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BOUNDED HARMONIC FUNCTIONS ON UNLIMITED
COVERING SURFACES

RKFETK #i)I|EE®  ( Shigeo Segawa )
TEEA - B IEM3AE (Hiroaki Masaoka)

1. Introduction

Let W be an open Riemann surface possessing a Green’s function. Consider a p-sheeted
unlimited covering surface W of W with projection map 7. It is easily seen that W also
possesses a Geen’s function (cf. e.g. [A-S]). We denote by HP(R) (HB(R), resp.) the
class of positive (bounded, resp.) harmonic functions on an open Riemann surface R. It is

obvious that the inclusion relation

HX(W)or:={hor: he HX(W)} C HX(W)

holds for X = P, B. The main purpose of this paper is to give a necessary and sufficient
condition, in terms of Martin boundary, in order that the relation HX(W)or = HX (W)
holds for X = P, B.

For an open Riemann surface R, we denote by R*, A and AF the Martin compactifica-
tion, the Martin boundary and the minimal Martin boundary of R, respectively. It is known
that the projection map 7 of W to W is extended to W continuously and 7(A%) = AW

cf. [M-S2]). For each ¢ € AW, put
(cf. [M-52]) p

AT () =AV nr () = (L e AV : x(0) = ¢},

which is the set of minimal boundary points of w lying over ¢ € A". Our main results

are the followings.

Theorem 1. In order that the relation HP(W)om = HP(W) holds, it is necessary and
sufficient that AW (() consists of a single point for every ¢ € AV,

Theorem 2. In order that the relation HB(W)om = HB(W) holds, it is necessary and
sufficient that AW () consists of a single point for w¥¥ almost all { € AW where WY is a

harmonic measure on AW with respect to W and z € W.

Proofs of Theorems 1 and 2 will be given in §3 and §4, respectively.
Let D be the unit disc {|z| < 1}. In §5, we will be concerned with p-sheeted unlimited
covering surfaces of D which illustrate Theorems 1 and 2. We will prove the following.
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Proposition. Set A = {(1 —27""1)e?™*/2"* . n = 1.2 .., k= 1,.,2%2}. If D is a
p-sheeted unlimited covering surface of D with projection-map 7 such that there is a branch

point ofﬁ of order p — 1 (or multiplicity p) over every z € A and there are no branch
points of D over D\ A, then HP(D) o = = HP(D). |

We will show a bit more (cf. Theorem 5.1). Modifying the above D, we will also
give a p-sheeted unlimited covering surface D; of D with projection map 7 such that

HP(D)or # HP(D,) and HB(D) o7 = HB(D,).
2. Martin boundary of p-sheeted unlimited covering surfaces

Let W be an open Riemann surface possessing a Green’s function and W a p-sheeted
unlimited covering surface of W with projection map 7. Since the pullback of a Green’s
function on W by 7 is a nonconstant positive superharmonic function on W; we see that
W possesses a Green’s function (cf. e.g. [A-S], [S-N]). For Martin compactification, Martin
boundary and minimal Martin boundary, we follow the notation in Introduction. We first
note the following (cf. [M-S2]).

Proposition 2.1. The projection map « OIW onto W is extended to the Martin com-
pactification W~ of W continuously and m(AW) = AW,

We recall the definition of A?(O (¢ € AY) in Introduction:

AV =AY nr (O =lea: x()=¢).

We denote by vy (() the (cardinal) number of AfV(C) We next fix a point a € W and a
point & € W with

(2.1) m(a) = a.
We consider the Martin kernel kf"(-) (k'gv(), resp.) on W (W, resp.) with pole at ¢ (£,
resp.) and with reference point a (&, resp.), that is, :
W : . Wiz 7
BV (2) = 2 (z,0) kY (z =g~(z,€)’ resp.
&= ey O 9" (@,0) P

for (e W (C e W, resp.), where g% (-, () (gﬁ/(-,z), resp.) is a Green’s function on W (W,
resp.) with pole at ¢ (C, resp.). Note that : ‘ o
(2.2) | kY (a) = kY (@) = 1.

