0oooo0O0oooo
11390 2000 0 30-42 30

Cauchy Problems in White Noise Analyéis and
An Application to Finite Dimensional PDEs Il

Un~ Cic Ji
GRADUATE SCHOOL OF MATHEMATICS
NAGOYA UNIVERSITY
NAGOYA, 464-8602 JAPAN

DEPARTMENT OF MATHEMATICS
SocAaNG UNIVERSITY
SEOUL, 121-742 KOREA

1 Introduction

The white noise analysis initiated by Hida [8] has been considerably developed to an
infinite dimensional analysis on Gaussian space with applications to many fields: stochas-
tic analysis, Feynman path integral, quantum physics and infinite dimensional harmonic
analysis and so on, see e.g. [10], [17], [18] and references cited therein. The mathematical
framework of white noise analysis is the Gel’fand triple:

(E) C (L*)=L*E",i;C) C (EY

associated with the Gel'fand triple E C H C E*, where H is a real separable Hilbert
space. In this paper, our work is based on a triplet:

G(K) C (K) C G(K)* (1.1)

where K is another complex Hilbert space such that the imbedding K — Hc is contraction
and (K) is the subspace of (L?) corresponding to the Boson Fock space I'(K) over K
under the Wiener-It6-Segal isomorphism between (L?) and the Boson Fock space I'(Hc)
over Hg. The particular case of triplet (1.1) with K = Hc has been studied by several
authors with many applications (e.g. [7], [20]) and then G(Hc) and G(Hc)* are called the
spaces of regular test white noise functions and regular generalized white noise functions,
respectively.

Gross [6] and Piech [19] initiated the study of the infinite dimensional Laplacians (the
Gross Laplacian Ag and the number operator N, resp.), as infinite dimensional analogue
of a finite dimensional Laplacian, in connection with the Cauchy problems in infinite
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dimensional abstract Wiener space. In the white noise analysis, Kuo [15] reformulated
the Gross Laplacian Ag and N as continuous linear operators acting on the test white
noise function space (£). In [9], Hida, Kuo and Obata proved that the adjoint group
of the Fourier-Mehler group is a differentiable one-parameter transformation group with
the infinitesimal generator (i/2)A¢ + ¢N. In the series papers [1]-[4], the existence and
uniqueness of (explicit) solutions of Cauchy problems associated with the Gross Laplacian,
the number operator and certain integral kernel operators have been investigated by using
the theory of one-parameter transformation groups. In [3], a Lie group H associated
with the five dimensional complex Lie algebra h = (I,p¢,q¢, N, A¢g) has been explicitly
constructed, where p; and g¢ are defined by p; = (1/2)(D; — Df) and ¢; = i(D¢ + Dp),
¢ € Ec. Here D¢ and Dy are annihilation and creation operators, respectively. Recently,
in [12], the integral kernel operators based on triplet (1.1) have been studied and then
every integral kernel operator can be extended to G(K)* as a continuous linear operator.
Also, one-parameter transformation groups and Cauchy problems associated with certain
integral kernel operator have been studied, and their application to finite dimensional
partial differential equations has been discussed.

In this paper, we study one-parameter transformation groups and Cauchy problems
associated with elements in the five dimensional complex Lie algebra b based on triplet
(1.1), and their application to finite dimensional partial differential equations will be
discussed.

This paper is organized as follows. In Section 2, we briefly recall the spaces of white
noise functions and integral kernel operators. In Section 3, we study one-parameter trans-
formation groups with the infinitesimal generator a;/ +a2D<+a3AG +ay N +a5D for each

(a1,---,as) € C° In Section 4, we investigate the unique solution of Cauchy problem
du  _ .
= = S u(0) = ¢ € G(K)*, -6 <8 <,

where § > 0 (depends on ¢) and = = = a1l +a;D¢+a3Ag+asN+asDy, (ay,- -+ ,a5) € C°. In
Section 5, as an application, we discuss the finite dimensional pa.rtla,l differential equation:

Ou(f
Lf%’i) =Du(d,z), u(0,z)=¢(z), —5<<§,
where ¢ is a certain distribution function on R™ and for each (ay,-,as) € C®

" 8 gy +4a; B 9 \
D:§<a18$? + 5 iL'jamj +a2:9—£;+a3mj+a4mj+a5 .

