BOUNDED HARMONIC FUNCTIONS ON UNLIMITED COVERING SURFACES

大同工大	瀬川重男	(Shigeo Segawa)
京都産大・理	正岡弘照	(Hiroaki Masaoka)

1. Introduction

Let W be an open Riemann surface possessing a Green's function. Consider a *p*-sheeted unlimited covering surface \widetilde{W} of W with projection map π . It is easily seen that \widetilde{W} also possesses a Geen's function (cf. e.g. [A-S]). We denote by HP(R) (HB(R), resp.) the class of positive (bounded, resp.) harmonic functions on an open Riemann surface R. It is obvious that the inclusion relation

$$HX(W) \circ \pi := \{h \circ \pi : h \in HX(W)\} \subset HX(W)$$

holds for X = P, B. The main purpose of this paper is to give a necessary and sufficient condition, in terms of Martin boundary, in order that the relation $HX(W) \circ \pi = HX(\widetilde{W})$ holds for X = P, B.

For an open Riemann surface R, we denote by R^* , Δ^R and Δ_1^R the Martin compactification, the Martin boundary and the minimal Martin boundary of R, respectively. It is known that the projection map π of \widetilde{W} to W is extended to \widetilde{W}^* continuously and $\pi(\Delta^{\widetilde{W}}) = \Delta^W$ (cf. [M-S2]). For each $\zeta \in \Delta^W$, put

$$\Delta_1^{\widetilde{W}}(\zeta) = \Delta_1^{\widetilde{W}} \cap \pi^{-1}(\zeta) = \{ \tilde{\zeta} \in \Delta_1^{\widetilde{W}} : \pi(\tilde{\zeta}) = \zeta \},\$$

which is the set of minimal boundary points of \widetilde{W} lying over $\zeta \in \Delta^W$. Our main results are the followings.

Theorem 1. In order that the relation $HP(W) \circ \pi = HP(\widetilde{W})$ holds, it is necessary and sufficient that $\Delta_1^{\widetilde{W}}(\zeta)$ consists of a single point for every $\zeta \in \Delta_1^W$.

Theorem 2. In order that the relation $HB(W) \circ \pi = HB(\widetilde{W})$ holds, it is necessary and sufficient that $\Delta_1^{\widetilde{W}}(\zeta)$ consists of a single point for ω_z^W almost all $\zeta \in \Delta_1^W$, where ω_z^W is a harmonic measure on Δ^W with respect to W and $z \in W$.

Proofs of Theorems 1 and 2 will be given in §3 and §4, respectively.

Let D be the unit disc $\{|z| < 1\}$. In §5, we will be concerned with p-sheeted unlimited covering surfaces of D which illustrate Theorems 1 and 2. We will prove the following.

Proposition. Set $A = \{(1 - 2^{-n-1})e^{i2\pi k/2^{n+2}} : n = 1, 2, ..., k = 1, ..., 2^{n+2}\}$. If \widetilde{D} is a p-sheeted unlimited covering surface of D with projection map π such that there is a branch point of \widetilde{D} of order p - 1 (or multiplicity p) over every $z \in A$ and there are no branch points of \widetilde{D} over $D \setminus A$, then $HP(D) \circ \pi = HP(\widetilde{D})$.

We will show a bit more (cf. Theorem 5.1). Modifying the above \widetilde{D} , we will also give a *p*-sheeted unlimited covering surface \widetilde{D}_1 of D with projection map π such that $HP(D) \circ \pi \neq HP(\widetilde{D}_1)$ and $HB(D) \circ \pi = HB(\widetilde{D}_1)$.

2. Martin boundary of *p*-sheeted unlimited covering surfaces

Let W be an open Riemann surface possessing a Green's function and \widetilde{W} a *p*-sheeted unlimited covering surface of W with projection map π . Since the pullback of a Green's function on W by π is a nonconstant positive superharmonic function on \widetilde{W} , we see that \widetilde{W} possesses a Green's function (cf. e.g. [A-S], [S-N]). For Martin compactification, Martin boundary and minimal Martin boundary, we follow the notation in Introduction. We first note the following (cf. [M-S2]).

Proposition 2.1. The projection map π of \widetilde{W} onto W is extended to the Martin compactification \widetilde{W}^* of \widetilde{W} continuously and $\pi(\Delta^{\widetilde{W}}) = \Delta^W$.

We recall the definition of $\Delta_1^{\widetilde{W}}(\zeta)$ $(\zeta \in \Delta^W)$ in Introduction:

$$\Delta_1^{\widetilde{W}}(\zeta) = \Delta_1^{\widetilde{W}} \cap \pi^{-1}(\zeta) = \{ \tilde{\zeta} \in \Delta_1^{\widetilde{W}} : \ \pi(\tilde{\zeta}) = \zeta \}$$

We denote by $\nu_{\widetilde{W}}(\zeta)$ the (cardinal) number of $\Delta_1^{\widetilde{W}}(\zeta)$. We next fix a point $a \in W$ and a point $\widetilde{a} \in \widetilde{W}$ with

(2.1)
$$\pi(\tilde{a}) = a.$$

We consider the Martin kernel $k_{\zeta}^{W}(\cdot)$ $(k_{\tilde{\zeta}}^{\widetilde{W}}(\cdot), \text{ resp.})$ on $W(\widetilde{W}, \text{ resp.})$ with pole at ζ $(\tilde{\zeta}, \text{ resp.})$ and with reference point a $(\tilde{a}, \text{ resp.})$, that is,

$$k_{\zeta}^{W}(z) = \frac{g^{W}(z,\zeta)}{g^{W}(a,\zeta)} \quad (k_{\tilde{\zeta}}^{\widetilde{W}}(\tilde{z}) = \frac{g^{\widetilde{W}}(\tilde{z},\tilde{\zeta})}{g^{\widetilde{W}}(\tilde{a},\tilde{\zeta})}, \text{ resp.})$$

for $\zeta \in W$ ($\tilde{\zeta} \in \widetilde{W}$, resp.), where $g^{W}(\cdot, \zeta)$ ($g^{\widetilde{W}}(\cdot, \tilde{\zeta})$, resp.) is a Green's function on W (\widetilde{W} , resp.) with pole at ζ ($\tilde{\zeta}$, resp.). Note that

(2.2)
$$k_{\zeta}^{W}(a) = k_{\tilde{\zeta}}^{\widetilde{W}}(\tilde{a}) = 1.$$

In our previous paper [M-S2], we proved the following.