In our previous paper [M-S2|, we proved the following.
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Proposition 2.2. Suppose ( € AY. Then
(i) If ¢ € AW\ ALY, then v (¢) = 0;
(i) If ¢ € A, then 1 < (() < p;
(iii) If ¢ € AY and A?’(C) = {(y,..,(,}, then there exist positive numbers cy, ..., ¢, “Such
that

(2.3). ) PR iké"’ow:clkg-l-r-.-gcnkz.

In the relation (2.3) above, by (2.1) and (2.2), we have

(24 Y e=1

Let E be a pos1t1ve superharmomc functlon on W and E is a subset of W. We denote by
R the balayage of s with respect to E on W. We here give the definitions of minimal
thinness.and minimal fine neighborhood (cf. [B]).

DEFINITION 2.1. Let C be a point of A and E a subset of W. We say that F 1s
manimally thin at ¢ if Rkw # kY.

DEFINITION 2.2. Let ¢ be a point of A} and U a subset of W. We say that U U {(} is
a minimal fine neighborhood of ¢ if W \ U is minimally thin at (.

The following is easily verified from Proposition 3.1 of our previous paper [M-S2] (see
also [M]).

Proposition 2.3. Let ¢ be € AVV and U a subset of W. Then U U{(Y} is a minimal ﬁﬁe
neighborhood of { if and only if 7(U) U {x({)}.is a minimal fine neighborhood of « 0).

For ¢ € AY, we denote by My (¢) the class of connected open sets M such that W\ M
is minimally thin at {. Moreover, for M € My (() and a p-sheeted unlimited covering
surface W of W with projection map m, we denote by nz (M) the number of connected
components of 77" (M). Then v (() is characterized by ng (M) as follows, which is a main
result of our previous paper [M-S2].

Proposition 2.4. Suppose ( € A}, Then v ({) = max ng(M).
MeMw(()

3. Proof of Theorem 1



89

In this section, we give the proof of Theorem 1. For the sake of simplicity, we mtroduce
the following notation:

A=AY, A=AV, A=AV R, =AT X(0)=a%()

and 5 -
7 w
k=Y Ty =

Pmof of Theorem 1. Assume that HP(W)or = HP(W) Let ¢ be an arbitrary point
in A;. We need to show that A;(¢) consists of a single point. Take a point ¢ € Ay (C)
Proposition 2.2 (iii), there exists a positive constant ¢ such that

(3.1) ~ C]NCZ <kcon

on W. By assumption, there exists an h € HP(W) such that

32 | k;=hor

on W. Hence, by (3.1), we see that ch < ke on W. This with minimality of k¢ implies that
there exists a positive constant ¢, such that

(3.3) h = cike

on W. Hence, by (3.2), we see that 7{,'Z = ¢;k¢ o on w. From this with (2.1) and (2.2), it
follows that ¢; = 1. Therefore we obtain ! '

(3.4) k;=keom

on W. This yields that A,(¢) = {{}. ,

Conversely, assume that v (() = 1 for every ¢ € A;. We only need to show HP(W)
HP(W) o, since the reversed inclusion is trivial. By assumption, we set A(¢) = {{} for
each ¢ € A,. By Proposition 2.2 (iii) and (2.4), we have : ’

(3.5) k;=keon

for every C € A,. Take an arbitrary hin H P(W) By the Martin représentation theorem
(cf. eg. [ ], Jand [ ]), there exists a Radon measure ji on A with (A \ A;) = 0 such
that : ‘

(3.6) h= / Fedin(0).