2 White noise functions and integral kernel operators

Let T be a topological space with a Borel measure v(dt) = dt and H = L*(T,v) be
a real Hilbert space with norm |- |,. We assume that H is separable. From H and a
positive selfadjoint operator A on H with ||A7!jop < 1 and ||A7}||gs < oo, a Gel’fand
triple £ C H C E* is constructed in the standard manner (see [10], [17], [18]). Then E
is a nuclear space equipped with the Hilbertian norms |£|, = |AP¢|o, p € R. As usual
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we further assume that hypothesis (H1)—(H3) for having delta function &, in E*, see [18].
The canonical bilinear form on E* X E is denoted by (-,-). Let (E*, u) be the standard
Gaussian space, where p is the Gaussian measure whose characteristic function is given

by .
/E* =8 y(dzr) = exp (—§|513> , E€E.

Let (L?) = L2(E*, p; C) be the Hilbert space of C-valued square integrable functions on
E* with norm || - ||lo. Let : 2®": be the Wick ordering of 2®", and Hg’” be the n-fold
symmetric tensor product of the complexification of H and |- |op denote the HE"-norm
for any n. Then by the Wiener-1té6 decomposition theorem, each ¢ € (L?) admits the
following expression:

) 0o 1/2 N
¢(e) =D (:2®": fa), z€E" with |gllo = (Z nllm%) , fa€ HE"
n=0 n=0 .

In this case, for the simple notation, we write ¢ ~ (f,) € (L?). For each £ € Hc the
element ¢, ~ (%" /n!) € (L?) is called an exponential vector.
For each p > 0 we put

(5= {6~ (5) € PN61 = St 1 £ < o)

and let () be the projective limit of {(E,); p > 0}. By a standard argument we see that
the topological dual space (E)* with respect to (L?) of (E) is isomorphic to the inductive
limit of {(E_,);p > 0}, where (E_,) is the topological dual space with respect to (L?) of
(Ep). Then we obtain a Gel’fand triple:

(E) C (L*) c (E)*.

This Gel’fand triple is called the Hida-Kubo-Takenaka space. In this context elements of
(E) and (E)* are called a test white noise function and a generalized white noise function,
respectively. The canonical bilinear form on (E)* x (£) is denoted by (-, ).

Let K be another complex Hilbert space with norm |- | such that the following inclu-
sions:

Ec C K C Hec C K* C E¢

are continuous, where K and K* are dual each other with respect to Hg. We assume
that the imbedding K — Hc is a contraction: |£|, < |€], £ € K. We denote by (K) the
subspace of (L?) which is isomorphic to the Boson Fock space I'(K') over K.

For each p € R, we put

G, = Go(K) = {¢ ~ (1) € (B) 1612 = X1, < oo}

and let G(K) be the projective limit of {G,;p > 0}. Let G(K)* be the topological dual
space with respect to (K) of G(K). Then G(K)* is isomorphic to the inductive limit of
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{G_p : p > 0}, where G_, is the topological dual space with respect to (K) of G,. Then
we have a triplet:

G(K) c (K) C G(K)".

and natural inclusions:
(E)CG(K)C(K)CG(K) C(E). (2.1)
In the following, we write G = G(K) and G* = G(K)* for the simple notation.

Let £(X,9) denote the space of all continuous linear operators from a locally convex
space X into another locally convex space ). For the notational convenience, we write
L(X) = L(%,X). From (2.1), we have the following natural inclusions:

L(G) C L£(G,G) C L((E),(E)").

Let I,m be non-negative integers. Then for each x € L(EE™, (EE')*), the integral
kernel operator =1 (k) € L((E), (E)*) with kernel distribution & (see [11], [18]) is defined
by

B~ (UL (c0 157 hm) ). 8~ () € (B)

where (f)sym is the symmetrization of f € (Eg’l)*. In fact, = (k) belongs to L((E)) if
and only if « belongs to L(EE™, EZ").

Theorem 2.1 [12] Let &;,, € L(EE™, (EE')*). Then the followings hold:

(i) if kim € L(K®™ K®), then 5 pn(kim) € L(G). In this case, for any p € R and
g > 0, we obtain that for any ¢ € G

1/2

1Zm (1)l < CeP= I (Um™ D) gl

where C > 0 with |kim f| < C|f| for any f € HE™ and D, = e¥/?/(eq).
(ii) if Zim(Kim) € L(G,G*), then ki m € L(K®™ K®).

