Gröbner basis による分割表の数え上げ

倉敷芸術科学大学 中川 重和(Sigekazu Nakagawa)*

1 はじめに

行和 $\mathbf{r} = (r_1, r_2, \dots, r_I)$ と列和 $\mathbf{c} = (c_1, c_2, \dots, c_J)$ が与えられた $I \times J$ 分割表全体 の集合を $\Omega(\mathbf{r}, \mathbf{c})$ とする $(N = \sum_{i=1}^{I} r_i = \sum_{j=1}^{J} c_j)$. つまり, $\mathbf{u} = (u_{ij}) \in \Omega(\mathbf{r}, \mathbf{c})$ は $u_{ij} \in \mathbf{N} = \{0, 1, 2, \dots\}, \sum_{j=1}^{J} u_{ij} = r_i, \sum_{i=1}^{I} u_{ij} = c_j$ を満足する. 分割表の数え上げと は, すべての $\mathbf{u} = (u_{ij}) \in \Omega(\mathbf{r}, \mathbf{c})$ を列挙することで, (統計学における) Fisher の正確確 率法による p 値計算において必要である.

分割表の数え上げ問題は、古くから知られた基本的な問題であり、Fisher の正確確率法 以来、考えられている.計算機を意識した算法として、行の置換によるクラス分けに基づ く Fortran プログラム [13] やネットワークアルゴリズム [10] [11] などが 1980 年代に研究 されている.

1990 年代に入って, Markov Chain Monte Carlo(MCMC) 法が統計学の有効な手法とし て大きな話題を呼び,この流れは分割表解析にも及んだ.統計学の標準的な教科書では, 分割表の独立性の検定において,(経験則として)すべてのセルの度数 (u_{ij}) が 5 以上のと き,検定統計量が χ^2 分布に漸近的に従うとして検定せよ,またそうでないときは,Fisher の正確確率法により p 値計算をせよ,とある.しかし,いずれにも当てはまらない例があ る.例えば,[7], pp.364, Table 1.この例では,いくつかのセルの度数が 5 以下 (χ^2 分布 に漸近的に従わない)であるにもかかわらず, $\#\Omega(\mathbf{r}, \mathbf{c})$ が多き過ぎて,事実上すべての分 割表を列挙できない.

このような問題にも頑健な手法として,分割表解析における MCMC 法の研究が進んで いる.中でも,Markov 連鎖の推移パターン (Markov basis という)の構成に Gröbner basis を用いたアルゴリズムを提案した [7] の貢献は大きい.

MCMC 法を分割表解析に適用する際,問題となるのが収束性の問題と精度の問題である.本稿では精度の問題に注目するが,その場合 (計算できる) exact な値との比較が不可 欠となる. [14] に基づき, Gröbner basis と 有向グラフの backward search による数え上

^{*}nakagawa@soft.kusa.ac.jp

173

げを実現し, exact *p* 値を計算する.そして, 既存の MCMC での結果 ([1]) との数値比較 を行う.

2 節では、記号の定義とおさらいの意味を込めて、Gröbner basis と分割表の関連について述べる.3 節では、Backward search とその実装について述べる.3.1 節では、 $I \times J$ 分割表において、Gröbner basis と 有向グラフの backward search による方法で、どの程度の問題までが計算できるかを示す.3.2 節では、本稿での方法が多元分割表にも適用可能であることを示す.

なお、本報告に関連する話題として分割表の総数数え上げがある.総数の近似として、 正規分布による近似 [8] がある.また対称式の内積計算 [6],分割統治法 [12],などが総数 の完全な数え上げとして研究されている.

2 分割表の数え上げと Gröbner basis

定義 1 Z^I , Z^J の標準基底をそれぞれ $\{e_i\}$, $\{e'_i\}$ として,線形写像

$$\begin{aligned} \pi : \quad \mathbf{N}^{IJ} \quad &\to \qquad \mathbf{Z}^{I} \oplus \mathbf{Z}^{J} \\ u_{ij} \quad &\mapsto \quad \sum_{i,j} u_{ij} \mathbf{e}_{i} \oplus \mathbf{e}'_{j} \end{aligned}$$
 (1)

