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Abstract
The principal 3-block of a Chevalley group $G_{2}(q)$ with $q$ a

power of 2 satisfying $q\equiv 2$ or 5 (mod 9) and the principal 3-
block of $G_{2}(2)$ are Morita equivalent.

\S 1 Introduction
1.1 In this paper we consider the Chevalley groups $G_{2}(q)$ over the finite

field $GF(q)$ . We show a Morita equivalence between the principal 3-block
of $G_{2}(q)$ with $q$ a power of 2 satisfying $q\equiv 2$ or 5 (mod 9) and the
principal 3-block of $G_{2}(2)$ . These groups have the same 3-local structure
with common Sylow 3-subgroup which is isomorphic to $M(3)$ the extra-
special group of order 27 and of exponent 3. To be accurate, here we
state some notation and some definition. Let $(\mathcal{K}, O, \kappa)$ be a splitting p-
modular system for all subgroups of the considering groups, that is, $\mathcal{O}$

is a complete discrete valuation ring with unique maximal ideal $\mathcal{P},$
$\mathcal{K}$ is

its quotient field of characteristic zero and $\kappa$ is its residue field $\mathcal{O}/\mathcal{P}$ of
prime characteristic $p$ and we assume that $\mathcal{K}$ and $\kappa$ are both big enough
such that they are splitting fields for all subgroups of the considering
groups. The principal $p$-block $B(G)$ of a group $G$ is the indecomposable
two-sided ideal of the group ring $\mathcal{O}G$ to which the trivial module belongs.
According to Rickard’s definition in [Ri], finite groups $G$ and $H$ have the
same $p$-local structure if they have a common Sylow $p$-subgroup $P$ such
that whenever $Q_{1}$ and $Q_{2}$ are subgroups of $P$ and $f$ : $Q_{1}arrow Q_{2}$ is an
isomorphism, then there is an element $g\in G$ such that $f(x)=x^{g}$ for all
$x\in Q_{1}$ if and only if there is an element $h\in H$ such that $f(x)=x^{h}$ for
all $x\in Q_{1}$ .
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1.2 First we explain our motivation. There is a famous conjecture:

Brou\’e’s conjecture: Let $G$ and $H$ be finite groups having the same p-
local structure with common Sylow $p$-subgroup $P$ . If $P$ is abelian, is it
true that their principal $p$-blocks $B(G)$ and $B(H)$ are derived equivalent?

It is known that if $P$ is not abelian, this is not true. Nevertheless, it
seems that there are not so many derived category equivalence classes
among the principal $p$-blocks of groups having a fixed common p-local
structure. Keeping this in mind, we investigate principal 3-blocks of
an infinite series of the Chevalley groups $G_{2}(q)$ having the same 3-1ocal
structure with common non-abelian Sylow 3-subgroup $P$ . If

$q\equiv 2,4,5$ or 7 (mod 9), (1.1)

$\mathrm{t}1_{1}\mathrm{e}\mathrm{n}$ any group $G$ among the Chevalley groups $G_{2}(q)$ has Sylow 3-
subgroup $P$ which is isomorphic to $M(3)$ and $N_{G}(P)$ is isomorphic to the
semi-direct product of $M(3)$ by the semidihedral group $SD_{16}$ of order 16
with the faithful action. Furthermore $G$ and $N_{G}(P)$ have the same 3-1ocal
structure. Now let $H$ be a finite group satisfying the same 3-local struc-
ture as that of the semi-direct product of $M(3)$ by $SD_{16}$ with the faithful
action. Furthermore we assume that the maximal normal 3-subgroup of
$H$ is trivial, since in general, we may assume that the maximal normal
$p$-subgroup is trivial, when we consider only principal $p$-blocks. If $Z(P)$

is not normal in $H$ for a Sylow 3-sub.group $P$ , then using the classifica-
tion of finite simple groups we can conclude that $H$ is either one of the
Chevalley groups $G_{2}(q)$ satisfying (1.1) or its automorphism group or the
automorphism group of $J_{2}$ (cf. [U]). Now our main theorem is as follows:

Theorem 1.3 Assume that

$q$ is a power of 2 and $q\equiv 2$ or 5 (mod 9). (1.2)

