
The arbitrary precision calculation of
logarithms with continued fraction

expansions

Kogakuin Univ. Isao Makino
Kogakuin Univ. Takeshi Aoyama

1 Introduction
We have thought about the arbitrary precision calculation of logarithms, for example

the error evaluation equations and their improvement and “divided calculation” as one of
the calculation methods. In this paper we would like to show the result of the calculation
time of logarithmic function using the properties of logarithms.

2 Continued Fraction
First we summarize some basics of continued fraction and their properties. There are

some definitions. $\mathrm{T}\dot{\mathrm{h}}\mathrm{e}$ following formula is called continued fraction:
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where, $p_{1},p_{2},$ $\cdots,p_{n},$ $q_{1},$ $q_{2},$ $\cdots,$ $q_{n}$ are integers. It is called a finite continued fraction
when $n$ is finite. Otherwise, it is called an infinite continued fraction. It has become
customary to write continued fraction in a typographically more convenient form like the
following:

$q_{0}+ \frac{p_{1}1}{1q_{1}}+\underline{p_{2}}\overline{q_{n}}\ldots$ (2)

For $n=1,2,3,$ $\cdots$ the following formula is called $n\mathrm{t}\mathrm{h}$ approximants of continued
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fraction:

$q_{0}+ \frac{\mathrm{p}_{1}1}{1q_{1}}+\underline{p_{2}|}$ . (3)

In the above formula the numbers $p_{n}$ and $q_{n}$ are called the $n\mathrm{t}\mathrm{h}$ numerator and the $n\mathrm{t}\mathrm{h}$

denominator of the continued fraction (2).
If the approximants of continued ffaction (3) is converted to a fraction $\overline{Q}_{\mathrm{n}}^{\mathrm{R}}P$ , then

following theorem is obtained $[2, 3]$ :

Theorem 1 Let $P_{-1}=1,$ $Q_{-1}=0$ .

$\{$

$P_{n}=q_{n}P_{n-1}+p_{n}P_{n-2}$

$Q_{n}=q_{l},Q_{n-1}+p_{n}Q_{n-2}$
(for $n=1,2,3,$ $\cdots$ ) (4)

Theorem 2 Let $p_{1},p_{2},$ $\cdots$ , $p_{n},$ $q_{1},$ $q_{2},$ $\cdots$ , $q_{n}>0$ . If

$\lim_{narrow\infty}\frac{\prod_{i=1}^{n}p_{i}}{Q_{n}Q_{n-1}}=0$ ,

then $P_{n}/Q_{n}$ is convergent. Put the convergence $\alpha_{t}$ then

$| \frac{P_{n}}{Q_{n}}-\alpha|<\frac{\prod_{i=1}^{n}p_{i}}{Q_{n}Q_{n-1}}$ $(p_{i}>0)$ (5)

The above recursive equation (4) is expressed as following [2]:

Corollary 3 $=$ (6)

Let

$M_{k}$ $=$

$M_{1,k}$ $=$

Then

$M_{1,n}=M_{1}M_{2}\cdots M_{n}=M_{1,n-1}M_{n}$ .

This notation is useful to calculate a value of a continued fraction. We call the
calculation method using the above equation, diviced $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[4]$ .
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3Calculation of logarithm using continued fraction

3.1 Change the equations

The following formula for natural logarithmic function is well known.

$\log\frac{1+z}{1-z}$ $=$ $\overline{3}\overline{2n+1}\underline{2z}\underline{-4z^{2}}+\cdots.(z\in \mathrm{Z})$ (7)

Here let $z$ be $Eq$ ($p,$ $q$ are integers). Then the above formula (7) is rewritten as following:

$\log\frac{1+z}{1-z}$ $=$ $\underline{2p|}\ldots$ (8)

By this replacement of the variable $z$ the recursive equation (4) is also rewritten as
$\mathrm{f}\mathrm{o}\Pi \mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$:

$\{$

$P_{n}=(2n-1)qP_{n-1}-(n-1)^{2}p^{2}P_{n-2}$ ,
$Q_{n}=(2n-1)qQ_{n-\mathrm{I}}-(n-1)^{2}p^{2}Q_{n-2}$ .