を定めるとき, $\Omega(\mathbf{r}, \mathbf{c}) = \{\mathbf{u} \in \mathbf{N}^{IJ} \mid \pi(\mathbf{u}) = \begin{bmatrix} \mathbf{r} & \mathbf{c} \end{bmatrix}'\}$ である. π の定義域を \mathbf{Z}^{IJ} に 拡張して $ker(\pi) \subset \mathbf{Z}^{IJ}$ を考えるとき (今後, $ker(\pi) \subset \mathbf{Z}^{IJ}$ とする), $ker(\pi)$ の任意の 元は周辺和を不変にする. したがって, $ker(\pi)$ の基底が $\Omega(\mathbf{r}, \mathbf{c})$ 上のひとつの Markov basis を与える. ここで, $\{\mathbf{m}_1, \cdots, \mathbf{m}_L\} \subset ker(\pi)$ が Markov basis であるとは, すべて の $\mathbf{u}, \mathbf{u}' \in \Omega(\mathbf{r}, \mathbf{c})$ に対して, $(\epsilon_1, \mathbf{m}_{i_1}), \ldots, (\epsilon_A, \mathbf{m}_{i_A})$ が存在して (ただし, $\epsilon_i = \pm 1$),

- ・ $oldsymbol{u}'=oldsymbol{u}+\sum_{j=1}^A\epsilon_joldsymbol{m}_{i_j}$ および
- $\boldsymbol{u} + \sum_{j=1}^{a} \epsilon_j \boldsymbol{m}_{i_j} \ge 0 \ (1 \le a \le A)$

をみたすことである.

我々の問題へ Gröbner basis の理論を持ち込むために,(1)で与えた線形写像を多項式 写像へと持ち上げる:

$$\begin{array}{rcl}
\hat{\pi}: & k[\boldsymbol{x}] & \to & k[\boldsymbol{t}] \\
& & x_{ij} & \mapsto & \boldsymbol{t}^{\boldsymbol{e}_i \oplus \boldsymbol{e}'_j}.
\end{array}$$
(2)

ただし, $\boldsymbol{x} = (x_{11}, x_{12}, \cdots, x_{IJ})$ であり, $\boldsymbol{t} = (t_1, t_2, \cdots, t_{I+J})$ である.このとき,

$$\langle x_{ij} - t^{\boldsymbol{e}_i \oplus \boldsymbol{e}'_j} \rangle$$
 (3)

は IJ + I + J 個の変数 x, t からなる多項式環 k[x, t] のイデアルであり, $I := \ker(\hat{\pi})$ は k[x] のイデアルである. I と Markov basis の関係は次の命題で与えられる:

 $\left\{ oldsymbol{x}^{oldsymbol{m}^+} - oldsymbol{x}^{oldsymbol{m}^-} \mid oldsymbol{m} \in M
ight\}$

が I の Gröbner basis となる M が存在する. そしてこの M が $\Omega(\mathbf{r}, \mathbf{c})$ 上の Markov basis を与える.

命題 2 から, Markov basis を求めることは (2) で定まる多項式写像の核 ker($\hat{\pi}$) の生成 元を求める問題に帰着される.この問題の解法は Gröbner basis 理論では既知の事実 ([5]) であり,以下のように Markov basis を求めるアルゴリズムが構成できる.ただし, 3.2 節 にある多元分割表の場合には少々の工夫が必要である ([9], [2]).

Markov basis を求めるアルゴリズム ([5])

- $\langle x_{ij} t^{e_i \oplus e'_j} \rangle (\subset k[x, t])$ の reduced Gröbner basis (with elimination order $t \succ x$) Gを求めよ.
- $G' := G \cap k[x]$ が I の (k[x] における) Gröbner basis i.e. $I = \langle G' \rangle$. G' が求める Markov basis である.

 $\ker(\hat{\pi}) \mathcal{O}$ reduced Gröbner basis (drl with $x_{11} \prec x_{12} \prec \cdots \prec x_{IJ}) \downarrow \downarrow$,

$$\{x_{i\ell} x_{kj} - x_{ij} x_{k\ell} \mid 1 \le i < k \le I, 1 \le j < \ell \le J\}$$

であり、対応する $\boldsymbol{m} = (m_{ab}) \in M$ は

$$m_{ab} = \begin{cases} -1 & (a = i, b = j) \\ 1 & (a = i, b = l) \\ 1 & (a = k, b = l) \\ -1 & (a = k, b = l) \\ 0 & (\not\in \mathcal{O} \pitchfork) \end{cases}$$
(4)

である.

定義 3 $M \subset ker(\pi)$ に対し, $\Omega(\mathbf{r}, \mathbf{c})$ に付随する無向グラフ \mathcal{G}_M を以下のように定義する. $\Omega(\mathbf{r}, \mathbf{c})$ を \mathcal{G}_M の頂点集合とする. \mathbf{u}, \mathbf{u}' が辺で結ばれるのは, ある $\mathbf{m} \in M$ によって, $\mathbf{u} = \mathbf{u}' + \epsilon \cdot \mathbf{m}(\epsilon = \pm 1)$ のときである.

このとき、命題は次のように読み換えることができる.

命題 4 ([5]) \mathcal{G}_M が連結グラフである $\iff \left\{ x^{m^+} - x^{m^-} \mid m \in M \right\}$ がイデアル I を生成する.

