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1 Introduction
Problem. Given two multivariate polynomials with inexact coefficients, how to produce
a ‘satisfactory’ GCD for a given error tolerance $\epsilon$ ?

$F$ $=$ $C(x_{1}, \ldots, x_{n})\overline{F}(x_{1}, \ldots, x_{n})+\mathrm{O}(\epsilon(x_{1}, \ldots, x_{n}))$

$G$ $=$ $C(x_{1}, \ldots, x_{n})\overline{G}(x_{1}, \ldots, x_{n})+\mathrm{O}(\epsilon(x_{1}, \ldots, x_{n}))$

Example 1.

$F$ $=$ 0. $25-0.25x^{2}-0.25y^{2}-0.9999xy+xy^{3}+yx^{3}$

$=$ $(x^{2}+y^{2}-1)(xy-0.25)-10^{-5}xy$ ,
$G$ $=$ $-0.00001+y-1.00001x+xy^{2}-yx^{2}+x^{3}-y^{3}$

$=$ $(x^{2}+y^{2}-1)(x-y)-10^{-5}(x+1)$

For $\epsilon=10^{-5}$ , the coefficients are rounded in the obvious way, the GCD is

$x^{2}+y^{2}-1$ .

The following three results corresponding to the three methods that we will introduce.
(Use Maple, Digits$=10$).

1. Subresultant method:
1. $000010000-1.y^{2}-1.x^{2}$ .

2. Modular method:

$-0.9998612141+0.999795936y^{2}+1.000000000x^{2}$ .

3. Hensel lifting method:

$-1.000009760+1.000000000x^{2}+.9999982326y^{2}$ .
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2 Subresultant PRS
The Subresultant PRS algorithm is the Euclidean algorithm using pseudo-division in

a polynomial ring.
$\{P_{1}=F, P_{2}=G, \ldots, P_{k}\neq 0, P_{k+1}=0.\}$

Where
$\beta_{i}P_{i+1}=\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}(\alpha_{i}P_{i-1}, P_{i}),$$i=2,3,$ $\ldots$ .

here,

$\alpha_{i}$ $=$ $1\mathrm{c}(P_{i})^{d_{i}+1}$ , $d_{i}=\deg(P_{i-1})-\deg(P_{i})$ ;
$\beta_{2}$ $=$ 1, $\gamma_{2}=1$ ;

$\beta_{i}$ $=$ $1\mathrm{c}(P_{i-1})$ , $\gamma_{i}--1\mathrm{c}(P_{i-1})^{d_{i}-1}\gamma_{i-1}^{1-d_{i-1}},$ $i\geq 3$ .

$1\mathrm{c}(P)$ denotes the leading coefficient of $P$ . The above method has been extended to
polynomials with floating-point coefficients by Prof.Noda and Sasaki [3].
Noda and Sasaki’s Approx-GCD.

1. Normalization of remainders in PRS. Let $R$ and $Q$ be pseudo-remainder and pseudo-
quotient of polynomials $F$ and $G$ , i.e.,

$R=1\mathrm{c}(G)^{d+1}F-QG$ , $d=\deg(F)-\deg(G)$ .

The normalized pseudo-remainder $\overline{R}$ is defined as

$\overline{R}=\frac{R}{\max(||1\mathrm{c}(G)^{d+1}||,||Q||)}$ .

2. Rounding of $P_{k}$ . Normalize $P_{k}$ as $||P_{k}||=1$ , round off the coefficients of $P_{k}$ at $0(\epsilon)$ .

3. Return the primitive part of $P_{k}$ .

There are several points we should be careful with the floating point computation of
Subresultant sequence.

1. For the exact coefficients, the Subresultant PRS is a compromise between the Prim-
itive $(\beta_{i}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}(\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{m}(P_{i-1}, P_{i})))$ and Euclidean $(\beta_{i}=1)$ . At each step, the pseudo-
remainder is reduced by a factor $\beta_{i}$ that can be computed much more efficiently
than the content. For the inexact coefficients, $\beta_{i}$ is only an approximate factor of
prem $(P_{i-}, {}_{1}P_{i})$ . How to compute $\beta_{i}$ and divide it out is still under investigation.

2. Despite the optimizations in the Subresultant algorithm, the growth of degrees of the
coefficients is exponential w.r.t. the number of variables. But the GCD is of small
degree w.r.t. each variable. See the Example 2.
Example 2.