Choose arbitrary two points %; and %, in W with 7(%;) = 7(%3). In view of (3.5) and (3.6),
we obtain

= [EeCa)dp(Q) = [ ke(z)dn(0) = h(z)
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Therefore we deduce that h € HP(W) o« for every h € HP(W), and hence HP(W) C
HP(W)om.
The proof is herewith complete. O

4. Proof of Theorem 2

In this section, we give the proof of Theorem 2. Let w,(-) (wz(+), resp.) be the harmonic
measure on A (A resp.) with respect to W (W, resp.) and z € W (2 € W, resp.).
It 1s well-known that harmonic measure is a Radon measure (cf. e.g. [C-C]). It is also
well-known that w,(-) (&z(-), resp.) can be extended to the outer measure on A (A, resp.)
by

w,(E) = inf{w.(B) : B is a Borel set with £ C B}

(&:(E) = inf{&:(B) : B is a Borel set with E C B}, resp.)

for a subset E (E, resp.) of A (A, resp.). It is known that h(z) = w,(E) is a nonnegative -
harmonic function on W for every £ C A. By minimum principle, it is obvious that, for
an arbitrary E(C A) (E C A, resp.), w.(E) = 0 (03(E) = 0, resp.) fora z € W (2 € W,
resp.) if and only if w.(E) = 0 (©:(E) = 0, resp.) for all z € W (3 € W, resp.). Let
f be a real-valued function on the Martin boundary AP of an open Riemann surface R.
We denote by Hf (—I-T?, resp.) the solution (uppper solution, resp.) of Dirichlet problem
on R(= W or W) with boundary values f in the sense of Perron-Wiener-Brelot. We first

prove the following.
Lemma 4.1. Let E be a subset of A. Then &Z(E) =0 +f and only ifwz(n'(E)) =0.

Proof. Suppose that &z(E) = 0. By definition, there exists a Borel set B ¢ A with
E C B such that '

() &:(B) = HY(2) = 0,

where 15 is the characteristic function of Bon A. Let & be an arbitrary positive superhar-

monic funtion on W such that liminf; ;3(2) > 1 for every (€ B. Set

s(z):= > m(2)3(3),

zen—1(z)

where m(%) is multiplicity of = at 2. Then s(z) is a positive superharmonic function on W
and liminf,_ s(z) > 1 for every { € n(B). Hence s(z) > FYV~ (z). From this and the
m(B)

fact F]WN z) > w,(w B)) (cf. e.g. [C-C)), it follows that
(
w(B)

5(2) > wi(n(B)) 2 wa(n(E)).
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Therefore, by letting s(z) arbitrarily small in view of (4.1), we obtain w,(r(E)) = 0.
Suppose w,(n(E)) = 0. By definition, there exists a Borel set B C A with B O m(E)
such that ' ' ’ '

(4.2) w.(B) = H{'(z) = 0.

Let s be an arbitrary positive superharmonic funtion on W such that liminf,_ ¢ s(z) >'1 for
every ( € B. Then s on(2) is a positive superharmomc function on W and lim inf; ;so

7(2) > 1 for every { € 77'(B). Hence s o 7(3) > H

_1W (2) > @s:(771(B)), it follows that

—1(5) (2). From this and the fact

m=1(B)
som(2) > &:(n7Y(B)) > &:(n 7N (n(E))) = @5(E).
Therefore, letting s o w(%) arbitrarily small in view of (4.2), we obtain &;(E) = 0.

The proof is herewith complete. _ a

We next consider the sets

Ni:={(€A: vp(() =1}
and
NQIZAl\le{CGAl. V"’( )>2}
Put N, = (NN A, and N, = 7 H(Ny) N Ay By means of Proposition 2.2, it is easily

seen that Ny UN, = A, and #(N;) = N; (i = 1,2). We denote by d(-,-) the metric on W~
defined by

o~ 1| _Fa(2) ke(2n)
d(z,() = —_— — ,
(z,6) ; 20 (14 ky(2,) 14 ke(2n)
where {z, : n=1,2,..} is a dense subset of W. Set U,(30) = {3 € W : d(3,%0) < r} for
éoew*andr>0.

Lemma 4.2. Suppose w,(N;) > 0. Then there exists a (, € N, such that @3 (N, N
U,(Cy)) > 0 for every r > 0.