定義 5 N^{IJ} 上の任意の term order に対し, $\Omega(\mathbf{r}, \mathbf{c})$ に付随する有向グラフ $\mathcal{G}_{M, \succ}$ を以下 のように定義する. 無向グラフ \mathcal{G}_M において, \mathbf{u} から \mathbf{u}' への有向辺を $\mathbf{u}' \prec \mathbf{u}$ のときに 定義する.

このとき,以下が成立する:

命題 6 ([5]) $\mathcal{G}_{M,\succ}$ が unique sink をもつ $\iff \{x^{m^+} - x^{m^-} \mid m \in M\}$ が $I \otimes \neg$ に関 する Gröbner basis である.

3 Backward search

前節の議論より,分割表の数え上げは有向グラフの backward search により,実行できる ([14]).

Input: 周辺和 **r**,**c** Output: Ω(**r**,**c**) のすべての点の列挙

1. $M: \ker(\hat{\pi})$ の Gröbner basis G の計算

2. $\boldsymbol{u}' \in \Omega(\boldsymbol{r}, \boldsymbol{c})$ を一つ見つけよ (観測データ)

- 3. $x^{u'} \xrightarrow{G} x^{u''}$ の計算:u''は $\Omega(r,c)$ に付随する有向グラフの unique sink
- 4. 初期化; Active := $\{u''\}$, Passive := \emptyset ;
- 5. while (Active $\neq \emptyset$) do

Choose $u \in Active$ forall $m = m^+ - m^- \in M (m^+ \succ m^-)$ do if $(u - m^- \ge 0)$ and $(u + m \notin Passive)$ then Active := Active $\cup \{u + m\};$ Active := Active $\setminus \{u\};$ Passive := Passive $\cup \{u\};$

ステップ1から3は数式処理システム Asir [3] で実装している.ステップ4,5をC言語で実装している.変数 Active と Passive は探索が頻繁に起こるためデータ構造として2分木を採用している.

3.1 *I*×*J*分割表の数え上げ

表 11 は [4] から抜粋したふさぎ込み症候群のデータである.米国の 4 つの病院において、十二指腸潰瘍の摘出度合により、無気力、ふさぎ込みなどになる患者の頻度をまとめたものである.なお、手術法は

A 十二指腸 0% 摘出 B 十二指腸 25% 摘出

C 十二指腸 50% 摘出 D 十二指腸 75% 摘出

に層別している.

表 12 は 分割表それぞれの unique sink である. 各病院毎の 4 つの 4 × 3 分割表に対し, backward search を実行した結果が表 13 である. 左からふさぎ込み症候群データの 総数, exact p 値 (DEC Alpha station 400MHz, 256MB での CPU Time(sec)) および MCMC(10⁶ 回) による p 値である. p 値とは

$$p = \sum_{\boldsymbol{v} \in \mathcal{T}} \Pr(\boldsymbol{v})$$

であり, $\mathcal{T} = \{ v \in \Omega(r, c) | \Pr(v) \leq \Pr(u) \}$ としている.なお,病院4については,この 実装では計算できなかった¹⁾.

	工生计	ふさぎ込み症候群		⇒L			工作计	ふさぎ込み症候群			⇒1.	
	于何法	無	軽	重	計			于何法	無	軽	重	計
1	A	18	6	1	25].	3	A	12	9	1	22
	В	18	6	2	26			В	15	3	2	20
	\mathbf{C}	13	13	2	28			C	14	8	3	25
	D	9	15	2 $^{\circ}$	26			D	13	6	4	23
		58	40	7	105				54	26	10	90
2	Α	8	6	3	17		4	A	23	7	2	32
	В	12	4	4	20			В	23	10	5	38
	\mathbf{C}	11	6	2	19			\mathbf{C}^{-1}	20	13	5	38
	D	7	7	4	18			D	24	10	6	40
		38	23	13	74				90	40	18	148

表 11: ふさぎ込み症候群データ

¹⁾[11] を用いて計算すると,総数は 15,272,124 であり, exact p 値は 0.7677 となる

1					· ·	2		1		
	25	0	0	25			17	0	0	17
	26	0	0	26			20	0	0	20
	7	21	0	28			1	18	0	19
	0	19	7	26	_		0	5	13	18
	58	40	7	105	- -		38	23	13	74
3					_	4				
	22	0	0	22			32	0.	0	32
	20	0	0	20			38	0	0	38
	12	13	0	25			20	18	0	38
	0	13	10	23			0	22	18	40
	54	26	10	90	_		90	40	18	1/18