Then the principal 3-block of $G_{2}(q)$ and the principal 3-block of $G_{2}(2)$ are
Morita equivalent. Here a $\Delta(P)$ -projective trivial source $G_{2}(2)\cross G_{2}(q)-$

module and its $O$ -dual induce this Morita equivalence as bimodules, where
$Pis$ a common Sylow 3-subgroup of $G_{2}(q)$ and $G_{2}(2)$ and $\triangle(P)$ is the
diagonal groups of $P$ in $G_{2}(2)\cross G_{2}(q)$ .
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Remark 1.4 In fact, by Scott-Puig theorem in Marcus’s paper (Theo-
rem 1.6 [M] $)$ this Morita equivalence is a so-called Puig equivalence (i.e.
it implies the coincidence of their source algebras). Here we refer a by-
product of this theorem. The decomposition matrices of the principal
3-blocks of the groups $G_{2}(q)$ were determined by Hiss and Shamash (3.3
[HS] $)$ and that of $G_{2}(2)$ was determined completely, but in general they
were incomplete. Table II in 3.3 in [HS] contains three unknown param-
eters. Now by this theorem the decomposition matrices of the principal
3-blocks of the groups $G_{2}(q)$ satisfying (1.2) are completely determined,
since Morita equivalent blocks have the same decomposition matrix.

1.5 Theorem 1.3 is based on the following three theorems.
Let $G$ be a group $G_{2}(q)$ satisfying (1.2), and $P$ be a Sylow 3-subgroup

of $G$ . Set
$N=N_{G}(Z(P))$ and $H=N_{G}(P)$

for short. Here $N$ is an index two extension of $C_{G}(z)$ with $\langle z\rangle=Z(P)$

and $C_{G}(Z)$ is isomorphic to $SU(\mathit{3}, q^{2})$ by Appendix $\mathrm{B}$ in [H]. We would
like to compare the principal 3-block $B(G)$ of $G$ and the principal 3-block
$B(G_{2}(2))$ of $G_{2}(2)$ via $B(H)$ , since $H$ is a common subgroup of $G$ and
$G_{2}(2)$ .

Although $H$ does not depend on $q,$ $H$ is so small. Hence first we com-
pare $B(G)$ with $B(N)$ , since Theorem 1.8 below guarantees that $B(N)$

and $B(H)(=OH)$ are Morita equivalent to each other. In order to prove
Theorem 1.8 we need Theorem 1.7 which is based on Theorem 1.6.

Morita equivalences in Theorem 1.6, 1.7 and 1.8 are also Puig equiva-
lences.

Theorem 1.6 (Koshitani and Kunugi [KK]) The principal 3-block
of $PSU(3, q^{2})$ defined over the finite field $GF(q^{2})$ satisfying $q\equiv 2,5$

(mod 9) and the principal 3-block of $PSU(\mathit{3},2^{2})$ are Morita equivalent.

If we set $G=PSU(\mathit{3}, q^{2})$ , with above $q$ and $H=N_{G}(P)$ for a Sylow
3-subgroup $P$ of $G$ , then $H$ is isomorphic to the semi-direct product of
the elementary abelian group of order 9 by the quaternion group of order
8 with the faithful action. Furthermore $H$ is isomorphic to $PSU(3,2^{2})$

and $OH=B(H)$ , that is, the principal 3-block of H. Here let $B(G)$ be
the principal 3-block of G. Then

$B\langle G)B(G)oH$
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and its $O$ -dual induce a stable equivalence of Morita type between $B(H)$

and $B(G)$ , and its unique indecomposable non-projective direct summand
induces a Morita equivalence between them.

Theorem 1.7 The principal 3-block of $SU(\mathit{3}, q^{2})$ defined over the finite
field $GF(q^{2})$ satisfying $q\equiv 2,5$ (mod 9) and the principal 3-block of
$SU(3,2^{2})$ are Morita equivalent. If we set $G=SU(3, q^{2})$ with above $q$

and $H=N_{G}(P)$ for a Sylow 3-subgroup $P$ of $G$ , then $H$ is isomorphic
to the semi-direst product of the extra-special group of order 27 and of
exponent 3 by the quaternion group of order 8 with the faithful action.
Furthermore, $H$ is isomorphic to $SU(3,2^{2})$ and $OH=B(H)$ , that is, the
principal 3-block of H. Let $B(G)$ be the princip.a $l\mathit{3}$-block of G. Then the
unique indecomposable direct summand with vertex $\triangle P$ of

$B(c)B(c)_{\mathrm{o}H}$

and its $\mathcal{O}$ -dual induce a Morita equivalence between $B(H)$ and $B(G)$ .

