n}$

for every $n(\geq n_{0})$ . Set $E_{n}=E\cap\{z:2^{-n-1}\leq|z-\zeta|\leq 2^{-n}\}$ . Note that $b_{n}\in E_{n}$ . Then, by
(5.4), we see that, for every $n\geq n_{0}$ , at least one of $\{E_{n-1}, E_{n’ n+1}E\}$ contains a continuum
whose diameter is equal to or greater than $C_{1}2^{-n-1}$ . From this it follows that

$\max\{\lambda(E_{n-1}), \lambda(En), \lambda(E1)n+\}\geq C_{1}2^{-n-3}$

for every $n(\geq n_{0})(\mathrm{c}\mathrm{f}.[\mathrm{T}])$ . Hence we see that

$\frac{1}{\log\frac{1}{\lambda(E_{n-1})}}+\frac{1}{\log\frac{1}{\lambda(E_{n})}}+\frac{1}{\log\frac{1}{\lambda(E_{n+1})}}\geq\frac{1}{n\log 2+\log(8/C_{1})}$

for every $n(\geq n_{0})$ . Therefore we deduce

$\sum_{n=n0^{-1}}\frac{1}{\log\frac{1}{\lambda(E_{n})}}\infty$

$\geq$ $\frac{1}{3}\sum_{n=n_{0}}^{\infty}(\frac{1}{1\mathrm{o}g\frac{1}{\lambda(E_{n-1})}}+\frac{1}{\log\frac{1}{\lambda(E_{n})}}+\frac{1}{\log\frac{1}{\lambda(E_{n+1})}})$

$\geq$ $\frac{1}{3}\sum_{n=n_{0}}^{\infty}\frac{1}{n\log 2+\log(8/C1)}=\infty$

By Lemma 5.1, this is absurd, since $E$ is minimally thin at $($ .
The proof is herewith complete. $\square$

Using the notation above, we restate Proposition in Introduction as follows:

Corollary 5.1. Let $A=\{(1-2^{-n-1})ei2\pi k/2^{n}+2 : n=1,2, \ldots, k=1, \ldots, 2^{n+2}\}$ and $\overline{D}$

belong to $B_{p}(A)$ . Then $HP(D)0\pi=HP(\overline{D})$ , where $\pi$ is the projection map.
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Proof. It is easily seen that $A$ and a positive constant $C$ satisfy the condition (i) of
Theorem 5.1. Let $\zeta$ be an arbitrary point in $\partial D$ . For every positive integer $n$ , we can
choose a positive $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}.$er. $kn^{\mathrm{W}}.$.ith $1.\cdot\leq\backslash \cdot$

.
$k_{n}.\leq 2^{n+2}\mathrm{s}\mathrm{u}.\mathrm{c}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}=.$

; $\backslash \cdot$ $\ddagger_{:}$

(5.5) $| \arg\zeta-\frac{2\pi k_{n}}{2^{n+2}}|\leq\frac{\pi}{2^{n+2}}$ .

Set
$b_{n}=(1-2^{-}n-1)ei2\pi kn/2^{n+2}$ $(n=1,2, \ldots)$ .

Then, by (5.5), we have

$(2^{-n-1})^{2}\leq|b_{n}-\zeta|^{2}\leq(2^{-n-1})2+4\sin^{2_{\frac{\pi}{2^{n+3}}}}$ .

In view of this with (5.5), it is easily seen that $B_{\zeta}:=\{b_{n} : n\geq 1\}$ and a positive constant
$C$ satisfy the condition (ii) of Theorem 5.1. $\square$

At the last, we give a $p$-sheeted unlimited covering surface $\overline{D}_{1}$ of $D$ with projection map
$\pi$ such that $HB(D)0\pi=HB(\overline{D}_{1})$ and $HP(D)0\pi\neq HP(\overline{D}_{1})$ . Let $A$ be the same as
in Corollary 5.1. Set $M= \{|z-\frac{1}{2}|<\frac{1}{2}\}$ and $A\mathrm{l}=A\backslash M$ . Consider a covering surface
$D\mathrm{l}\in B_{p}(A\mathrm{l})$ with projection map $\pi$ . We now show that $HB(D)0\pi=HB(\overline{D}_{1})$ and
$HP(D)0\pi\neq HP(\overline{D}_{\mathrm{l}})$ . As is proved in the proof of Corollary 5.1, $A_{1}$ and a positive
constant $C$ satisfy the following two conditions:
(i) for every pair $(a_{m}, a_{n})$ in $A_{3}$ with $a_{m}\neq a_{n},$ $\rho(a_{m}, a_{n})\geq C$ ;
(ii) for every $\zeta\in\partial D\backslash \{1\}$ , there exist a subset $B_{\zeta}=\{b_{n} ; n\geq no\}$ $(no=n_{0}(\zeta))$ of $A_{1}$

such that $b_{n}\in\{z:2^{-n-1}\leq|z-\zeta|\leq 2^{-n}\}\cap S_{C}(\zeta)$ for every $n\geq n_{()}$ .
Therefore the $\mathrm{p}\mathrm{r}o$of of Theorem 5.1 yields that $\nu_{\tilde{D}_{\underline{1}}}(\zeta)=\mathrm{i}$ for every ( $\in\partial D\backslash \{1\}$ . Hence,

by virtue of Theorem 2, we have $HB(D)0\pi=HB(D_{1})$ . On the other hand, it is easily seen
that $M$ belongs to $\mathcal{M}_{D}(1)$ and $\pi^{-1}(M)$ consists of $p$ components. Hence, by Proposition
2.2 and 2.4, $\nu_{\tilde{D}_{1}}(1)=p(>1)$ . Therefore, by Theorem 1, we see that $HP(D)0\pi\neq HP(\overline{D}_{1})$ .
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