表 12: unique sink

表 13: ふさぎ込み症候群データの総数, p 値と MCMC

	$\#\Omega(m{r},m{c})$	exact p 値 (CPU Time, sec)	MCMC による <i>p</i> 値
1	1,106,454	0.0610 (34,635)	0.0633
2	1,107,960	0.7849 (35,279)	0.7856
3	944,944	$0.5280 \ (24,574)$	0.5340
4			0.7698

3.2 3×3×3 分割表の数え上げ

Backward search による数え上げの利点は, [10], [11], [13] などに対し, 多元分割表に も適用可能なことである.ここでは, 3×3×3 分割表の数え上げを実行する.3×3×3 分割表の数え上げとは、以下の 27 個の line sums

$$u_{.jk} := \sum_{i=1}^{3} u_{ijk}, \, u_{i.k} := \sum_{i=1}^{3} u_{ijk}, \, u_{ij.} := \sum_{i=1}^{3} u_{ijk}$$

が与えられたもとで、これを満足するようなすべての (u_{ijk}) を列挙することである. $u_{.jk} = u_{ij.} = s$ について実行した結果が表 14 である (DEC Alpha station 400MHz, 256MB).表 15 は $3 \times 3 \times 3$ 分割表の Markov basis である ([2]).

表 14: $u_{.jk} = u_{i.k} = u_{ij.} = s$

s	総数	CPU Time
1	847	0.3
2	$43,\!687$	307
3	$619,\!219$	47,699

表 15: 3×3×3 分割表の Markov basis

	+	0	+	_	0	0	0	0		
+	_	0		+	0	0	0	.0	27 個	4次
0	0	0	0	0	0	0	0	0		
+		0		+	0	0	0	0		
	0	+	+	0	_	0	0	0		
0	+		0		+	0	0	0		
]	18個]		6 次	•		
+		0	_	0	+	0	+	_		
+	- +	0 0	 +	0 0	+	0 0	+	 +		
+ - 0	- + 0	0 0 0	- + 0	0 0 0	+ - 0	0 0 0	+ 0	- + 0		
+ - 0	- + 0	0 0 0	- + 0	0 0 0 36 個	+ - 0	0 0 0	+ 一 0 6 次	- + 0		
+ - 0	- + 0	0 0 0	- + 0	0 0 0 36 個	+ - 0	0 0 0	+ 0 6 次	- + 0		
+ - 0	-+ 0+	0 0 0	-+ 0 3	0 0 0 36 個 0	+ - 0	0 0 0	+ 0 6次 -	- + 0 : +		
+ - 0 - +	-+ 0 + 0	0 0 0	- + 0 : : :	0 0 36 個 0 0	+ - 0]] - +	0 0 0	+ 0 6次 - 0	-+0	28 個	7次

- [1] 中川重和 (1999a). 分割表上の Markov basis と Gröbner basis. 日本計算機統計学会第 13 回大会論文集, 54-57.
- [2] 中川重和 (1999b). 3 次元分割表上の Markov chain の Gröbner 基底による構成. 第 67
 回日本統計学会講演報告集, 57-58.
- [3] 野呂正行,下山武司 (1995). Asir User's Manual. ftp://endeavor.fujitsu.co.jp.
- [4] 柳川尭 (1986). 離散多変量データの解析,共立出版.
- [5] Adams, W.W. and Loustaunau, P.(1994). An Introduction to Gröbner bases. AMS.
- [6] Diaconis, P. and Gangolli, A(1995). Rectangular arrays with fixed margins. In Discrete Probability and Algorithms, Springer, New York, 15–41.
- [7] Diaconis, P. and Strumfels, B.(1998). Algebraic algorithms for sampling from conditional distributions. Ann. Statist., 26, 363–397.
- [8] Gail, M. and Mantel, N.(1977). Counting the Number of r × c Contingency Tables with Fixed Margins. J. of the American Statistical Association, 72, No. 360, 859– 862.
- [9] Hosten, S. and Strumfels, B.(1995). GRIN: An Implementation of Gröbner Bases for Integer Programming. Springer LNCS, 920, 267–276.
- [10] Metha, C. R. and Patel, N. R.(1983). A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables. J. of the American Statistical Association, 78, No. 382, 427–434.
- [11] Metha, C. R.(1986). ALGORITHM 643: FEXACT: A FORTRAN Subroutine for Fisher's Exact Test on Unordered r × c Contingency Tables. ACM Transactions on Mathematical Software, 12, No. 2, 154–161.
- [12] Mount, J.(1995). Application of Convex Sampling to Optimization and Contingency Table Generation/Counting, Ph.D. Dissertation, Department of Computer Science, Carnegie Mellon University.
- [13] Saunders, I. W.(1984). AS 205: Enumeration of $R \times C$ Tables with Related Row Totals. J. Royal Statistical Society, 340–352.
- [14] Strumfels, B.(1996). Gröbner bases and convex polytopes. AMS.