Theorem 1.8 Let $G$ be one of the Chevalley groups $G_{2}(q)$ satisfying $q\equiv$

$2$ or 5 (mod 9). Let $P$ be a Sylow 3-subgroup of G. Then the principal
3-blocks of

$N=N_{G}(Z(P))$ and $H=N_{G}(P)$

are Morita equivalent. Furthermore, this Morita equivalence is induced
by an indecomposable $N\cross H$ -module which is a direct summand of the
restriction of an $N\cross N$ -module $B(N)$ to $N\cross H$ and has vertex $\Delta(P)$ .

\S 2 Preliminaries
2.1 In this section we introduce some notation and explain the common

frame of the proofs in Theorem 1.3, 1.7 and 1.8.
In this paper “modules” always mean finitely generated modules. They

are left modules, unless stated otherwise. For a subgroup $H$ of a group $G$ ,
let $U$ and $V$ be OG- and $OH$-modules. We write $U_{\downarrow H}$ for the restriction
of $U$ to $H,$ nalnely

$U_{\downarrow H}=_{oH}OG \bigotimes_{\mathrm{O}G}U$
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and $V^{\uparrow G}$ for the induction of $V$ to $G$ , namely

$V^{\uparrow G}=_{o}c \mathcal{O}G\bigotimes_{\mathrm{O}H}V$.

We use the similar notation for $kG$-modules and $kH$-modules and even
for ordinary characters. Let $O_{G}$ be the trivial $OG$-module and $k_{G}$ be the
trivial $kG$-module. For an $O$-algebra $B$ we write

$\overline{B}=k\bigotimes_{\mathcal{O}}B$ ,

and for $\mathrm{a}\overline{B}$-module $U\mathrm{s}\mathrm{o}\mathrm{c}(U)$ means the socle of $U$ .
For other notation and terminology we follow the books of Benson

[Be], Landrock [La] and Nagao-Tsushima [NT]. Since the Brauer homo-
morphism plays an important role in this paper, we state its definition
here.

Definition 2.2 (6.C. in [Br]) For an $OG$-module $V$ and a p-subgroup
$P$ of $G$ , we set

$Br_{P}(V)=V^{p}/( \sum_{Q\not\in P}\tau r_{Q}^{p}(VQ)+PV^{P})$
(1.1)

where $V^{P}$ denotes the set of fixed points of $V$ under $P$ and $Q$ runs over
all proper subgroups of $P$ and

$Tr_{Q(}^{P}v)=. \sum_{x\in p/Q}x(v)$
(1.2)

for a $p$-subgroup $Q$ of $P$ and $v\in V^{Q}$ .

Definition 2.3 (Definition 1.1 in [Li]) Let $A$ and $B$ be O-algebras,
$M(=_{A}M_{B})$ an $(A, B)$ -bimodule, $N(=_{B}N_{A})$ a $(B, A)$ -bimodule. We say
$M$ and $N$ induce a stable equivalence of Morita type between $B$ and $A$ ,
if

(i) $M$ is projective as a left $A$-module and as a right B-module,
(ii) $N$ is projective as a left $B$-module and as a right A-module,
(iii) $M \bigotimes_{B}N=A\oplus X$ for a projective $(A, A)$ -bimodule $X$ and $N \bigotimes_{A}M=$

$B\oplus Y$ for a projective $(B, B)$-bimodule $Y$ .
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For $k$-algebras we define a stable equivalence of Morita type similarly.

2.4 Let $P$ be a Sylow 3-subgroup of any group in Theorem 1.3, 1.7 or
1.8. We would like to find a $\Delta(P)$ -projective trivial source module such
that it and its $O$-dual induce a stable equivalence of Morita type as a
bimodule in each case. For Theorem 1.7 we choose a suitable indecom-
posable sumnland of a $(B(G), B(N_{G}(P)))$ -bimodule $B(G)$ where

$G=SU(3, q^{2})$ with $q\equiv 2$ or 5 (mod 9).