Proof. By virtue of Lemma 4.1, we have &3(N,) > 0, since 7(N,) = N,. Contrary to the
assertion, assume that, for every ¢ € N,, there exists an e > 0 such that @; (NgﬂU (C)) =

0. Then, by the Lindelof covering theorem, there exists a sequence {(,“ 152, in N, such that
N, C Usz, U <_(C]) Hence we have

(:JE N2 S Z jV? m‘ﬁ'r‘zj (z.])) = 07 ‘
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which is a contradiction. : , - .0

Here, we again recall the definition of Z&l(c ):
A=A na () =1{C el ()=}
Lemma 4.3. Let £ be a point in N,. Then there exists a p > 0 such that A(ONT, ()

is not empty for every ( € Ny N r(ﬁp(g))

Proof. Set m(£) = €. Then, by definition, ¢ € N,. Assume that the assertion is false.
Then there exists a sequence {(;}%2, in Na \ {7(€)} such that :

(4.3) d(Aq((),€) < 1/

From this it follows that

(4.4) Jim ke, = ke.

By Proposition 2.2 and (2.4), for each j, there exist positive constants c;i, ..., ¢;n, with
S, cii = 1 such that

n; .
(45) kgj o = ;:;Cjikzﬁ,

where A1((;) = {Ejl, ...,_Zjn,j}. Then, in view of (4.3), we see that

lim ks k‘g

]~—+oo <Jz

independently of choice of 7; in {1, ...;nj}. This With (44) and (4.5) implies that

kgowzkg.

Therefore, by means of Proposition 2.2, we obtain A (¢) = {¢}, which contradicts £ €N,
This completes the proof. a

We can restate Theorem 2, in terms of the set Ny, as follows: The relation HB(W)or =
HB(W) holds if and only if w,(Ny) = 0.

Proof of Theroem 2. We first prove ‘if’ part. Suppose w,(N;) = 0. Then, by Lemma 4.1,
(4.6) » @3(N4) = 0.

Take an arbitrary h € HB( W) We only need to show A € HB(W) o 7. Addmg a
constant to h, we may assume that i > 0 on W. Let ¢(> 0) be the supremum of & on
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W. By the Martin representation theorem, there exist Radon measures ft and X on A with

(A \ A;) =0 and (A \ A;) = 0 such that

(4.7) ~5:/k2~z o
and
(48) | N 1~/ks~g~‘

Then " v
| /k dx(g-c>h /k%”Z

Hence, by unigeness of representing measure, we have

(4.9) & > i

Note that %C(E)di(g) = diz(C) (cf. [C-C, p.140]). From this and (4.9) it follows that

Jo B0 < ¢ [ RO = [ o) = (W)

Ny Ny

This with (4.6) yields that
Ji, k@@ =
Therefore, by (4.7) and the fact N,UN, = A, we have
hE) = [, k(2.

Since ]2:- € HP(W) o r for every ¢ € N;, this implies that & € HP(W)orx N HB(W) C
HB(VV) oT.

We next prove ‘only if’ part. Suppose w,(N,) > 0. Then, by Lemma 4.2, there exists a
£ € N, such that :

(4.10) @:(NyNT,(£)) >0
for every r > 0. Moreover, by Lemma 4.3, there exists p > 0 such that
(4.11) AN\ T, (&) #0
for every ¢ € Ny N w(f]p(é)) Set |
| By =Ny T, ().
Then, by (4.10) and Lemma 4.1, we have

(4.12) : - w,(n(Eh)) > 0.
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Set .
Ey = Na a7 (x(Up2(8)) \ U,(8).
Inview of (4.11), we find that

(4.13) m(E;) = n(E,).

Put A(3) = @3(E;). Then h(2) is a bounded harmonic function on W. We only need to
show h ¢ HB(W) o . By the Fatou-Naim-Dood theorem (cf. [C-C, p-152]), k(%) has fine
limit 1 (0, resp.) at almost all C in B4 (Ez, resp.) with respect to @3, since ExnNE; =40.
Accordingly there exists a subset F'; (F,, resp.) of E; (E,, resp.) with o3(Fy) = 0
(@:(F3) = 0, resp.) such that, for every Cin Eqy \ F1 (Ey \ Fy, resp.),

(4.14) F—limh(3) =1 (F—limhA(%) =0, resp.)