$F$ $=$ $(x+2y+1)(y^{4}+xy+2)$ ,
$G$ $=$ $(x+2y+1)(x^{3}+3(x+1)y^{2}+1.00001)$ .
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$P_{5}=\mathrm{O}(10^{-5})$ , and

$p_{4}$ $=$ 0. $005847950905x^{9}-0.01754385272x^{8}+0.03508770544x^{7}-$

0. $03508760310x^{6}+0.3859645844x^{5}-0.1929825554x^{4}+$

0. $1754382056x^{3}+0.4035123846x^{2}+1.666665834x+$

$2.111112222+(0.01169590181x^{8}-0.04678360725x^{7}-$

0. $1169590181x^{6}-.1871342536x^{5}+.9590637732x^{4}+$

1. $345029718x^{3}+1.695908307x^{2}-.8888867398x+$

$4.222223888)y$ .

After norrnalization of $P_{4}$ and dividing out the content, we get the approximate GCD:

$2.000000000y+1.000000001+1.000000000x$ .

3. The round off at $0(\epsilon)$ can produce unsatisfactory answers. (Similar problem as using
Noda’s approximate GCD for univariate polynomials.)

Example 3.

$F$ $=$ $y^{4}+y+x+1$ ,
$G$ $=$ $y^{3}-\eta y+x^{2}$ .

Let $\eta=10^{-3}$ and $\epsilon=10^{-6}$ , by the Subresultant method, we get $P_{5}=\mathrm{O}(\epsilon)$ and

$P_{4}=(-0.995974x+0.996977-1.00201x^{2}+x^{3})y-10.x^{2}+0.997984+0.002012x$.

But the remainders of $F,$ $G$ w.r.t. $P_{4}$ are $\mathrm{O}(1)$ .

4. Subresultant method is very inefficient for finding out that polynomials $F$ and $G$ have
no approximate GCD. We have to continue the computation until the last step.

Example 4.

$F$ $=$ $(1+x+y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6})(2+x+y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6})$ ,

$G$ $=$ $(1+x^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}+y_{5}^{2}+y_{6}^{2})(-3y_{1}x^{2}+y_{1}^{2}-1)$ .

The last one in the Subresultant PRS is just the resultant of $F$ and $G$ w.r.t. $x$ . We
can check that it is nonzero and has 3591 terms with total degree 10 in $y_{1},$ $y_{2},$ $\ldots,$

$y_{6}$ .

3 Modular Algorithm
Multivariate polynomial GCD problems are reduced to univariate problems by us-

ing(repeatedly) evaluation homomorphisms to eliminate variables, and reconstruct the
GCD of the original inputs from these “images” using Chinese Remainder Algorithms.
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$\mathbb{R}[x_{1}, \ldots, x_{n}]$ $\cross$ $\mathbb{R}[x_{1}, \ldots, x_{n}]$
$\mathrm{G}\mathrm{C}\mathrm{D}arrow$

$\mathbb{R}[x_{1}, \ldots, x_{n}]$

$\mathrm{m}\mathrm{o}\mathrm{d} (x_{n}-a_{n})$ $\downarrow$ $\downarrow$ $\mathrm{m}\mathrm{o}\mathrm{d} (x_{n}-a_{n})$

$\mathbb{R}[x_{1}, \ldots, x_{n-1}]$ $\cross$ $\mathbb{R}[x_{1}, \ldots x_{n-1}]$
$\mathrm{G}\mathrm{C}\mathrm{D}arrow$

$\mathbb{R}[x_{1}, \ldots, x_{n-1}]$

Choose a main variable, suppose $x_{n}$ , determine the content and primitive part of $F$

and $G$ considered as multivariate polynomials in $\mathbb{R}[x_{1}, \ldots, x_{n-1}]$ with coefficients from
$\mathbb{R}[x_{n}]$ , then $\mathrm{G}\mathrm{C}\mathrm{D}(F, G)=\mathrm{U}\mathrm{G}\mathrm{C}\mathrm{D}(\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}(F), \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}(G))\cdot \mathrm{G}\mathrm{C}\mathrm{D}(\mathrm{p}\mathrm{p}(F), \mathrm{p}\mathrm{p}(G))$. (UGCD com-
putes univariate GCD). So in the following, we suppose $F$ and $G$ are primitive polyno-
mials, and $1\mathrm{c}(P)$ denotes the leading coefficient of the polynomial $P$ in $\mathbb{R}[x_{1}, \ldots, x_{n-1}]$ .