For Theorem 1.8 we construct such a bimodule by an induction.
For Theorem 1.3 first we choose a $(B(G), B(Nc(z(P))))$ -bimodule

$B(G)f$ as a bimodule which with its $\mathcal{O}$-dual induces a stable equivalence
of Morita type between $B(G)$ and $B(N_{G}(z(P)))$ , where

$G=G_{2}(q)$ with $q$ satisfying (1.2),

and $f$ is the central idempotent corresponding to $B(N_{G}(z(P)))$ . By The-
orem 1.8 we already have a bimodule which induces stable equivalence of
Morita type between $B(N_{G}(z(P)))$ and $B(N_{G}(P))$ . If we set $G_{0}=G_{2}(q)$ ,
then we already have chosen a bimodule which induces a stable equiva-
lence of Morita type between $B(G_{0})$ and $B(N_{G}(\mathrm{o}z(P)))=B(N_{G_{0}}(P))=$

$B(Nc(P))$ as a special case. From these bimodules we will construct a
required $(B(G), B(G\mathrm{o}))$ -bimodule.

In each case we check local structure in order to guarantee a stable
equivalence of Morita type by the following Brou\’e’s theorem.

Theorem 2.5 (cf. Brou\’e, Theorem 6.3 in [Br]) Let $G$ be a finite
group with a Sylow $p$ -subgroup $P$ and $H$ be a subgroup of $G$ contain-
ing $N_{G}(P)$ . Assume that $G$ and $H$ have the same fusion on p-subgroups
contained in $P$ ($i.e$ . the same $p$ -local structure). Let $b$ and $b’$ be central
primitive idempotents of $OG$ and $OH$ respectively such that there is a
Brauer correspondence between

$A=\mathcal{O}Gb$ and $B=OHb’$

having common defect group P. For a subgroup $R$ of $P_{f}$ set

$\overline{b}_{R}=Br_{R}(b)$ , $\overline{b’}_{R}=Br_{R}(b’)$ .
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Let $M$ be an $(A, B)$ -bimodule and $N$ be a $(B, A)$ -bimodule. For each
subgroup $R$ of $P$ set

$\overline{M}_{R}=Br_{\Delta 1R)}(M)$ and $\overline{N}_{R}=Br_{\Delta 1P)}(N)$ .

Assume that

(i) $M$ is a direct summand of the restriction of $A$ from $G\cross G$ to $G\cross H$ .
(ii) For each non-trivial subgroup $R$ of $P,$ $\overline{M}_{R}$ and $\overline{N}_{R}$ induce a Morita

equivalence between $kC_{H}(R)\overline{b’}_{R}$ and $kC_{G}(R)\overline{b}_{R}$ .

Then $M$ and its $O$ -dual induce a stable equivalence of Morita type between
$B$ and $A$ .

2.6 Now we would like to apply the following Linckelmann’s theo-
rem and prove that the chosen bimodule for Theorem 1.7 (respec-
tively, the unique non-projective direct summand of the composed
$(B(G_{2}(q), B(G_{2}(2))))$ -bimodule for Theorem 1.3) induces a required
Morita equivalence. In each case we get the bimodule over k-algebras
from the above bimodule over $O$-algebras by

$k \bigotimes_{O}-$

and we have only to prove that it sends the simple modules to the simple
modules, since it is also a trivial source module and it is liftable to the
original bimodule (cf. \S 5 [Ri]).

In case of Theorem 1.3, instead of saying it directly, we prove that the
composed $(kH, \overline{B}(G_{2}(q)))$ -bimodule sends each simple $\overline{B}(G_{2}(q))$-module
to a direct sum of a non-projective indecomposable $kH$-module and a
projective $kH$-module and that this non-projective summand does not
depend on $q$ .

This is the main part of the proof of Theorem 1.3 and we use the
same tools as those of the proof of Theorem 1.6, namely following Green-
Landrack-Scott lemma and Robinson’s lemma.

Theorem 2.7 (Linckelmann, Theorem 2.1 in [Li]) Let $G$ and $H$ be
two finite groups and $b$ and $b’$ be central idempotents of $OG$ and $OH$

respectively. Set

$A=OGb,$ $B=OHb’$ , $\overline{A}=k\bigotimes_{\mathcal{O}}$

$A$ and $\overline{B}=k\bigotimes_{\mathcal{O}}B$ .
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Let $M$ be an $(A, B)$ -bimodule which is projective as left and right module,
such that the functor

$M \bigotimes_{B}-$

induces an $O$ -stable equivalence between $B$ and $A$ .