人名布尔 法法的法 法法律的法法

Proposition 2.2. Suppose $\zeta \in \Delta^W$. Then (i) If $\zeta \in \Delta^W \setminus \Delta_1^W$, then $\nu_{\widetilde{W}}(\zeta) = 0$; (ii) If $\zeta \in \Delta_1^W$, then $1 \le \nu_{\widetilde{W}}(\zeta) \le p$; (iii) If $\zeta \in \Delta_1^W$ and $\Delta_1^{\widetilde{W}}(\zeta) = \{\widetilde{\zeta}_1, ..., \widetilde{\zeta}_n\}$, then there exist positive numbers $c_1, ..., c_n$ such that

(2.3) $k_{\zeta}^{W} \circ \pi = c_1 k_{\tilde{\zeta}_1}^{\widetilde{W}} + \dots + c_n k_{\tilde{\zeta}_n}^{\widetilde{W}}.$

In the relation (2.3) above, by (2.1) and (2.2), we have

(2.4)
$$\sum_{i=1}^{n} c_n = 1.$$

Let s be a positive superharmonic function on W and E is a subset of W. We denote by ${}^{W}\widehat{R}_{s}^{E}$ the balayage of s with respect to E on W. We here give the definitions of minimal thinness and minimal fine neighborhood (cf. [B]).

DEFINITION 2.1. Let ζ be a point of Δ_1^W and E a subset of W. We say that E is minimally thin at ζ if ${}^{W}\widehat{R}_{k_{\zeta}^W}^E \neq k_{\zeta}^W$.

DEFINITION 2.2. Let ζ be a point of Δ_1^W and U a subset of W. We say that $U \cup \{\zeta\}$ is a minimal fine neighborhood of ζ if $W \setminus U$ is minimally thin at ζ .

The following is easily verified from Proposition 3.1 of our previous paper [M-S2] (see also [M]).

Proposition 2.3. Let $\tilde{\zeta}$ be $\in \Delta_1^{\widetilde{W}}$ and \widetilde{U} a subset of \widetilde{W} . Then $\widetilde{U} \cup \{\widetilde{\zeta}\}$ is a minimal fine neighborhood of $\tilde{\zeta}$ if and only if $\pi(\widetilde{U}) \cup \{\pi(\widetilde{\zeta})\}$ is a minimal fine neighborhood of $\pi(\widetilde{\zeta})$.

For $\zeta \in \Delta_1^W$, we denote by $\mathcal{M}_W(\zeta)$ the class of connected open sets M such that $W \setminus M$ is minimally thin at ζ . Moreover, for $M \in \mathcal{M}_W(\zeta)$ and a *p*-sheeted unlimited covering surface \widetilde{W} of W with projection map π , we denote by $n_{\widetilde{W}}(M)$ the number of connected components of $\pi^{-1}(M)$. Then $\nu_{\widetilde{W}}(\zeta)$ is characterized by $n_{\widetilde{W}}(M)$ as follows, which is a main result of our previous paper [M-S2].

Proposition 2.4. Suppose $\zeta \in \Delta_1^W$. Then $\nu_{\widetilde{W}}(\zeta) = \max_{M \in \mathcal{M}_W(\zeta)} n_{\widetilde{W}}(M)$.

3. Proof of Theorem 1

In this section, we give the proof of Theorem 1. For the sake of simplicity, we introduce the following notation:

$$\Delta = \Delta^{W}, \ \Delta_{1} = \Delta_{1}^{W}, \ \widetilde{\Delta} = \Delta^{\widetilde{W}}, \ \widetilde{\Delta}_{1} = \Delta_{1}^{\widetilde{W}}, \ \widetilde{\Delta}_{1}(\zeta) = \Delta_{1}^{\widetilde{W}}(\zeta)$$

and

$$k_{\zeta} = k_{\zeta}^W, \ ilde{k}_{\tilde{\zeta}} = k_{\tilde{\zeta}}^{\widetilde{W}}.$$

Proof of Theorem 1. Assume that $HP(W) \circ \pi = HP(W)$. Let ζ be an arbitrary point in Δ_1 . We need to show that $\tilde{\Delta}_1(\zeta)$ consists of a single point. Take a point $\tilde{\zeta} \in \tilde{\Delta}_1(\zeta)$. By Proposition 2.2 (iii), there exists a positive constant c such that

on \widetilde{W} . By assumption, there exists an $h \in HP(W)$ such that

(3.2)
$$\tilde{k}_{\tilde{\zeta}} = h \circ \pi$$

on \widetilde{W} . Hence, by (3.1), we see that $ch \leq k_{\zeta}$ on W. This with minimality of k_{ζ} implies that there exists a positive constant c_1 such that

$$(3.3) h = c_1 k_{\zeta}$$

on W. Hence, by (3.2), we see that $\tilde{k}_{\zeta} = c_1 k_{\zeta} \circ \pi$ on \widetilde{W} . From this with (2.1) and (2.2), it follows that $c_1 = 1$. Therefore we obtain