3.1 Dense Modular Algorithm

1. Bound the number of homomorphisms.
$B= \min(\deg_{x_{n}}(F), \deg_{x_{n}}(G))+\deg_{x_{n}}(c)$ ,
where $c(x_{n})=\mathrm{U}\mathrm{G}\mathrm{C}\mathrm{D}(1\mathrm{c}(F), 1\mathrm{c}(G))$ .

2. Choose lucky evaluation points $b’ \mathrm{s}$ .

(a) Compute $C_{b}=\mathrm{G}\mathrm{C}\mathrm{D}(F_{b}, G_{b})$ , where
$F_{b}\equiv F\mathrm{m}\mathrm{o}\mathrm{d} (x_{n}-b),$ $G_{b}\equiv G\mathrm{m}\mathrm{o}\mathrm{d} (x_{n}-b)$ .

(b) Normalize $C_{b}$ so that $1\mathrm{c}(C_{b})=c(b)$ , i.e., $C_{b}=c(b)\cdot 1\mathrm{c}(C_{b})^{-1}\cdot C_{b}$ .

(c) Interpolate the GCD $C$ from $C_{b}’ \mathrm{s}$ .

3. Return $\mathrm{p}\mathrm{p}(C)$ .

Let us see the advantage and disadvantage of the algorithm.

1. The algorithm can uncover the small GCD very fast. Especially, in the case GCD $=1$ ,
we only need a few times lucky homomorphisms to discover it. For the Example 4,
choose $y_{1}=2,$ $y_{2}=y_{3}=\cdots=y_{6}=0$ .

$F$ $arrow$ $(3+x)(4+x)$ ,
$G$ $arrow$ $(5+x^{2})(-6x^{2}+3)$ .

It is easy to see that GCD of the two univariate polynomial is 1. Since the homo-
morphic images of of $F$ and $G$ do not decrease in degree w.r.t. $x$ , we know $F$ and $G$

should be relatively prime.

2. But a typical implementation of this algorithm is prepared to compute many mod-
ular homomorphisms if a non-trivial GCD must be constructed, i.e., the number of
homomorphisms needed is exponential in the number of variables.
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Example 5

$F$ $=$ $(1+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})(-2+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})$ ,
$G$ $=$ $(1+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})(2+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})$ .

Since the GCD of degree 5 w.r.t each variable, it takes about $6^{4}=1296$ evaluations
to find the GCD.

3. The normalization of the leading coefficient of $C_{b}$ as $c=\mathrm{U}\mathrm{G}\mathrm{C}\mathrm{D}(1\mathrm{c}(F), 1\mathrm{c}(G))$ makes
all coefficients of GCD $C$ are polynomials in $x_{2},$ . , . , $x_{n}$ since

$1\mathrm{c}(\mathrm{G}\mathrm{C}\mathrm{D}(F, G))|\mathrm{U}\mathrm{G}\mathrm{C}\mathrm{D}(1\mathrm{c}(F), 1\mathrm{c}(G))$ .

So we can interpolate the coefficients individually and then divide out the content.
Especially, if $\deg_{x_{n}}(c)=0$ , we know $\mathrm{G}\mathrm{C}\mathrm{D}(F, G)$ should be monic. On the other hand,
if $\deg_{x_{n}}(c)>0$ , and $1\mathrm{c}(\mathrm{G}\mathrm{C}\mathrm{D}(F, G))$ is a non-trivial factor of $c$ , then we interpolate a
higher polynomial(with leading coefficient $c$) and divide out the non-trivial cofactor.
Some computation is wasted.

Example 6

$F$ $=$ $(xy_{1}y_{2}y_{3}y_{4}y_{5}-1)(xy_{1}y_{2}y_{3}y_{4}y_{5}+3)$ ,
$G$ $=$ $(xy_{1}y_{2}y_{3}y_{4}y_{5}-1)(xy_{1}y_{2}y_{3}y_{4}y_{5}-3)$ .

Since $c=\mathrm{U}\mathrm{G}\mathrm{C}\mathrm{D}(1\mathrm{c}(F), 1\mathrm{c}(G))=x^{2}$ , perform the first two steps in the algorithm, we
will get

$C=x^{2}y_{1}y_{2}y_{3}y_{4}y_{5}-x$, and

$\mathrm{G}\mathrm{C}\mathrm{D}(F, G)=\mathrm{p}\mathrm{p}(C)=C/x=xy_{1}y_{2}y_{3}y_{4}y_{5}-1$ .

4. The algorithm can be extended to polynomials with inexact coefficients with very
little modifications.

3.2 Sparse Modular Algorithm.

A “skeleton” (degree and sparsity) of the GCD in the variables is computed by random
evaluation homomorphisms. The sparse interpolation ignores the zero coefficients from
the “skeleton”.
Corless’s Approx-GCD(bivariate case) [1].