z—( z—(
Then, by Lemma 4.1, wz( (FI) U 7r(1~7'2)) = 0. Hence, by (4.12) and (4.13), there exist
points ¢, € Ey \ Fy and ¢, € Ey \ Fy with 71'((]) = 7(C,). This with (4 14) implies that
there exists an open subset O, (OZ7 resp.) of W such that Oy U {(,} (O, U {,}, resp.) is
a minimal fine neighborhood of ¢, ((,, resp.) and that

(4.15) inf h(3) 25 (sup h(%) <

L resp.)
= —, resp.).
2€0, 3 §€52 3

Then, by virtue of Proposition 2.3, we see that (x(O1) N7 (05))U{x({,)} is a minimal fine
neighborhood of 7((,) = 7((,), and hence 7(01) N 7(0,) # 0. Therefore, by (4.15), there
exists a subset U; of O; (j = 1,2) with x(U;) = n(U,) such that

1

% 9
inf h(2) > (sup h(z) < =, resp.).
Z’EU] 3 Z€U2 3
This means that b ¢ HB(W)or
The proof is herewith complete. O

5. Harmonic functions on covering surfaces of the unit disc

Let D be the unit disc {|z] < 1}. In this section, we are concerned with application
of Theorem 1 and Therem 2 in case base surface is D. As is wellknown, the Martin
compactification D* of D is identified with the closure D of D with respect to Euclidian
topology and the Martin boundary AP of D consists of only minimal points. In this view,
we regard 0D = {|z| = 1} as the (minimal) Martin boundary of D.

To state our main result of this section, we introduce some notations. For a discrete
subset A of D, we denote by B,(A) the class of p-sheeted unlimited covering surface D of
D such that there exists a branch point in D of order p — 1 (or multiplicity p) over every
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2 € A and there exist no branch points in D over D \ A. In addition to the Euclidean
metric, we consider the pseudohyperbolic metric on D given by

Z—Ww

p(z,w) =

1—wzl’
For ¢ € AD and a positive number C(< 1), we also consider the Stolz type domain with
vertex ( given by ‘

Se(()={z€eD: Clz—¢| <1—lz|}.

Theorem 5.1. Let A = {a,, : n € N} be a discrete subset of D and D belong to B,(A).
Suppose that there exists a positive constant C(< 1) satisfying the following two conditions
(i) for every pair (am,an) in A With @y # an, plam,an) > C;

(ii) for every ¢ € D, there exists a subset B; = {by : n > no} (no = no(¢)) of A such
that b, € {z: 27" 1 < |z —(| <27} N Sc(() for every n > ng.

Then HP(D) = HP(D) o7, where 7 is the projection map.

For a bounded Borel subset K of C, we denote by A(K) the logarithmic capacity. As a
necessary condition for minimal thinness, the following is available (cf. [LF],[J]).

Lemma 5.1. Let ¢ be in D = AP and E a relatively closed subset of Sc((). If E is
manimally thin at (, then
> 1
1<%
n=1 log m

where E, = EN{z: 27" <|z = (| <27"}.

Proof of Theorem 5.1. Let ( be an arbitrary point in dD. By virtue of Theorem 1, we
only have to show that A?(C) consists of a sigle point. Take an arbitrary M € Mp((). Our
goal is to show that 77'(M) is connected. In fact, in view of Proposition 2.4, connectivity
of 771 (M) for all M € Mp(¢) implies AD(¢) consists of a single point.

We first assume that there exists an a, € M NA # (. Then, it is easily seen that 7=(M)
is connected, since D has a branch point of order p — 1 over a, € M and M is connected.