(3.4)
$$\tilde{k}_{\bar{\zeta}} = k_{\zeta} \circ \pi$$

on \widetilde{W} . This yields that $\widetilde{\Delta}_1(\zeta) = \{\widetilde{\zeta}\}.$

Conversely, assume that $\nu_{\widetilde{W}}(\zeta) = 1$ for every $\zeta \in \Delta_1$. We only need to show $HP(\widetilde{W}) \subset HP(W) \circ \pi$, since the reversed inclusion is trivial. By assumption, we set $\widetilde{\Delta}_1(\zeta) = \{\widetilde{\zeta}\}$ for each $\zeta \in \Delta_1$. By Proposition 2.2 (iii) and (2.4), we have

$$(3.5) \qquad \qquad \tilde{k}_{\tilde{\zeta}} = k_{\zeta} \circ \pi$$

for every $\zeta \in \Delta_1$. Take an arbitrary \tilde{h} in $HP(\widetilde{W})$. By the Martin representation theorem (cf. e.g. [], [] and []), there exists a Radon measure $\tilde{\mu}$ on $\tilde{\Delta}$ with $\tilde{\mu}(\tilde{\Delta} \setminus \tilde{\Delta}_1) = 0$ such that

(3.6)
$$\tilde{h} = \int \tilde{k}_{\tilde{\zeta}} d\tilde{\mu}(\tilde{\zeta}).$$

Choose arbitrary two points \tilde{z}_1 and \tilde{z}_2 in \widetilde{W} with $\pi(\tilde{z}_1) = \pi(\tilde{z}_2)$. In view of (3.5) and (3.6), we obtain

$$\tilde{h}(\tilde{z}_1) = \int \tilde{k}_{\zeta}(\tilde{z}_1) d\tilde{\mu}(\tilde{\zeta}) = \int \tilde{k}_{\zeta}(\tilde{z}_2) d\tilde{\mu}(\tilde{\zeta}) = \tilde{h}(\tilde{z}_2).$$

Therefore we deduce that $\tilde{h} \in HP(W) \circ \pi$ for every $\tilde{h} \in HP(\widetilde{W})$, and hence $HP(\widetilde{W}) \subset HP(W) \circ \pi$.

The proof is herewith complete.

4. Proof of Theorem 2

In this section, we give the proof of Theorem 2. Let $\omega_z(\cdot)$ ($\tilde{\omega}_{\tilde{z}}(\cdot)$, resp.) be the harmonic measure on Δ ($\tilde{\Delta}$, resp.) with respect to W (\tilde{W} , resp.) and $z \in W$ ($\tilde{z} \in \tilde{W}$, resp.). It is well-known that harmonic measure is a Radon measure (cf. e.g. [C-C]). It is also well-known that $\omega_z(\cdot)$ ($\tilde{\omega}_{\tilde{z}}(\cdot)$, resp.) can be extended to the outer measure on Δ ($\tilde{\Delta}$, resp.) by

 $\omega_z(E) = \inf \{ \omega_z(B) : B \text{ is a Borel set with } E \subset B \}$ $(\tilde{\omega}_{\tilde{z}}(\tilde{E}) = \inf \{ \tilde{\omega}_{\tilde{z}}(\tilde{B}) : \tilde{B} \text{ is a Borel set with } E \subset B \}, \text{ resp.})$

for a subset $E(\tilde{E}, \text{resp.})$ of $\Delta(\tilde{\Delta}, \text{resp.})$. It is known that $h(z) = \omega_z(E)$ is a nonnegative harmonic function on W for every $E \subset \Delta$. By minimum principle, it is obvious that, for an arbitrary $E(\subset \Delta)$ ($\tilde{E} \subset \tilde{\Delta}, \text{resp.}$), $\omega_z(E) = 0$ ($\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0, \text{resp.}$) for a $z \in W$ ($\tilde{z} \in \tilde{W}, \text{resp.}$) if and only if $\omega_z(E) = 0$ ($\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0, \text{resp.}$) for all $z \in W$ ($\tilde{z} \in \tilde{W}, \text{resp.}$). Let f be a real-valued function on the Martin boundary Δ^R of an open Riemann surface R. We denote by $H_f^R(\overline{H}_f^R, \text{resp.})$ the solution (uppper solution, resp.) of Dirichlet problem on $R(=W \text{ or } \widetilde{W})$ with boundary values f in the sense of Perron-Wiener-Brelot. We first prove the following.

Lemma 4.1. Let \tilde{E} be a subset of $\tilde{\Delta}$. Then $\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$ if and only if $\omega_z(\pi(\tilde{E})) = 0$.

Proof. Suppose that $\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$. By definition, there exists a Borel set $\tilde{B} \subset \tilde{\Delta}$ with $\tilde{E} \subset \tilde{B}$ such that

(4.1)
$$\tilde{\omega}_{\tilde{z}}(\tilde{B}) = H^{\widetilde{W}}_{1_{\widetilde{B}}}(\tilde{z}) = 0,$$

where $1_{\widetilde{B}}$ is the characteristic function of \widetilde{B} on $\widetilde{\Delta}$. Let \tilde{s} be an arbitrary positive superharmonic function on \widetilde{W} such that $\liminf_{z \to \tilde{\zeta}} \tilde{s}(\tilde{z}) \ge 1$ for every $\tilde{\zeta} \in \widetilde{B}$. Set

$$s(z):=\sum_{\tilde{z}\in\pi^{-1}(z)}m(\tilde{z})\tilde{s}(\tilde{z}),$$

where $m(\tilde{z})$ is multiplicity of π at \tilde{z} . Then s(z) is a positive superharmonic function on Wand $\liminf_{z\to\zeta} s(z) \geq 1$ for every $\zeta \in \pi(\tilde{B})$. Hence $s(z) \geq \overline{H}^W_{1_{\pi(\tilde{B})}}(z)$. From this and the fact $\overline{H}^W_{1_{\pi(\tilde{B})}}(z) \geq \omega_z(\pi(\tilde{B}))$ (cf. e.g. [C-C]), it follows that

$$s(z) \ge \omega_z(\pi(\tilde{B})) \ge \omega_z(\pi(\tilde{E})).$$

Therefore, by letting s(z) arbitrarily small in view of (4.1), we obtain $\omega_z(\pi(\tilde{E})) = 0$.