Theorem 2.2 [12] Let kym € L(K®™, K®'). Then Sym(kim) € L£(G) has a unique exten-
sion to a continuous linear operator =, (kim) from G* into itself. We denote :_,’El,m(m,m)
by the same notation Z} ;m(Kim)-

Example 2.3 Let x € (K®™)* (with respect to HE™). Then by Theorem 2.2, Z (k) €
L(G) can be extended to a continuous linear operator from G* into itself. Moreover, for
any & ~ (F,) € G*,

(n + m)!

Som(K)® ~ ( (k® I®”Fn+m)) € g*.



34

From now on, we use K&, Fyim instead of k@ I®"F, .. Also, we write D¢ = Z541(¢) and

D} = Z14(¢), ¢ € K. If the imbedding K — H¢ be the Hilbert-Schmidt operator, then
¢ s

the trace 7 € (K®%)* is defined by

(r,é@n =, &neK.

Hence, by Theorem 2.2, the Gross Laplacian Ag = Eg2(7) € L(G) can be extended to a
continuous linear operator from G* into itself.

Example 2.4 For each B € L(K), the differential second quantization operator dI'(B)
of B is defined by dI'(B) = 51 1(B) and hence dI'(B) can be extended to a continuous
linear operator from G* into itself. Moreover, we have

dr(B)® ~ (n+1)(B @ " Frit)ym), ¢~ (F) € G

The number operator N is defined by N = dI'(I).

3 Transformation groups

Lemma 3.1 Let k € (K®*)*, B € L(K) and {,n € K. Then for any p € R and
¢ ~ (fn) € G the series

2

> LR o (B (k% B, (19 B firkss)))

22 Uy ko ks!

l+ks=n k1,ka=0

o0
M= Z nle®"
n=0

converges. In this case, for any p € R there exist ¢ > 0 and € > 0 with 4||x[|e™2F+9) < 1
and ee??|(|? + (2¢7Y|B||)? < 1 such that

[o.o] 2 n
M < M0 e (32 (I + (21B1)7) ) Bolsg <00 (31)
n=0
where My ,(n) is given as in (3.2) and Cpe(k)? = (1 — (4] &|le 2P*9)2)~1 and || || denotes

the operator or functional norm.

Proor. By the Schwartz’s inequality and the fact:
(14 Ky + 2kp)! < Dy ! (ky!)24liHka+2ke)
we can prove that for some ¢ > 0 with 4||k|le"2¢P+9) < 1

2 (U4 ky + 2ky)!

2R

ks=0

_ (I4Fkq1)
1l | b ke | < (267 @) kit Cpig(K) |9l p+4-

Since for any p € R
> 1
Mip(n) = Z

!
k]_:O kl.

(2e7lln]))™ < oo, (3.2)
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we have
> [+ ky + 2k
Z ( ki'k‘g' 2) H ||k2||"7“k |f1+k1+2kzl < MLP'HI(”’) (26 (p+q)) \/—CP, ( )md)"l?‘i“l
k1,ky =0 ° *
Note that

‘C®k”® (B®l (fi®k2®2kz (7]®k1®k1fl+k1+2kz)))‘ < 1= BN Nsl™ mll™ | frers +2ra -

Therefore, for some g > 0 with 4]|«|le"2?*?) < 1 and any ¢ > 0

M < Mi,i(n Zn'ezp"( 3 \/.k,ICl’““ (2e~tr+o) IIBH)) 6l

I4+-ka=n

(1 + k3)! _
< Mipe(nP G 3> 3 LB iy (2emsp )" iz,

n=0[l+4+ks=n

> (enicP + (2e1B1)")) B3

n=0

:A%mWﬂ%Wﬁm<

Hence, for any p € R there exist ¢ > 0 and ¢ > 0 with 4]|x[le™"+9) < 1 and ee?|([* +
(2e~ qHB|[) < 1 such that (3.1) holds. It follows the proof. |

By Lemma 3.1, we can define a transform G, . ¢ acting on G by

Gpr,Bc® ~ ( Z i l;k]::k_;;fz) C®k3® (B®'( ®k2®2k2 (77®k1®k1 fl+k1+2kz))))

l+k’3 =N kl ,k’z =0
for any ¢ ~ (f,) € G. Then the following theorem is obvious

Theorem 3.2 For each k € (K®?)*, B € L(K) and {,n € K, G, 5. is a continuous
linear operator from G into itself. Moreover, for any p € R there exist ¢ > 0 and € > 0
with 4||k||e 2P+ < 1 and ee®|¢|?> 4 (2¢79||B||)? < 1 such that

0 2,,11/2
Il < Msgeg(n)Crafwe? ) (3= (clcl+ (2e2130)")")  ilprn

n=0
where M, 5(n) is given as in (3.2) and Cpq(K) is given as in Lemma 3.1.