We next assume M N A =0. Put F'= D\ M. Note that F' is minimally thin at { and
relatively closed in D. For each n(> ng), let F, be the connencted component of F' which

contains b, € B;. We also assume that there exists an F,, (n > ng) such that
(5.1) d(F,) < c?27 1,

where d(F,) indicates the diameter of F,,. Then there exists a closed Jordan curve 7, in
M \ A such that ~, surrounds F, and

(5.2) | d(F,) < d(y,) < C?27"1,
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By (i) and (ii), we have
la — ba| > C[1 = Brap| > C(1— |b,]) > C27,

for every a,, € A\ {b,}. Hence, by means of (5. 2) we see that v, surrounds only one point
b, in A. Therefore, 77!(,) is connected, since D has a branch point of order p—1 over b,.
This with 74, € M and connectivity of M ylelds that 7 1(M ) is connected. Accordingly,
we completes the proof if we show that there exists an F,, (n > ng) satiinng (51)

We assume that

53 - d(Fn)zo22—"?l

for every n(> ng). Set E = FN Sc(() Note that £ is minimally thin at (. We denote by
F the connected component of E which contains b,. Then, in view of (ii) and (5.3), we
find that there exists a positive constant C(< C?/2) such that

(5.4) d(Fy) = Ci27"

for evéry n(>ng). Set E, = EN{z: 27" < |2—(| < Q‘ﬁ}. Note that b, € E,,. Then, by
(5.4), we see that, for every n > ng, at least one of {E,_1, E,,, F,,+1} contains a continuum

whose diameter is equal to or greater than C,27"'. From this it follows that
max{A(En 1), N(En), A(Eny1)} > €273

for every n(> ng) (cf.[T]). Hence we see that

1 1 1 1

1 T+ 1 = log 2 + log(8/C
e XE T RENEy  ReNmL st e

for every n(> ng). Therefore we deduce
>
—ng—1 lOg ﬁl

n=ng—1 )\(En

1 i 1 1
1og 7———5 log A log 1
n—1 /\(En) ’\( +1)

> = 0.

1 oo
R
1 o0
3 ; nlog?2 + log(8/C’1)

By Lemma 5.1, this is absurd, since £ is minimally thin at .
The proof is herewith complete. 0

Using the notation above, we restate Proposition in Introduction as follows:

Corollary 5.1. Let A = {(1 — 27N/ . p = 1.2, ..,k =1,..,2""2} and D
belong to B,(A). Then HP(D)ox = HP(D), where x is the projection map.
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Proof. 1t is easily seen that A and a ﬁ)Oéifi\;é’éonstant C satisfy the condition (i) of
Theorem 5.1. Let  be an arbitrary pomt in 0D. For every_ positive integer n, we can
choose a positive 1nteger k., Wlth 1 <k, < 2”“+2 such that

i
- 2n+2

27Tk
arg ( — Sr2

(5.5)

Set ,
bn (1 9—n— 1) 227rk /')n+2 (?’L — 1,2’)

Then, by (5.5), we have

(27771 < Jbe = P < (277 + dsin®

2n+d

In view of this with (5.5), it is casily seen that B¢ :={b,: n > 1} and a positive constant
C satisfy the condition (ii) of Theorem 5.1. ‘ O

At the last, we give a p-sheeted unlimited covering surface Dy of D with projection map
7 such that HB(D) o7 = HB(EI) and HP(D)or # HP(D;). Let A be the same as
in Corollary 5.1. Set M = {|]z — Q‘I < 2} and A; = A\ M. Consider a covering s surface
D, € B,(A;) with projection map =. We now show that HB(D) o = HB(D;) and
HP(D)ox # HP(D;). As is proved in the proof of Corollary 5.1,~A1 and a positive
constant C satisfy the following two conditions: |
(1) for every pair (am,a,) in Ay with @, # an, p(an, a,) = C;
(ii) for every ¢ € 0D \ {1}, there exist a subset B = {b, : n > ng} (no = no(¢)) of A,
such that b, € {z: 277" < |z — (| € 27"} N Sc(() for every n > ng.
Therefore the proof of Theorem 5.1 yields that ‘1/~ (C ) =1 for every ¢ € D \ {1}. Hence,
by virtue of Theorem 2, we have HB(D)or = HB( 1). On the other hand, it is easily seen
that M belongs to Mp(1) and #~'(M) consists of p components. Hence, by Proposition
2.2 and 2.4, vp (1) = p(> 1). Therefore, by Theorem 1, we see that HP(D)or # HP(D).
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