Suppose $\omega_z(\pi(\tilde{E})) = 0$. By definition, there exists a Borel set $B \subset \Delta$ with $B \supset \pi(\tilde{E})$ such that

(4.2)
$$\omega_z(B) = H^W_{1_B}(z) = 0.$$

Let s be an arbitrary positive superharmonic function on W such that $\liminf_{z\to\zeta} s(z) \ge 1$ for every $\zeta \in B$. Then $s \circ \pi(\tilde{z})$ is a positive superharmonic function on \widetilde{W} and $\liminf_{\tilde{z}\to\tilde{\zeta}} s \circ \pi(\tilde{z}) \ge 1$ for every $\tilde{\zeta} \in \pi^{-1}(B)$. Hence $s \circ \pi(\tilde{z}) \ge \overline{H}_{1_{\pi^{-1}(B)}}^{\widetilde{W}}(\tilde{z})$. From this and the fact $\overline{H}_{1_{\pi^{-1}(B)}}^{\widetilde{W}}(\tilde{z}) \ge \tilde{\omega}_{\tilde{z}}(\pi^{-1}(B))$, it follows that

$$s \circ \pi(\tilde{z}) \ge \tilde{\omega}_{\tilde{z}}(\pi^{-1}(B)) \ge \tilde{\omega}_{\tilde{z}}(\pi^{-1}(\pi(\tilde{E}))) \ge \tilde{\omega}_{\tilde{z}}(\tilde{E}).$$

Therefore, letting $s \circ \pi(\tilde{z})$ arbitrarily small in view of (4.2), we obtain $\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$. The proof is herewith complete.

We next consider the sets

$$N_1 := \{ \zeta \in \Delta_1 : \nu_{\widetilde{W}}(\zeta) = 1 \}$$

and

$$N_2 := \Delta_1 \setminus N_1 = \{ \zeta \in \Delta_1 : \ \nu_{\widetilde{W}}(\zeta) \ge 2 \}.$$

Put $\widetilde{N}_1 = \pi^{-1}(N_1) \cap \widetilde{\Delta}_1$ and $\widetilde{N}_2 = \pi^{-1}(N_2) \cap \widetilde{\Delta}_1$. By means of Proposition 2.2, it is easily seen that $\widetilde{N}_1 \cup \widetilde{N}_2 = \widetilde{\Delta}_1$ and $\pi(\widetilde{N}_i) = N_i$ (i = 1, 2). We denote by $\widetilde{d}(\cdot, \cdot)$ the metric on \widetilde{W}^* defined by

$$d(z,\zeta) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left| \frac{k_z(z_n)}{1+k_z(z_n)} - \frac{k_\zeta(z_n)}{1+k_\zeta(z_n)} \right|,$$

where $\{z_n : n = 1, 2, ...\}$ is a dense subset of \widetilde{W} . Set $\widetilde{U}_r(\widetilde{z}_0) = \{\widetilde{z} \in \widetilde{W}^* : \widetilde{d}(\widetilde{z}, \widetilde{z}_0) < r\}$ for $\widetilde{z}_0 \in \widetilde{W}^*$ and r > 0.

Lemma 4.2. Suppose $\omega_z(N_2) > 0$. Then there exists a $\tilde{\zeta}_0 \in \widetilde{N}_2$ such that $\tilde{\omega}_{\tilde{z}}(\widetilde{N}_2 \cap \tilde{U}_r(\tilde{\zeta}_0)) > 0$ for every r > 0.

Proof. By virtue of Lemma 4.1, we have $\tilde{\omega}_{\tilde{z}}(\widetilde{N}_2) > 0$, since $\pi(\widetilde{N}_2) = N_2$. Contrary to the assertion, assume that, for every $\tilde{\zeta} \in \widetilde{N}_2$, there exists an $r_{\tilde{\zeta}} > 0$ such that $\tilde{\omega}_{\tilde{z}}(\widetilde{N}_2 \cap \tilde{U}_{r_{\tilde{\zeta}}}(\tilde{\zeta})) = 0$. Then, by the Lindelöf covering theorem, there exists a sequence $\{\tilde{\zeta}_j\}_{j=1}^{\infty}$ in \widetilde{N}_2 such that $\widetilde{N}_2 \subset \bigcup_{j=1}^{\infty} \tilde{U}_{r_{\tilde{\zeta}_j}}(\tilde{\zeta}_j)$. Hence we have

$$\widetilde{\omega}_{\widetilde{z}}(\widetilde{N}_2) \leq \sum_{j=1}^{\infty} \widetilde{\omega}_{\widetilde{z}}(\widetilde{N}_2 \cap \widetilde{U}_{r_{\widetilde{\zeta}_j}}(\widetilde{\zeta}_j)) = 0,$$

which is a contradiction.

Here, we again recall the definition of $\tilde{\Delta}_1(\zeta)$:

$$\widetilde{\Delta}_1(\zeta) = \widetilde{\Delta}_1 \cap \pi^{-1}(\zeta) = \{ \widetilde{\zeta} \in \widetilde{\Delta}_1 : \pi(\widetilde{\zeta}) = \zeta \}.$$

Lemma 4.3. Let $\tilde{\xi}$ be a point in \widetilde{N}_2 . Then there exists a $\rho > 0$ such that $\widetilde{\Delta}_1(\zeta) \setminus \widetilde{U}_{\rho}(\tilde{\xi})$ is not empty for every $\zeta \in N_2 \cap \pi(\widetilde{U}_{\rho}(\tilde{\xi}))$.