1. Choose random evaluation $\alpha,$
$\beta_{i}$ of $x$ and $y$ to compute $T_{x}$ nonzero terms in

$\mathrm{G}\mathrm{C}\mathrm{D}(F(x, \beta_{i}),$ $G(x, \beta_{i}))$ and $T_{y}$ nonzero terms in $\mathrm{G}\mathrm{C}\mathrm{D}(F(\alpha, y),$ $G(\alpha, y))$ .

2. Solve $M$ monic $\mathrm{G}\mathrm{C}\mathrm{D}(F(x, \beta_{i}),$ $G(x, \beta_{i}))$ for random choose $\beta_{i}$ , where $M\geq T_{y}T_{x}/(T_{x}-$

1).
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3. Interpolate all coefficients simultaneously.

For the last $\mathrm{s}\mathrm{t}’ \mathrm{e}\mathrm{p}’$ , it means to find the zero eigenvecto‘$\mathrm{r}$ of the following matrix:

where $B$ is the $M$ by $T_{x}$ Vandermonde matrix associated with $\beta_{i}$ raised to the known
powers, and $Y_{i}$ is the diagonal matrix of the known values of the i-th coefficient at each
$\beta_{i}$ . Let

$G_{i}=(B^{T}B)^{-1}B^{T}Y_{i}B$ ,

and

$M= \sum_{i=1}^{T_{y}-1}(\mathrm{Y}_{i}B)^{T}(Y_{i}B)-(Y_{i}B)^{T}BG_{i}$ .

Then the eigenvector of matrix $M$ gives the coefficients of the denominator polynomial
and the coefficients of the numerator polynomials is then simply a matter of matrix
multiplication. For the detail, see Corless’s paper in ISSAC95.

Corless’s method can be extended to multivariate cases. For Example 5, after some
random evaluations, we get the estimate of nonzero terms in all variables.

$T_{x}=T_{y_{1}}=T_{y_{2}}=T_{y_{3}}=T_{y_{4}}=2$ .

So it needs about $4^{4}=256$ random evaluations. The matrix $B$ is $4\cross 2$ . Compared with
the dense modular method(1296), it needs much less number of homomorphisms. We
get the following GCD by Corless’s algorithm:

$0.9999999706+0.9999999998x^{5}+0.9999977716y_{1}^{5}+1.000000018y_{2}^{5}+$

0.9999999701 $y_{3}^{5}+1.000000179y_{4}^{5}$ .

Note that in the second step of Corless’s method, all GCD are computed as monic,
whereas the true GCD may have a leading coefficient in all variables. Hence the coef-
ficients of the computed GCD’s will be rational functions. For the floating point coef-
ficients, all the coefficients have to be interpolated at the same time to get the same
denominator. As in the dense interpolation, normalize the GCD to have the leading co-
efficient $\mathrm{G}\mathrm{C}\mathrm{D}(1\mathrm{c}(F), 1\mathrm{c}(G))$ , all coefficients will be polynomials not rational functions. So
we can interpolate the coefficients independently. These two different techniques all have
advantage and disadvantage, the efficiency and stabability of these techniques should be
checked.

For the Example 5,

$\mathrm{G}\mathrm{C}\mathrm{D}(1\mathrm{c}(F), 1\mathrm{c}(G))=\mathrm{G}\mathrm{C}\mathrm{D}(1,1)=1$ ,

$\mathrm{G}\mathrm{C}\mathrm{D}(F, G)$ is monic. So the denominator is 1 and we only need $2^{4}=16$ times evaluations
to interpolate all coefficients independently. The following GCD is computed by modified
sparse modular m’ethod:
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$0.9999999996+1.000000000x^{5}+0.9999999894y_{1}^{5}+0.9999999944y_{2}^{5}+$

1.000000001 $y_{3}^{5}+1.00000016y_{4}^{5}$ .

For Example 6, the leading coefficient of the GCD is not monic. Both methods takes
almost same time to get the similar results.

By the dense modular method, we get

$-0.9999995801+.9999999990xy_{1}y_{2}y_{3}y_{4}y_{5}$ .

The Corless’s method gives:

$1.000001006-1.000000000xy_{1}y_{2}y_{3}y_{4}y_{5}$ .