(i) Up to isomorphism, $M$ has the unique indecomposable non-projective
direct sum..mand $M’$ as an $(A, B. )$ -bimodule and then

$k \bigotimes_{\mathcal{O}}M’$
is, up to

isomorphism, the unique indecomposable non-projective direct sum-
mand o.f $k \bigotimes_{\mathcal{O}}M$

as an $(\overline{A},\overline{B})$.-bimodule.
(ii) If $M$ is indecomposable, for any simple $B$ -module $S$ , the A-module

$M \bigotimes_{B}S$ is indecomposable and non-projective as an $\overline{A}- module_{f}$

(iii) If for any simple $B$ -module $S$ , the A-modu.le $M \bigotimes_{B}S$
is simple, then

the functor $M \bigotimes_{B}$
–is a Morita equivalence.

Lemma 2.8 $(\mathrm{G}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{n}-\mathrm{L}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{k}-\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{t})$ (see [La], II, Lemma 12.6)
Let $M$ be a trivial source $kG$ -module, so that $M$ is liftable to a trivial
source $OG$ -lattice $\overline{M}$ . Let $\chi_{\hat{M}}$ be the ordinary character of $G$ afforded by
the $\overline{M}$ .

(i) Let $Q$ be a $p$ -subgroup of G. Then

$\dim_{k}.[(\mathrm{s}\mathrm{o}\mathrm{c}(M\downarrow Q)]=(\chi_{\hat{M}}, 1_{Q})_{Q}$

where $1_{Q}$ is the trivial ordinary character of $Q$ .
(ii) Let $x$ be a $p$ -element in G. Then $\chi_{\hat{M}}(x)$ equals to the number of

indecomposable direct summands of the $k\langle x\rangle$ -module $M_{\downarrow(x\rangle}$ which are
isomorphic to the trivial $k\langle x\rangle$ -module $k_{\langle x\rangle}.$ . In particular, $\chi_{\hat{M}}(x)$ is a
non-negative integer.

(iii) Let $x$ be a $p$ -element in G. Then, $\chi_{\hat{M}}(x)\neq 0$ if and only if $x$ belongs
to some vertex of M.

Lemma 2.9 (Robinson [Ro], Theorem 3) Let $H$ be a subgroup of $G$ ,
and let $S$ and $T$ respectively be a simple $kG$ -module and a simple kH-
module. Then, the multiplicity of $P(S)$ as a direct summand of $T^{\uparrow G}$ is
equal to the multiplicity of $P(T)$ as a direct summand of $s_{\downarrow H}$ , where $P(S)$

is the projective cover of $S$ .
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\S 3 Induction and restriction between $G$ and
$N_{G}(Z(P))$

3.1 From this section we assume that

$q$ is a power of 2 and $q\equiv 2$ or 5 (mod 9) (3.1)

and set
$G=G_{2}(q),$ $N=N_{G}(Z(P))$ and $H=N_{G}(P)$

with a suitable Sylow 3-subgroup $P$ of $G$ . Then $P,$ $H$ do not depend
on $q$ and $P$ is isomorphic to the extra-special group of order 27 and of
exponent 3 and $H$ is the semi-direct product of $P$ by the semi dihedral
group $SD_{16}$ of order 16 with the faithful action. On the other hand, $N$

depends on $q$ and satisfies

$N=N_{G}(Z(P))\triangleright C_{G}(z(P))\cong sU(3, q^{2})$ .

Here
$\{z, v\}$ with $z\in Z(P)-\{1\}$ and $v\in P-Z(P)$ (3.2)

are representatives of the $G$-conjugacy classes (respectively, the N-
conjugacy classes, the $H$-conjugacy classes) of the 3-elements.

Furthermore $G,$ $N$ and $H$ have the same 3-local structure. Let $B(G)$ ,
$B(N)$ and $B(H)(=OH)$ be the principal 3-blocks of $G,$ $N$ and $H$ respec-
tively. Let $e$ (respectively, $f$ ) be the central primitive $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{m}\mathrm{p}_{\mathrm{o}\mathrm{t}}\mathrm{e}\mathrm{n}\dot{\mathrm{t}}$ of $oG$

(respectively, ON) corresponding to $B(G)$ (respectively, $B(N)$ ). Clearly
for a $p$-subgroup $Q$ of $P$ such that $|Q|>\mathit{3}$ , we have