For each ¢ € K, we can easily see that

Gm,BcPe = exp{(k, £%%) + (1, £)}dBesc- (3.3)
From now on, we assume that the imbedding K < Hc is the Hilbert-Schmidt operator.

Definition 3.3 A one-parameter group {{2s}ger C £(G) is called differentiable if there
exists a £ € L£(G) such that for each ¢ € G,

lim || 26— ¢

im | —7— — 5

8—0

=0 forallp>0.

Such a = is called the infinitesimal generator of {{2¢}. Note that = is unique.
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Now, we consider a differentiable one-parameter group with infinitesimal generator a;/ +
a2D¢ + azAg + asN + a5 Df for arbitrary a;,as, a3, a4,a5 € C and ¢ € K with ((,¢)#0
(see [3]). For each a = (a1, a2, a3, a4, as) € C°, we define the functions ay, az, as, as and
(071 by

( a(0) = explasp + LA (30 1)~ 2(en 1) 1.0]
x exp{ 22 ((, ()[o-(e™® — 1) — 0]},
J ) = 2l (? —1) = o (e 1)+ B 1) 3.4
os(6) = (5 — 1),
a4(0) = €a49,
[ as(8) = 2(e™® — 1)
if a4 75 0,
a;(0) = exp{a16 + (9—3—59-593 -4 9—225‘55—92)(C,C>},
as(0) = azas6? + azb,
a3(0) = asb, (3.5)
aq(0) =1 (as(0) = ™),
a5(0) = a59
if a4 = 0.
For each a = (a4, a2, -,a5) € C°, we define a family of transforms {Ha c.6}ocr by
Hagp = @1(0)Zz ¢.0 = @1(0)Gay(6)¢,a5(6)m,0a(0) a5 (6)¢> f eR,
where & = (ag,--+,a5) € C* and the functions ay,---,as are given as in (3.4) or (3.5).

Then, by direct computations using (3.3), {Ha,6}scr is a one-parameter transformation
group.

Lemma 3.4 For each a = (ag, - -,as) € C* and for any ¢ € G, we have

T g —
lim —8’4’9;5 ¢—

i (azDC + agAG + CL4N + a;,DZ)qS

=0, p€R.

P

PROOF. Let p € R and ¢ ~ (f,) € G be given. Then by definition of Z; . 5, we have

I 199 —
_aﬁﬁg;jf — (a2D¢ + asAg + asN + as D)o
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where

[+ k1 + 2kp)!
w= ¥y WEEL gm0 6)
K1:RoiKR3!

l+ks=n ki-+kot+ks>2
xR (1% @, (€1 By fronssans) ) -

Therefore, we obtain that

I;,C;9¢ - ¢ * ? >
T (a2D¢ + asAg + agN + asDY)p|| <5 I;(0)
P =1
where )
ay (0
Z nle’" [ 4(9) - aw] fal
o + ] ., (8 _ 2
Iz((g) = Z n!eZP" (i;’:r—)—‘ [a4(9)% - 02] C®1f’n+1 ’
n=0 M
(n+2 az(8 ~ 2
Z le?Pm oy ) [0‘4( ) Sé ) —aa] T®2fnt2|
00 0 N 2
10 = 3+ 019 [a3(0) 240 — o] o,
n=0
and

2

e 1
) = nle™ g9
n=0

The proof of the case a4 = 0 is similar to the proof of the case as # 0. We now prove only
the case ag # 0. Then by direct computation, we obtain that for any € > 0 there exists
C1e > 0 such that

2

i(6) -1 < |9PCE el g > g,

0

— a4M

Therefore, we have
L(8) < 161°CE Mol asicerien - (3.6)
Also, for any € > 0 there exists C, > 0 such that

;(6) : < (gz(i)

a'Z(Q)T — a; 5
Note that for any ¢ > 0 there exists C > 0 such that (n + 1)(n + 2) < Cye*" for all
n > 0. Hence we prove that

;(6)
7

2
+ ‘azICEW') e2[a4l(e+|9|)n, n 2 07 1= 2737 5.