$(n=1,2,3, \cdots)$ (9)

3.2 Error evaluation equation

We need an error evaluation for the continued fraction in order to calculate the
functions value. And we want to get the functions value according to the required
precision by calculating fewer terms of continued fraction expansions. We put some
condition for the parameter $p$ and $q$ , namely $z$ . Then we derived the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}[5]$:

Theorem 4 For $p,$ $q\in \mathrm{Z},$ $1<\alpha\in \mathrm{R},$ $0<k\in \mathrm{R},$ $Eq \leq\frac{1}{\alpha}$ and $k=2\alpha^{2}+1$ , the following
formula holds.

$\frac{nq}{k}Q_{n-1^{-}}(n-1)^{2}p^{2}Q_{n-2}>0$ for $n=2,3,$ $\cdots$

Moreover,

$| \frac{P_{n}}{Q_{n}}-\log\frac{1+z}{1-z}|<\frac{2}{n\alpha^{2}}[\frac{2\alpha^{2}-1}{4\alpha^{2}-3}]^{2n-1}z^{2n-1}$ .

In below section we call the above error evaluation equation GEEE, which means
“General Error Evaluation Equation”. About the case of the parameter $\alpha=2$ we
examined GEEE gives us $‘\prime \mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}$ evaluation”. Here the term ‘rgood evaluation” means
that the GEEE gives us a smaller term number which we still have to calculate for
continued fraction expansions. $\mathrm{B}\mathrm{u}l$ we are restricted to the domain of $z$ if we calculate
using the GEEE because it has some conditions. So we examined how to calculate using
the following properties of logarithm: $\log$ $ab=\log a+\log b$ and $\log a^{n}=n\log a$ .
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4 Calculation of logarithms

4.1 Overview
We calculate the logarithms by using (

$‘ \mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}$ calculation” and GEEE. The follow-
ing equation is used in order to get the value of logarithms because GEEE has some
conditions:

$\log x=\log\frac{x}{a^{n}}+n\log a$ . (10)

Especially the following condition is important in this case:

$z< \frac{1}{\alpha}$ . (11)

So we have to determine the parameters $\alpha$ and $a$ on the right-hand side of the above
equation (10). We selected an integer 2 for $a$ and 3 for $\alpha$ because there is a non negative
integer $n$ such that

$1< \frac{a}{2^{n}}<\frac{\alpha+1}{\alpha-1}$ , (12)

then

$2^{n}<a< \frac{\alpha+1}{\alpha-1}2^{n}=2^{n+1}$ . (13)

That is, let $a$ be any prime number, then the number satisiies the last condition. If you
select other numbers for $\alpha$ , it is hard to find the equation to satisfy the above condition
(13) fcr any numbers. The advantage of the determination $\alpha=3,$ $a=2$ is that we
can calculate the number $\log 2$ by using the same GEEE. So we are going to use the
parameters $\alpha=3,$ $a=2$ .

4.2 Algorithm

We show the algorithm in order to calculate logarithms using the equations, GEEE
and (10) under the condition (13).

[INPUT] $a,$ $N,\mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}$

$a$ - The substituted value for $\log$

$N$ - The required accuracy
width - The unit width of divided calculation

[OUTPUT] $\log(a)$

1. Find $n$ which satisfy the condition (13).

2. Calculate the loop number $L1$ using the argument $N$ and $a/2^{n}$ .
(Use the GEEE)
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3. Calculate the loop number $L2$ using the argument $N$ and 2.
(Use the GEEE)

4. Calculate $Log_{1}$ and $Log_{2}$ .
$Log_{1}=\log(a/2^{n}),$ $Log_{2}=n$ log(2). (Use the divided calculation)

5. return $Log_{1}+Log_{2}$ .