Proof. Set $\pi(\tilde{\xi}) = \xi$. Then, by definition, $\xi \in N_2$. Assume that the assertion is false. Then there exists a sequence $\{\zeta_j\}_{j=1}^{\infty}$ in $N_2 \setminus \{\pi(\tilde{\xi})\}$ such that

(4.3)
$$\tilde{d}(\tilde{\Delta}_1(\zeta_j), \tilde{\xi}) < 1/j.$$

From this it follows that

(4.4)
$$\lim_{i \to \infty} k_{\zeta_i} = k_{\xi}.$$

By Proposition 2.2 and (2.4), for each j, there exist positive constants $c_{j1}, ..., c_{jn_j}$ with $\sum_{i=1}^{n_j} c_{ji} = 1$ such that

(4.5)
$$k_{\zeta_j} \circ \pi = \sum_{i=1}^{n_j} c_{ji} \tilde{k}_{\zeta_{ji}},$$

where $\tilde{\Delta}_1(\zeta_j) = \{\tilde{\zeta}_{j1}, ..., \tilde{\zeta}_{jn_j}\}$. Then, in view of (4.3), we see that

$$\lim_{j\to\infty}\tilde{k}_{\bar{\zeta}_{ji_j}}=\tilde{k}_{\bar{\xi}}$$

independently of choice of i_j in $\{1, ..., n_j\}$. This with (4.4) and (4.5) implies that

$$k_{\xi} \circ \pi = \tilde{k}_{\tilde{\xi}}.$$

Therefore, by means of Proposition 2.2, we obtain $\tilde{\Delta}_1(\xi) = \{\tilde{\xi}\}$, which contradicts $\xi \in N_2$. This completes the proof.

We can restate Theorem 2, in terms of the set N_2 , as follows: The relation $HB(W) \circ \pi = HB(\widetilde{W})$ holds if and only if $\omega_z(N_2) = 0$.

Proof of Theorem 2. We first prove 'if' part. Suppose $\omega_z(N_2) = 0$. Then, by Lemma 4.1,

Take an arbitrary $\tilde{h} \in HB(\widetilde{W})$. We only need to show $\tilde{h} \in HB(W) \circ \pi$. Adding a constant to \tilde{h} , we may assume that $\tilde{h} > 0$ on \widetilde{W} . Let c(> 0) be the supremum of \tilde{h} on

 \widetilde{W} . By the Martin representation theorem, there exist Radon measures $\tilde{\mu}$ and $\tilde{\chi}$ on $\tilde{\Delta}$ with $\tilde{\mu}(\tilde{\Delta} \setminus \tilde{\Delta}_1) = 0$ and $\tilde{\chi}(\tilde{\Delta} \setminus \tilde{\Delta}_1) = 0$ such that

(4.7)
$$\tilde{h}(\tilde{z}) = \int \tilde{k}_{\tilde{\zeta}}(\tilde{z}) d\tilde{\mu}(\tilde{\zeta})$$

and

(4.8)
$$1 = \int \tilde{k}_{\tilde{\zeta}}(\tilde{z}) d\tilde{\chi}(\tilde{\zeta}).$$

Then

$$c\int \tilde{k}_{\tilde{\zeta}}(\tilde{z})d\tilde{\chi}(\tilde{\zeta})=c\geq \tilde{h}(\tilde{z})=\int \tilde{k}_{\tilde{\zeta}}(\tilde{z})d\tilde{\mu}(\tilde{\zeta}).$$

Hence, by uniqueness of representing measure, we have

(4.9)
$$c\tilde{\chi} \ge \tilde{\mu}.$$

Note that $\tilde{k}_{\tilde{\zeta}}(\tilde{z})d\tilde{\chi}(\tilde{\zeta}) = d\tilde{\omega}_{\tilde{z}}(\tilde{\zeta})$ (cf. [C-C, p.140]). From this and (4.9) it follows that

$$\int_{\widetilde{N}_2} \tilde{k}_{\tilde{\zeta}}(\tilde{z}) d\tilde{\mu}(\tilde{\zeta}) \leq c \int_{\widetilde{N}_2} \tilde{k}_{\tilde{\zeta}}(\tilde{z}) d\tilde{\chi}(\tilde{\zeta}) = c \int_{\widetilde{N}_2} d\tilde{\omega}_{\tilde{z}}(\tilde{\zeta}) = c \tilde{\omega}_{\tilde{z}}(\widetilde{N}_2).$$

This with (4.6) yields that

$$\int_{\widetilde{N}_2} \tilde{k}_{\tilde{\zeta}}(\tilde{z}) d\tilde{\mu}(\tilde{\zeta}) = 0.$$

Therefore, by (4.7) and the fact $\widetilde{N}_1 \cup \widetilde{N}_2 = \widetilde{\Delta}_1$, we have

$$\tilde{h}(\tilde{z}) = \int_{\widetilde{N}_1} \tilde{k}_{\tilde{\zeta}}(\tilde{z}) d\tilde{\mu}(\tilde{\zeta}).$$

Since $\tilde{k}_{\zeta} \in HP(W) \circ \pi$ for every $\tilde{\zeta} \in \widetilde{N}_1$, this implies that $\tilde{h} \in HP(W) \circ \pi \cap HB(\widetilde{W}) \subset HB(W) \circ \pi$.