But if we increase the number of variables in Example 6 to 7, both methods get the
results after one hour.
Example 6’

$F$ $=$ $(-1+xy_{1}y_{2}y_{3}y_{4}y_{5}y_{6})(3+xy_{1}y_{2}y_{3}y_{4}y_{4}y_{5}y_{6})$ ,
$G$ $=$ $(-1+xy_{1}y_{2}y_{3}y_{4}y_{5}y_{6})(-3+xy_{1}y_{2}y_{3}y_{4}y_{5}y_{6})$ .

$-1.000022550+xy_{1}y_{2}y_{3}y_{4}y_{5}y_{6}$ . (dense modular method)

$-1.000011342+1.000000000xy_{1}y_{2}y_{3}y_{4}y_{5}y_{6}$ . ( $\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{s}’\mathrm{s}$ method)

With Subresultant method for this example, only one time pseudo-remainder will be
enough to find the GCD

$-1$ . $+1.xy_{1}y_{2}y_{3}y_{4}y_{5}y_{6}$ .

It takes less than one second.

3.3 Problems in Modular Algorithm.

There are several problems related with modular method.

1. The sparse modular algorithm is fast but also probabilistic. The algorithm is not
efficient for dense GCDs and could also be unlucky.

Example 7.

$F$ $=$ $(1+x+y_{1}+y_{2}+y_{3}+y_{4}+y_{5})^{2}$

$(-2+x-(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})^{2})$ ,
$G$ $=$ $(1+x+y_{1}+y_{2}+y_{3}+y_{4}+y_{5})^{2}$

$(2+x+y_{1}+y_{2}+y_{3}+y_{4}+y_{5})^{2}$ .

Compute
$T_{x}=T_{y_{1}}=T_{y_{2}}=T_{y_{3}}=T_{y_{4}}=T_{y_{5}}=3$.
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The GCD is monic and dense, we need about $3^{5}=243$ evaluations.
For Digits$=10$ , we get the following GCD:

$2.000287759x+0.9999999990x^{2}+1.999309659y_{1}x+$

$1.999086523y_{1}+1.997897512y_{2}+1.997731189y_{3}+$

$1.994760705y_{4}+1.995431666y_{5}+1.001337634y_{1}^{2}+$

1.001877601$y_{2}^{2}+1.002023584y_{3}^{2}+1.005125000y_{4}^{2}+$

$1.00550309y_{5}^{2}-0.112237449y_{2}y_{4}y_{5}-0.068170607y_{2}y_{3}y_{5^{-}}$

$0.120297930y_{3}y_{4}y_{5}-0.052576453y_{1}y_{4}y_{5}-0.038704547y_{1}y_{2}y_{5^{-}}$

$0.026331383y_{1}y_{3}y_{5}+0.083544389y_{5}^{2}y_{2}y_{3}+0.019901150xy_{4}y_{5}+$

$0.064061577y_{5}^{2}y_{1}y_{4}+0.135066327y_{5}^{2}y_{2}y_{4}+0.147662364y_{5}^{2}y_{3}y_{4}+$

$0.046139188y_{5}^{2}y_{1}y_{2}+0.035355942y_{5}^{2}y_{1}y_{3}-0.023787436y_{5}^{2}xy_{4}+$

$0.019768305y_{3}^{2}y_{5}^{2}+0.046660040y_{4}^{2}y_{5}^{2}+0.012565150y_{1}^{2}y_{5}^{2}+$

$0.014106929y_{2}^{2}y_{5}^{2}-0.04807766y_{4}y_{5}^{2}-0.010227795y_{5}y_{1}^{2}-$

$0.012570726y_{5}y_{2}^{2}-0.015843060y_{5}y_{3}^{2}-0.038765561y_{5}y_{4}^{2}-$

0.01813891 $y_{2}y_{5}^{2}-0.02188706y_{3}y_{5}^{2}+2.039872287y_{4}y_{5}+$

$1.997372839xy_{4}+1.997857982xy_{5}+2.006807072y_{1}y_{4}+$

$2.006832635y_{1}y_{5}+2.014768902y_{2}y_{4}+2.015310152y_{2}y_{5}+$

$2.015265793y_{3}y_{4}+2.017650837y_{3}y_{5}+1.000605701+$

$1.998890923xy_{2}+1.998937297xy_{3}+2.005452365y_{1}y_{2}+$

$2.003288032y_{1}y_{3}+2.009158854y_{2}y_{3}$ .