I;(0) < CCyp (

2
-+lai1’Ce|91) VI e osesn,  i=2.35  (37)
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where C' = max{e?|(|, e %||(||?, e *||7||*}. By similar arguments in the proof of Lemma
3.1, we can prove that for any p € R there exist ¢ > 0 and € > 0 with 4||az(8)7]|e 2P+ < 1
and ee®|as(0)¢|? + (2e79aq(8)])? < 1 such that

I(0) < C(8)Myprq(a2(8)C)’Chyls(8)r)e!/*

X <§ (eezp|a5(9)(:|2 + (26_‘1ia4(9)|)2>n) 1412, (3.8)

n=0

where M;(az(0)¢) is given as in (3.2) and Cp4(a3(8)7) is given as in Lemma 3.1, and

)
Therefore, by (3.6), (3.7) and (3.8), we prove that limg_,o(I1(60) + I2(0) + I3(0) + 14(0) +
I5(6)) = 0. It follows the proof. |

"+ [Lact@oa(@clcl| + | sl

c(0) =3 ([gastasto)cile]

Theorem 3.5 {Hacotoer is a differentiable one-parameter transformation group with
the infinitesimal generator ayl + a;D¢ + azAg + agN + asD;.

PrOOF. Let p € R and ¢ € G be given. Then we have

'h;;ef_—ﬁb — (a1 + a3 D¢ + asAg + agN +a5DZ)¢

7 I Ii,c;9¢‘1‘p + mal (ZE,C;G - I) ¢“'p
n [“ (I;,g;oe" I )d’

P

() —1

— (azDC + a3AG + a4N + asDZ)(ﬁ

P
By Lemma 3.4, we complete the proof. |
4 Cauchy problems
In this section, we consider the Cauchy problem of the following type:

du N

= u(0) = ¢ € G, -6 <6<, (4.1)
where § > 0 (depend on ¢) and =" = ail+asDe+azAg+asN+asDy, a = (ag, -+, a5) € C5.
Let I be a given bounded open interval containing 0. For each a = (ay,- -+, as) € C® and

p > 0, we put
S, = {0 € R; 4]|az(0)|||7]|e® < 1} N1, M, = sup{2el*l:9 € 5},

where as(f) is given as in (3.4) or (3.5). Obviously, S, is a bounded open subset of R for
any p > 0 and there exists an open ball B.(0) = (—¢,¢) such that B(0) C S,. For any
q>p, Sq CSpand 0 < M, < M,.
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Proposition 4.1 Let p > 0 be given. Then for any § € S, and g > log(M,), Hace €
L(G—p,G—(p1q)). Moreover, for any ¢ € G_, there exists € > 0 with ee"2P+9|ay(8)¢|? +
(2e79ay(0)])* < 1 such that

IHacodll-p+a) < |21 (8)| My _p(@2(8)¢)C_po(s(8)7)er/ %)

o L\ 12
(55 (e ast0) + 2e-*lau)?) ) 16l-n

n=0

where My _p(a2(8)() is given as in (3.2) and C_po(as(0)7) is given as in Lemma 3.1.

PrROOF. Since 4|las(8)7||e* < 1 and (2¢79||e*?||)> < 1 for any § € S, and q >
log(M,), there exists € > 0 such that ee 2P+9|a5(0)¢|? + (2e7a4(6)])? < 1. Therefore,
by the similar arguments in the proof of Lemma 3.1, we can complete the proof. |

Let p > 0 be given. By Proposition 4.1, for any g > log(M,) and 6; € S,, 6 € Spy,
we have

Ha,(;ﬂg Ha,(;01 € ‘C(g*pa g——(p+2q))-
Therefore, for any 6 € S, and h € S,4, such that § + h € S,, Ha 941 coincide with

HacnHacyo as a operator in L£(G_p, G (pt29)). Hence, by using the similar arguments in
the proof of Theorem 3.5, we can prove that for each ¢ € G_, and 6 € S,

Hac0+0® — Hacod
h

lim
h—0

=0,
—(p+2q)

where = = a;] + a2D¢ + azAg + ayN + asDf. It follows that u(f) = Haco¢ € G—(ptq)
satisfies the initial-value problem: ‘

du « ,
i (a1l +a2D¢ + azAg + ayN + asD7)u, u(0) =¢ € G_,, 6 €S, (42)
Now, we consider the uniqueness of solution of (4.2). Suppose that v(8) € G—(pt+a)
0 € S, is another solution of (4.2) satisfying that

v(6 + k) —v(9)
- —

— ZHac09

lim

h—0

Zv(0) =0, 0¢85, (4.3)