We next prove 'only if' part. Suppose $\omega_z(N_2) > 0$. Then, by Lemma 4.2, there exists a $\tilde{\xi} \in \widetilde{N}_2$ such that

(4.10)
$$\tilde{\omega}_{\tilde{z}}(\widetilde{N}_2 \cap \widetilde{U}_r(\tilde{\xi})) > 0$$

for every r > 0. Moreover, by Lemma 4.3, there exists $\rho > 0$ such that

(4.11)
$$\widetilde{\Delta}_1(\zeta) \setminus \widetilde{U}_{\rho}(\widetilde{\xi}) \neq \emptyset$$

for every $\zeta \in N_2 \cap \pi(\widetilde{U}_{\rho}(\widetilde{\xi}))$. Set

$$\widetilde{E}_1 = \widetilde{N}_2 \cap \widetilde{U}_{\rho/2}(\widetilde{\xi}).$$

Then, by (4.10) and Lemma 4.1, we have

$$(4.12)\qquad \qquad \omega_z(\pi(\tilde{E}_1)) > 0.$$

Set

$$\widetilde{E}_2 = \widetilde{N}_2 \cap \pi^{-1}(\pi(\widetilde{U}_{\rho/2}(\widetilde{\xi}))) \setminus \widetilde{U}_{\rho}(\widetilde{\xi})$$

Inview of (4.11), we find that

(4.13)
$$\pi(\tilde{E}_1) = \pi(\tilde{E}_2).$$

Put $\tilde{h}(\tilde{z}) = \tilde{\omega}_{\tilde{z}}(\tilde{E}_1)$. Then $\tilde{h}(\tilde{z})$ is a bounded harmonic function on \widetilde{W} . We only need to show $\tilde{h} \notin HB(W) \circ \pi$. By the Fatou-Naim-Dood theorem (cf. [C-C, p.152]), $\underline{\tilde{h}}(\tilde{z})$ has fine limit 1 (0, resp.) at almost all $\tilde{\zeta}$ in \tilde{E}_1 (\tilde{E}_2 , resp.) with respect to $\tilde{\omega}_{\tilde{z}}$, since $\overline{\tilde{E}_1} \cap \overline{\tilde{E}_2} = \emptyset$. Accordingly there exists a subset \tilde{F}_1 (\tilde{F}_2 , resp.) of \tilde{E}_1 (\tilde{E}_2 , resp.) with $\tilde{\omega}_{\tilde{z}}(\tilde{F}_1) = 0$ ($\tilde{\omega}_{\tilde{z}}(\tilde{F}_2) = 0$, resp.) such that, for every $\tilde{\zeta}$ in $\tilde{E}_1 \setminus \tilde{F}_1$ ($\tilde{E}_2 \setminus \tilde{F}_2$, resp.),

(4.14)
$$\mathcal{F} - \lim_{\tilde{z} \to \tilde{\zeta}} \tilde{h}(\tilde{z}) = 1 \quad (\mathcal{F} - \lim_{\tilde{z} \to \tilde{\zeta}} \tilde{h}(\tilde{z}) = 0, \text{ resp.})$$

Then, by Lemma 4.1, $\omega_z(\pi(\tilde{F}_1) \cup \pi(\tilde{F}_2)) = 0$. Hence, by (4.12) and (4.13), there exist points $\tilde{\zeta}_1 \in \tilde{E}_1 \setminus \tilde{F}_1$ and $\tilde{\zeta}_2 \in \tilde{E}_2 \setminus \tilde{F}_2$ with $\pi(\tilde{\zeta}_1) = \pi(\tilde{\zeta}_2)$. This with (4.14) implies that there exists an open subset \tilde{O}_1 (\tilde{O}_2 , resp.) of \tilde{W} such that $\tilde{O}_1 \cup {\tilde{\zeta}_1}$ ($\tilde{O}_2 \cup {\tilde{\zeta}_2}$, resp.) is a minimal fine neighborhood of $\tilde{\zeta}_1$ ($\tilde{\zeta}_2$, resp.) and that

(4.15)
$$\inf_{\tilde{z}\in\tilde{O}_1}\tilde{h}(\tilde{z}) \geq \frac{2}{3} \quad (\sup_{\tilde{z}\in\tilde{O}_2}\tilde{h}(\tilde{z}) \leq \frac{1}{3}, \text{ resp.}).$$

Then, by virtue of Proposition 2.3, we see that $(\pi(\tilde{O}_1) \cap \pi(\tilde{O}_2)) \cup {\pi(\tilde{\zeta}_1)}$ is a minimal fine neighborhood of $\pi(\tilde{\zeta}_1) = \pi(\tilde{\zeta}_2)$, and hence $\pi(\tilde{O}_1) \cap \pi(\tilde{O}_2) \neq \emptyset$. Therefore, by (4.15), there exists a subset \tilde{U}_j of \tilde{O}_j (j = 1, 2) with $\pi(\tilde{U}_1) = \pi(\tilde{U}_2)$ such that

$$\inf_{\tilde{z}\in \widetilde{U}_1} \tilde{h}(\tilde{z}) \geq \frac{2}{3} \quad (\sup_{\tilde{z}\in \widetilde{U}_2} \tilde{h}(\tilde{z}) \leq \frac{1}{3}, \text{ resp.}).$$

This means that $h \notin HB(W) \circ \pi$.

The proof is herewith complete.

5. Harmonic functions on covering surfaces of the unit disc

Let D be the unit disc $\{|z| < 1\}$. In this section, we are concerned with application of Theorem 1 and Therem 2 in case base surface is D. As is wellknown, the Martin compactification D^* of D is identified with the closure \overline{D} of D with respect to Euclidian topology and the Martin boundary Δ^D of D consists of only minimal points. In this view, we regard $\partial D = \{|z| = 1\}$ as the (minimal) Martin boundary of D.