Some terms such as $y_{2}y_{4}y_{5},$ $\ldots,$
$y_{2}y_{3}y_{5}^{2}$ which should be zeros but have small coeffi-

cients here. In the case Digits$=20$ , we can get a better result:

$1.99999999940488512x+0.99999999891510172+1.00000000000000000x^{2}+$

$2.00000000288431181y_{1}x+2.00000000579956139y_{1}+2.00000000256551972y_{2}+$

$2.00000000313751995y_{3}+2.00000000329417117y_{4}+2.0000000023702547y_{5}+$

$0.99999999324365994y_{1}^{2}+0.99999999856962890y_{2}^{2}+0.99999999783472164y_{3}^{2}+$

0.99999999764400842$y_{4}^{2}+0.99999999870709785y_{5}^{2}+1.9999999928028060y_{4}y_{5}+$

$2.00000000179494181xy_{4}+2.0000000013002375xy_{5}+1.99999998240374590y_{1}y_{4}+$

$1.9999999873296214y_{1}y_{5}+1.99999999224108744y_{2}y_{4}+1.9999999943943517y_{2}y_{5}+$

$1.99999999056934526y\mathrm{s}y_{4}+1.9999999931448202y_{3}y_{5}$
. $+2.00000000159086091xy_{2}+$

$2.00000000166604739xy_{3}+1.99999998565851368y_{1}y_{2}+1.99999998298935520y_{1}y_{3}+$

$1.99999999245837234y_{2}y_{3}$ .

2. It is very important to choose good random evaluations due to the ill conditioned of
the Vandermonde matrix for interpolation of polynomials. A variety of bounds for
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the condition number of a Vandermonde matrix have been derived by Gautschi [2].
Let $V_{n}=V(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1})\in \mathbb{R}^{n\cross n},$

$u_{i}$ be Chebyshev nodes in [-1, 1].
Bounds and Estimates for $k_{\infty}(V_{n})$

“ We enthusiastically endorse interpolations $\mathrm{W}\overline{\mathrm{l}}\mathrm{t}\mathrm{h}3$ or 4 polnts, we are perhaps tol-

erant of 5 or 6; but we rarely go higher than that unless there is quite rigorous mon-
itoring of estimated errors.” (cited from “ Numerical Recipes: The Art of Scientific
Computing” [5].)

That means it is relatively dangerous to interpolate the non-monic GCD with degree
larger than 3 and dense in some variables.

4 Hensel Lifting Algorithm.
The two input polynomials are reduced to two univariate polynomials whose GCD is

then lifted back to the multivariate domain using a generalized Newton’s iteration.

$\mathbb{R}[x_{1}, \ldots, x_{n}]$
$\cross$

$\mathbb{R}[x_{1}, \ldots, x_{n}]$
$\mathrm{G}\mathrm{C}\mathrm{D}arrow$

$\mathbb{R}[x_{1}, \ldots, x_{n}]$

mod $I$ $\downarrow$
$\downarrow$ mod $I$

$\mathbb{R}[x_{1}]$ $\cross$ $\mathbb{R}[x_{1}]$
$\mathrm{G}\mathrm{C}\mathrm{D}arrow$

$\mathbb{R}[x_{1}]$

Where $I=(x_{2}-a_{2}, \ldots, x_{n}-a_{n})$ .
The EZ-GCD Algorithm.

1. Choose a main variable, suppose $x_{1}$ , find lucky evaluation homomorphism $I=(x_{2}-$

$a_{2},$ $\ldots,$
$x_{n}-a_{n})$ .

2. $F_{I}=F$ mod $I,$ $G_{I}=G$ mod $I$ . Compute $C_{I}=\mathrm{G}\mathrm{C}\mathrm{D}(F_{I}, G_{I})$ and cofactors $\overline{F_{I}},\overline{G_{I}}$ .
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3. If there is one of the cofactors which is prime to $C_{I}$ , then use multivariate Hensel con-
struction to lift $C_{I}$ and the cofactor. Otherwise perform a square-free decomposition
of either $F$ or $G$ .

Suppose $P$ is a polynomial in $x_{1},$ $\ldots,$ $x_{n}$ with leading coefficient $p_{m}$ . Let $a_{2},$ $\ldots,$ $a_{n}$

satisfy $p_{m}(a_{2}, \ldots, a_{n})\neq 0,$ $I=(x_{2}-a_{2}, \ldots, x_{n}-a_{n}),$ $x=x_{1},$ $\mathrm{u}=\{x_{2}, \ldots, x_{n}\}$ , and
$G^{(0)}(x)$ and $H^{(0)}(x)$ be relatively prime polynomials satisfying

$P(x, \mathrm{u})=G^{(0)}(x)H^{(0)}(x)$ .