—(p+29)

where = = a;] + a2D¢ + a3Ag + a4N + asD7. Take 6§ > 0 such that Bs(0) C Spia,

where ¢ > log(M,). Then for any 8,¢ € Bs2(0), § — ¢ € Bs(0) C Sp N Spiq- Therefore,

by Proposition 4.1, for each given § € Bs/2(0) we can define a G_(,24)-valued function

on Bs/2(0) by w(e) = Hagcp—cv(€). Moreover, by the similar arguments in the proof

of Theorem 3.5, we obtain that Zw(e) = 0. This implies that v(8) = Ha ¢ for any
Thus the following theorem is obvious

Theorem 4.2 Letp > 0 and ¢ € G_, be given. Then u(0) = Happ € G_(p4q) defined on
Sp satisfies the initial-value problem (4.2), where ¢ > log(M,), Moreover, ifv(6) € G_(p1q),
0 € Sy, is another solution of ({.2) satisfying (4.8), then there exists § > 0 such that v is
equal to u on Bs(0).
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5 Finite dimensional partial differential equations

In this section, as an application, we discuss finite dimensional partial differential
equations. For the details in finite dimensional white noise calculus, we refer [13] and
Section 6.2 in [18].

Let T = {1,2,---,n} be a finite set with discrete topology and counting measure
v. Then the Hilbert space H = L?(T,v;R) is isomorphic to R*. By using a symmetric
matrix A with eigenvalues 1 < A; < --+ < A,, we construct the Gel'fand triple which
becomes E = H = E* = R*. Let (L?) = L*(R", u; C), where p is the standard Gaussian
measure on R”. By using similar method in Section2, we construct a Gel’fand triple:

G =GR c (L*) c GR" =g".

Since there is a natural unitary isomorphism U from L?(R", u) onto L?(R",dz) defined
by
1\ ..
Ug(z) = (m) el lg(z), ¢ e IR ),

we obtain a new Gel’fand triple:
N =U(G) Cc L*(R*, dz) C N* = U(G").
Therefore, for any = € L(G,G*), UEU™! € L(N,N*). In particular, for the Hida’s

differential operator 9; = Z¢1(6;) and its adjoint operator 97 = —9; + z;, we have
0 z; 0 z;
Uo,U™' = — + 2, Vot ' =——++-2 .
I (9:17]' + 2 ]U 8:1,‘]' + 2 ’ (5 1)

where §; is the evaluation map. Hence, the integral kernel operator Zj,,(x) with kernel
k € L((R*)®™ (R")®) = (R")®*™ is translated into a partial differential operator with
polynomial coefficients. Put

Dl,m(K,) = USl,m(lﬂ',)U—l.
Then we have

Proposition 5.1 For each I,m > 0 and k € (R*)®*™, the partial differential operator
Dim(K) is a continuous linear operator from N into itself. Moreover, Dim(k) can be
extended to a continuous linear operator from N'* into itself.

The Gross Laplacian Ag and the number operator N are defined by
j=1 j=1
respectively. Then by direct computation with (5.1), we obtain that

n 2 2
UAGU"l_—,Z(a +mi+%+l)

j=1 6_$? j@xj 2
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and

(see [18]). Also, we have

n 8 i n a .
vpa =% (g +%), vowt = (-5 3).
J J

where 1 = (1,---,1) € R™. Therefore, for each (ay,---,as) € C° the operator

1 az + 2a a1 +4a a; — 4a as — 2a4 _,
n(a5—§a1)1+%D1+~—1——2—3AG— 12 3N— 22 4D1
is translated into the partial differential operator:
: i 82 ai + 4&3 0 3 2
D= ng (al oz} * 9 Oz; T Oz; T Gati s |- (5:2)

For each (ay,---,as) € C®, we put

_( ( 1 ) as + 2a4 ay +4as3 a; — 4as a2—2a4>€(c5
a=|n|as 2&1 y ) y 5 y 5 ’ ) .

Then, by Theorem 4.2, we have the following theorem.

Theorem 5.2 Let (a1, --,as) € C°. Then for each ¢ € N* the unique solution of the
partial differential equation:
ou(f, )
00

is given by u(0,z) = UHa1,0U '¢(z) € N*, 0 € B.(0), where D is given as in (5.2) and
€ > 0 depends on ¢. v

= Du(4, z), u(0,z) = ¢(z), 6 € B(0)
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