To state our main result of this section, we introduce some notations. For a discrete subset A of D, we denote by $\mathcal{B}_p(A)$ the class of p-sheeted unlimited covering surface \widetilde{D} of D such that there exists a branch point in \widetilde{D} of order p-1 (or multiplicity p) over every

 $z \in A$ and there exist no branch points in D over $D \setminus A$. In addition to the Euclidean metric, we consider the pseudohyperbolic metric on D given by

$$\rho(z,w) = \left| \frac{z-w}{1-\overline{w}z} \right|.$$

For $\zeta \in \partial D$ and a positive number C(< 1), we also consider the Stolz type domain with vertex ζ given by

$$S_C(\zeta) = \{ z \in D : C | z - \zeta | < 1 - |z| \}.$$

Theorem 5.1. Let $A = \{a_n : n \in \mathbb{N}\}$ be a discrete subset of D and \widetilde{D} belong to $\mathcal{B}_p(A)$. Suppose that there exists a positive constant C(<1) satisfying the following two conditions (i) for every pair (a_m, a_n) in A with $a_m \neq a_n$, $\rho(a_m, a_n) \geq C$; (ii) for every $\zeta \in \partial D$, there exists a subset $B_{\zeta} = \{b_n : n \geq n_0\}$ $(n_0 = n_0(\zeta))$ of A such that $b_n \in \{z : 2^{-n-1} \leq |z - \zeta| \leq 2^{-n}\} \cap S_C(\zeta)$ for every $n \geq n_0$. Then $HP(\widetilde{D}) = HP(D) \circ \pi$, where π is the projection map.

For a bounded Borel subset K of C, we denote by $\lambda(K)$ the logarithmic capacity. As a necessary condition for minimal thinness, the following is available (cf. [LF],[J]).

Lemma 5.1. Let ζ be in $\partial D = \Delta_1^D$ and E a relatively closed subset of $S_C(\zeta)$. If E is minimally thin at ζ , then

$$\sum_{n=1}^{\infty} \frac{1}{\log \frac{1}{\lambda(E_n)}} < \infty,$$

where $E_n = E \cap \{z : 2^{-n-1} \le |z - \zeta| \le 2^{-n}\}.$

Proof of Theorem 5.1. Let ζ be an arbitrary point in ∂D . By virtue of Theorem 1, we only have to show that $\Delta_1^{\widetilde{D}}(\zeta)$ consists of a sigle point. Take an arbitrary $M \in \mathcal{M}_D(\zeta)$. Our goal is to show that $\pi^{-1}(M)$ is connected. In fact, in view of Proposition 2.4, connectivity of $\pi^{-1}(M)$ for all $M \in \mathcal{M}_D(\zeta)$ implies $\Delta_1^{\widetilde{D}}(\zeta)$ consists of a single point.

We first assume that there exists an $a_n \in M \cap A \neq \emptyset$. Then, it is easily seen that $\pi^{-1}(M)$ is connected, since \widetilde{D} has a branch point of order p-1 over $a_n \in M$ and M is connected.

We next assume $M \cap A = \emptyset$. Put $F = D \setminus M$. Note that F is minimally thin at ζ and relatively closed in D. For each $n(\geq n_0)$, let F_n be the connencted component of F which contains $b_n \in B_{\zeta}$. We also assume that there exists an F_n $(n \geq n_0)$ such that

(5.1)
$$d(F_n) < C^2 2^{-n-1},$$

where $d(F_n)$ indicates the diameter of F_n . Then there exists a closed Jordan curve γ_n in $M \setminus A$ such that γ_n surrounds F_n and

(5.2)
$$d(F_n) < d(\gamma_n) < C^2 2^{-n-1}.$$

By (i) and (ii), we have

$$|a_m - b_n| \ge C|1 - \overline{b_n}a_m| \ge C(1 - |b_n|) \ge C^2 2^{-n-1}$$

for every $a_m \in A \setminus \{b_n\}$. Hence, by means of (5.2), we see that γ_n surrounds only one point b_n in A. Therefore, $\pi^{-1}(\gamma_n)$ is connected, since \widetilde{D} has a branch point of order p-1 over b_n . This with $\gamma_n \in M$ and connectivity of M yields that $\pi^{-1}(M)$ is connected. Accordingly, we completes the proof if we show that there exists an F_n $(n \geq n_0)$ satisfying (5.1).

We assume that

$$(5.3) d(F_n) \ge C^2 2^{-n-1}$$

for every $n(\geq n_0)$. Set $E = F \cap S_{\frac{C}{2}}(\zeta)$. Note that E is minimally thin at ζ . We denote by F_n^* the connected component of E which contains b_n . Then, in view of (ii) and (5.3), we find that there exists a positive constant $C_1(\leq C^2/2)$ such that

(5.4)
$$d(F_n^*) \ge C_1 2^{-n}$$

for every $n(\geq n_0)$. Set $E_n = E \cap \{z : 2^{-n-1} \leq |z-\zeta| \leq 2^{-n}\}$. Note that $b_n \in E_n$. Then, by (5.4), we see that, for every $n \geq n_0$, at least one of $\{E_{n-1}, E_n, E_{n+1}\}$ contains a continuum whose diameter is equal to or greater than $C_1 2^{-n-1}$. From this it follows that

 $\max\{\lambda(E_{n-1}), \lambda(E_n), \lambda(E_{n+1})\} \ge C_1 2^{-n-3}$

for every $n(\geq n_0)$ (cf.[T]). Hence we see that

$$\frac{1}{\log \frac{1}{\lambda(E_{n-1})}} + \frac{1}{\log \frac{1}{\lambda(E_n)}} + \frac{1}{\log \frac{1}{\lambda(E_{n+1})}} \ge \frac{1}{n \log 2 + \log(8/C_1)}$$

for every $n(\geq n_0)$. Therefore we deduce

$$\sum_{n=n_0-1}^{\infty} \frac{1}{\log \frac{1}{\lambda(E_n)}} \geq \frac{1}{3} \sum_{n=n_0}^{\infty} \left(\frac{1}{\log \frac{1}{\lambda(E_{n-1})}} + \frac{1}{\log \frac{1}{\lambda(E_n)}} + \frac{1}{\log \frac{1}{\lambda(E_{n+1})}} \right)$$
$$\geq \frac{1}{3} \sum_{n=n_0}^{\infty} \frac{1}{n \log 2 + \log(8/C_1)} = \infty.$$

By Lemma 5.1, this is absurd, since E is minimally thin at ζ .