The multivariate Hensel construction is to calculate polynomials $G^{(k)}(x, \mathrm{u})$ and $H^{(k)}(x, \mathrm{u})$

satisfying
$P(x, \mathrm{u})\equiv G^{(k)}(x, \mathrm{u})H^{(k)}(x, \mathrm{u})$ mod $I^{k+1}$ .

There are three main steps in the multivariate Hensel construction.

1. Compute univariate polynomials $A_{i}(x)$ and $B_{i}(x)$ ( $\mathrm{i}=0,1,$
$\ldots$ , m) which satisfying

$\{$

$A_{i}(x)G^{(0)}(x)+B_{i}(x)H^{(0)}(x)=x^{i}$ ,
$\deg(A_{i})<\deg(H^{(0)})$ , $\deg(B_{i})\leq\deg(G^{(0)})$ .

2. From $G^{(i)}$ and $H^{(i)},$ $i<k$ , we calculate

$\triangle P^{(k)}\equiv P-G^{(k-1)}H^{(k-1)}\equiv\sum_{i=0}^{m}\triangle p_{i}^{(k)}x^{i}$ mod $I^{k+1}$ .

3. We construct $G^{(k)}$ and $H^{(k)}$ as

$\{$

$G^{(k)}$ $=$ $G^{(k-1)}+ \sum_{i=0}^{m}\triangle p_{i}^{(k)}B_{i}$

$H^{(k)}$ $=$ $H^{(k-1)}+ \sum_{i=0}^{m}\triangle p_{i}^{(k)}A_{i}$ .

One method to compute $A_{i}$ and $B_{i}$ is by extended Euclidean algorithm. Another
method is to form the Sylvester matrix $M$ of the polynomials $G^{(0)}(x)$ and $H^{(0)}(x)$ , then
compute the inverse of $M$ . The coefficients of $A_{i}$ and $B_{i}$ are the subvectors of $M^{-1}$ . We
adopt the second way since there should be more techniques to stabilize the computation
of the inverse of the Sylvester matrix. It is clear that if $G^{(0)}(x)$ and $H^{(0)}(x)$ have a close
common root, the matrix $M$ will be very ill-conditioned and the multivariate Hensel
construction will be unstable [6]. This may be caused by a bad evaluation or both $F$ and
$G$ are not squarefree.
Example 8.

$F$ $=$ $(x^{2}+y^{3}+1+10^{-3})(x^{2}+xy+y^{2}+1)$ ,
$G$ $=$ $(x^{2}+y^{3}+1+10^{-3})(x^{2}+xy+1)$ .

Choose the random value of $y$ near $0$ , for example $y=3/20$ , then

$C_{I}$ $=$ $1.00438-0.000001x+.999993x^{2}$ ,
$F_{I}$ $=$ $1.02251+0.15000x+1.00000x^{2}$ ,

$G_{I}$ $=$ $1.00001+0.15000x+1.00000x^{2}$ .
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$C_{I}$ and $F_{I},$ $G_{I}$ have very close roots. Apply the Hensel lifting to the $C_{I}$ and $G_{I}$ , we get
GCD

$C=1.00439-\mathrm{O}.000001x+1.x^{2}+0.0674\mathit{2}y+0.450553y^{2}+0.996396y^{3}$ .

Check the remainders of $F$ and $G$ w.r.t $C$ , we find they are 0(1).
As in the modular method, it is also important to choose good evaluation points. In

most case, we only need to choose one or two values for each variable, resulting in much
faster execution over modular method. If $I$ is chosen so that as many $a_{i}$ as possible are
zero, then the algorithm preserve sparsity and can cope with sparse polynomials quite
well. Otherwise it has the same exponential performance as in modular algorithm.
Example 5’.

$F$ $=$ $(1+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})(-2+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})$

$+10^{-5}(x+y_{1}+y_{2}+y_{3}+y_{4})$ ,
$G$ $=$ $(1+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})(2+x^{5}+y_{1}^{5}+y_{2}^{5}+y_{3}^{5}+y_{4}^{5})$

$-10^{-5}(x+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2})$ .

Choose $y_{1}=y_{2}=y_{3}=y_{4}=0$ , we get two well separated univariate factors of $G$

$C_{I}$ $=$ $0.9999953335+0.9999996664x^{5}$

$G_{I}$ $=$ $\mathit{2}.000001667+1.000001666x^{5}$

Performing the Hensel lifting, we get the GCD

$0.9999956675+1.000000000x^{5}+1.000005997y_{2}^{5}+1.000005997y_{3}^{5}+$

$1.000005997y_{4}^{5}+1.000005997y_{1}^{5}$ .