5 Result and consideration
We implemented our algorithm by Asir and measured the calculation times AsirTime

of some logarithms. We compared the times with the calculation times PariTime ob-
tained by $\mathrm{P}\mathrm{A}\mathrm{R}\mathrm{I}- \mathrm{G}\mathrm{P}^{2)}$ .

The results of the experiment show that
$\bullet$ AsirTime is dependent on the time to calculate $Log_{1}$ .

$\bullet$ If $a=2^{k}+1$ , namely $p=1$ in the equation (9), AsirTime is short.

$\bullet$ If $a=2^{k}-1,$ AsirTime is long. Especially, if $k$ is greater than about 40, then it
seems to be AsirTime $>PariTime$ .

On the right-hand side of the equation (10), because the second term $(Log_{2})$ is a
constant $n$ multiplied by $\log 2$ , its calculation time is about constant. So AsirTime was
dependent on the calculation time of the first time $(Log_{1})$ . Next let $\frac{a}{2^{n}}=\frac{1+z}{1-z}$ , then
$z= \frac{a-2^{n}}{a+2^{n}}$ . Thus if $a=2^{n}+1$ , then $p=1$ . On the other hand, if $a=2^{n+1}-1$ , then
$p=2^{n}-1$ . Thus AsirTime is long when $a=2^{k}-1$ , and AsirTime is short when
$a=2^{k}+1$ . This shows the following things. Let $a$ be $2^{k}+m$ . The smaller the number
$m$ is, the shorter the AsirTime is.

6 Summary
We have shown the availability of the our theorem, GEEE. And we have shown the

calculation by using the properties of logarithm. We ware able to calculate the values
of $\log(a)$ where $a> \frac{\alpha+1}{\alpha-1}$ by using it. And if $a$ be until about $2^{40}$ then Asir is able to
calculate faster than PARI-GP. But PARI-GP is able to calculate faster than Asir when
the value of $a$ is greater than about $2^{40}$ .

A Timing chart
We examined how long it costs to calculate logarithms with 10000 digits. To do it we

coded by Asir, and compared it with PARI-GP. The version of PARI-GP is 2.0.4, and
the version of $\mathrm{R}\mathrm{i}\mathrm{s}\mathrm{a}/\mathrm{A}\mathrm{s}\mathrm{i}\mathrm{r}$ is 991006. The machine environment we used is the following:

$1)_{\mathrm{R}\mathrm{i}\mathrm{s}\mathrm{a}}/\mathrm{A}\mathrm{s}\mathrm{i}\mathrm{r}$ Version 991006
$2)\mathrm{p}\mathrm{A}\mathrm{R}\mathrm{I}- \mathrm{G}\mathrm{P}$ version 2.0.4
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$\ovalbox{\tt\small REJECT} 19$ : The machine environment

CPU
Memory
OS

Intel Celeron $300\mathrm{A}$ PPGA (Dual) $450\mathrm{M}\mathrm{H}\mathrm{z}$

$128\mathrm{M}\mathrm{B}$

LASER5 Linux 6.0 (Kernel $2.2.5-\mathrm{r}\mathrm{h}60_{-}l5_{-}2\mathrm{s}\mathrm{m}\mathrm{p}$)

The test function we used is:

$\log a=\log\frac{a}{2^{n}}+n\log 2$ .

In the following table 20, $Asir_{1}$ shows the calculation time of the first term in the above
right-hand side. $Asir_{2}$ shows the calculation time of the second term. The unit time is
seconds. In the first colum $a,$ $F_{7}$ shows $2^{2^{7}}+1$ , which is a fermat prime.
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In the table 21, PariTime shows the calculation time of logarithms using PARI-GP,
and AsirTime shows the calculation time of those using Asir. The unit time is seconds
for each.
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