The proof is herewith complete.

Using the notation above, we restate Proposition in Introduction as follows:

Corollary 5.1. Let $A = \{(1 - 2^{-n-1})e^{i2\pi k/2^{n+2}} : n = 1, 2, ..., k = 1, ..., 2^{n+2}\}$ and \widetilde{D} belong to $\mathcal{B}_p(A)$. Then $HP(D) \circ \pi = HP(\widetilde{D})$, where π is the projection map.

97

Proof. It is easily seen that A and a positive constant C satisfy the condition (i) of Theorem 5.1. Let ζ be an arbitrary point in ∂D . For every positive integer n, we can choose a positive integer k_n with $1 \leq k_n \leq 2^{n+2}$ such that

(5.5)
$$\left|\arg\zeta - \frac{2\pi k_n}{2^{n+2}}\right| \le \frac{\pi}{2^{n+2}}.$$

Set

$$b_n = (1 - 2^{-n-1})e^{i2\pi k_n/2^{n+2}}$$
 $(n = 1, 2, ...).$

Then, by (5.5), we have

$$(2^{-n-1})^2 \le |b_n - \zeta|^2 \le (2^{-n-1})^2 + 4\sin^2 \frac{\pi}{2^{n+3}}.$$

In view of this with (5.5), it is easily seen that $B_{\zeta} := \{b_n : n \ge 1\}$ and a positive constant C satisfy the condition (ii) of Theorem 5.1.

At the last, we give a *p*-sheeted unlimited covering surface D_1 of D with projection map π such that $HB(D) \circ \pi = HB(\widetilde{D}_1)$ and $HP(D) \circ \pi \neq HP(\widetilde{D}_1)$. Let A be the same as in Corollary 5.1. Set $M = \{|z - \frac{1}{2}| < \frac{1}{2}\}$ and $A_1 = A \setminus M$. Consider a covering surface $D_1 \in \mathcal{B}_p(A_1)$ with projection map π . We now show that $HB(D) \circ \pi = HB(\widetilde{D}_1)$ and $HP(D) \circ \pi \neq HP(\widetilde{D}_1)$. As is proved in the proof of Corollary 5.1, A_1 and a positive constant C satisfy the following two conditions:

(i) for every pair (a_m, a_n) in A_1 with $a_m \neq a_n$, $\rho(a_m, a_n) \ge C$;

(ii) for every $\zeta \in \partial D \setminus \{1\}$, there exist a subset $B_{\zeta} = \{b_n : n \ge n_0\}$ $(n_0 = n_0(\zeta))$ of A_1 such that $b_n \in \{z : 2^{-n-1} \le |z-\zeta| \le 2^{-n}\} \cap S_C(\zeta)$ for every $n \ge n_0$.

Therefore the proof of Theorem 5.1 yields that $\nu_{\widetilde{D}_1}(\zeta) = 1$ for every $\zeta \in \partial D \setminus \{1\}$. Hence, by virtue of Theorem 2, we have $HB(D) \circ \pi = HB(\widetilde{D}_1)$. On the other hand, it is easily seen that M belongs to $\mathcal{M}_D(1)$ and $\pi^{-1}(M)$ consists of p components. Hence, by Proposition 2.2 and 2.4, $\nu_{\widetilde{D}_1}(1) = p(>1)$. Therefore, by Theorem 1, we see that $HP(D) \circ \pi \neq HP(\widetilde{D}_1)$.

Refernces

- [A-S] L. ARLFORS AND L. SARIO, Riemann Surfaces, Princeton, 1960.
- [B-H] J. BLIEDTNER AND W. HANSEN, Potential Theory, Springer, 1986.
- [B] M. BRELOT, On Topologies and Boundaries in Potential Theory, Lecture Notes in Math. 175, Springer, 1971.
- [C-C] C. CONSTANTINESCU AND A. CORNEA: Ideale Ränder Riemanncher Flächen, Springer, 1969.
- [F] O. FORSTER, Lectures on Riemann Surfaces, GTM 81, Springer.
- [H] M. HEINS, Riemann surfaces of infinite genus, Ann. of Math., 55(1952), 296-317.
- [HL] L. HELMS, Introduction to Potential Theory, Wiley-Interscience, 1969.
- [J] H. L. JACKSON, Some results on thin sets in a half plane, Ann. Inst. Fourier, 20(1970), 201-218.
- [LF] J. LELONG-FERRAND, Etude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Ecole N. Sup., **66**(1949), 125-159.
- [J-M-S] N. JIN, H. MASAOKA AND S. SEGAWA, Kuramochi boundary of unlimited covering surfaces, preprint.
- [M] H. MASAOKA, Criterion of Wiener type for minimall thinness on covering surfaces, Proc. Japan Acad., 72(1996), 154-156.
- [M-S1] H. MASAOKA AND S. SEGAWA, Harmonic dimension of covering surfaces and minimal fine neighborhood, Osaka J. Math., **34**(1997), 659-672.

[M-S2] H. MASAOKA AND S. SEGAWA, Martin boundary of unlimited covering surfaces, preprint.

[S-N] L. SARIO AND M.NAKAI, Classification Theory of Riemann Surfaces, Springer, 1970.

[T] M. TSUJI, Potential Theory in Modern Function Theory, Maruzen, 1959.