Example 7’.

$F$ $=$ $(1+x+y_{1}+y_{2}+y_{3}+y_{4}+y_{5})^{2}(-2+x-(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})^{2})$

$-10^{-5}(x+2y_{1}+y_{2}+6y_{3}+y_{4}+y_{5})$ ,
$G$ $=$ $(1+x+y_{1}+y_{2}+y_{3}+y_{4}+y_{5})^{2}(2+x+(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}))^{2}$

$+10^{-5}(x+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}+y_{5})$ .

Choose $y_{1}=y_{2}=y_{3}=y_{4}=y_{5}=0$ , we can find the approximate GCD very
efficiently.

$1.999999913x+1.99998451y_{1}x+1.000000000x^{2}+1.99998557y_{1}+$

$1.99998557y_{2}+1.99998557y_{3}+1.99998557y_{4}+1.99998557y_{5}+$

$0.999948043y_{1}^{2}+.999947983y_{2}^{2}+0.999948043y_{3}^{2}+0.999948043y_{4}^{2}+$

$0.999948043y_{5}^{2}+1.999896098y_{4}y_{5}+1.999896038y_{2}y_{3}+1.99989604y_{2}y_{4}+$

$1.99989604y_{2}y_{5}+1.99989610y_{3}y_{5}+1.999896098y_{3}y_{4}+0.9999993837+$

$1.99998451xy_{2}+1.99998451xy_{5}+1.99998451xy_{3}+1.99998451xy_{4}+$

$1.99989610y_{1}y_{4}+1.99989604y_{1}y_{2}+1.99989610y_{1}y_{3}+1.99989610y_{1}y_{5}$ .
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The normalization technique used in the modular algorithm can be used here to
compute non-monic GCD, but this can produce very dense coefficients from sparse poly-
nomials. For the Example 6 and 6’, since the leading coefficients of $F$ and $G$ involve
all variables, it is impossible to choose nonzero evaluation points for any variables. The
evaluation at non-zero point makes polynomials become very dense. Much worse, the
normalization of the leading coefficients makes the computation more difficult. Using
Hensel lifting method for Example 6, we get the GCD:

$-1.000000049+xy_{1}y_{2}y_{3}y_{4}y_{5}$ .

But for Example 6’, Hensel lifting fails.

5 Remarks
All the algorithms discussed above have been implemented in Maple. A large set of

examples are tested. We observe the following facts.

1. The random evaluations should be selected with caution for spar.sity and stability.

2. The leading coefficient problem should be treated carefully.

3. The Subresultant PRS algorithm is still useful when the polynomials are dense or
with complicate leading coefficients.

As pointed by Corless’s paper, we should perform the back error analysis to check
if the answers are satisfying or not. It is not an easy task especially for multivariate
polynomials. Formulate it as an optimization problem, there are too many variables if
we do not consider the sparsity of the true GCD. The problem is still under investigation.

Since all methods are based on the approximate univariate GCD computation, we
need to choose an efficient and stable algorithm for UGCD. Especially for Hensel lifting
method, we also need the cofactor of the GCD. In our algorithm, we modify Noda’s
algorithm and use the result as an initial guess, then apply the optimization strategies
introduced in [4] to improve it.

References
[1] Corless, R. M., Gianni, P. M., Trager, B. M. and Watt, S. M.: The singular value

decomposition for polynomial systems, Proc. ISSAC’95, ACM Press, New York,
1995, 195-207.

[2] Gautschi, W.: How (un)stable are Vandermonde systems? Lecture Notes in Pure
and Applied Mathematics, 124(1990), 193-210.

[3] Noda, M.-T. and Sasaki, T.: Approximate GCD and its application to ill-
conditioned algebraic equations, J. Comput. Appl. Math., 38(1991), 335-351.

75



[4] Chin, P., Corless, R. M. and Corliss, G. F.: Optimization strategies for approximate
GCD problem, Proc. ISSA Cf98, ACM Press, New York, 1998, 228-235.

[5] Press, W., Flannery, B., Teukolsky, S. and Vetterling, W.: Numerical Recipes: The
Art of Scientific Computation, Cambridge U. Press, Cambridge, 1990.

[6] Sasaki, T. and Yamaguchi, S.: An analysis of cancelation error in multivariate
Hensel construction with floating-point number arithmetic, Proc. ISSAC ’98, ACM
Press, New York, 1998, 1-8.

76