$C_{G}(Q)=C_{N}(Q)$

and $C_{C},(Z(P))=C_{N}(Z(P))$ . For $v\in P-Z(P)$

$C_{G}(\langle v\rangle)\cong GU(2, q^{2})$

and $C_{N}(v)$ is the semi-direct product of $Z_{q+1}\cross Z_{q+1}$ by $Z_{2}$ with the
$\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}- \mathrm{p}_{\mathrm{o}\mathrm{i}\mathrm{n}}\mathrm{t}$-free action. By Proposition 2.6 in [KU] we already know that
$\overline{B}(C_{N}(v))$ and $\overline{B}_{G}(v)$ are Morita equivalent by a bimodule

$\overline{B}(C_{G}\langle_{8}’))\overline{B}(C_{G(v}))\overline{f’}_{\overline{B}\mathrm{t}C}N\mathrm{t}\tau’))$

where $\overline{f’}$ is the central primitive idempotent corresponding to $\overline{B}(c_{N}(v))$ .
Hence by Theorem 2.5 what we have proved is the following proposition.
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Proposition 3.2 The principal 3-block $B(G)$ of $G$ and $B(N)$ of $N$ are
stable equivalent of Morita type by a bimodule

$B(G)B(G)fB\mathrm{t}N)$

where $f$ is the central primitive idempotent corresponding to $B(N)$ .

3.3 Our main task is to determine

$s_{\downarrow N}\overline{f}$ for each simple $\overline{B}(G)$ -module $S$, (3.3)

where $\overline{f}$ is the central primitive idempotent corresponding to $\overline{B}(N)$ . By
Theorem 2.7 and Proposition 3.2 this is the direct sum of an indecompos-
able $\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{e}\overline{B}}}(N)$-module and a projective $\overline{B}(N)$ -module. Since
there exists Lemma 2.9, it is useful to determine

$s^{\uparrow G}\overline{e}$ for each simple $\overline{B}(N)$ -module $s$ , (3.4)

where $\overline{e}$ is the central primitive idempotent corresponding to $\overline{B}(G)$ . Also
by Theorem 2.7 and Proposition 3.2 this is a direct sum of an indecom-
posable non-projective $\overline{B}(G)$-module and a $\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{e}\overline{B}}}(N)$ -module. To
do these tasks we need some information:

(i) the multiplicities of the irreducible characters in $B(G)$ as constituents
of the induction of each irreducible characters in $B(N)$ from $N$ to $G$ .

(ii) the decomposition matrix of $B(G)$ .
(iii) the decomposition matrix of $B(N)$ and Loewy series of each inde-

composable $\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{e}\overline{B}}}(N)$ -modules.

In order to know (i) we need the character table of $B(G)([\mathrm{E}\mathrm{Y}])$ and the
character table of $B(N)$ which is recently determined by Enomoto. We
also have to know which $G$-conjugacy class each element of $N$ belongs to.
This is also due to Enomoto. From these materials we can get information
(i) by a usual character calculation. All simple $\overline{B}(G)$ -modules are

$s_{11},$ $s_{1}8,$ $S16,$ $S_{1}7,$ $s_{19},$ $S_{14},$ $S12$

and all degrees except for $S_{12}$ are known by Hiss and Shamash (page
380 [HS] $)$ . According to Hiss-Shamash notation all irreducible ordinary
characters in $B(G)$ are

$X11,$ $X18,$ $x17,$ $x13,$ $X_{14},$ $x_{1}2,$ $x32,$ $x31,$ $x33,$ $x10,$ $X19,\overline{x}19,$ $x_{2a}/$ and $X_{2a}$ ,
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where “
$\mathrm{a}$

” takes a specified one value in $X_{2a}’$ and $X_{2a}$ , which correspond
to

$\chi_{3}’(\frac{q+1}{\mathit{3}})$ and, $\chi_{4}’(\frac{q+1}{\mathit{3}})$

respectively according to Enomoto-Yamada notation [EY]. For informa-
tion (ii) see Table II in Hiss-Shamash paper $([\mathrm{H}\mathrm{S}])$ where $\alpha,$

$\beta$ and $\gamma$ are
the unknown parameters.

3.4 For (iii) we have only to determine them for $B(H)$ by Theorem 1.8,
since Morita equivalent blocks have the same decomposition matrix and
the same Loewy series of the principal indecomposable modules (up to the
$\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence of the simple modules). Since $P$ is normal in $H$

and a 3-compliment of $H$ is isomorphic to $SD_{16}$ , the simple $kH$-modules
$s_{0},$ $s_{3}’,$ $S_{0}’,$ $s_{3},$ $s1,$ $S_{1}’$ and $s_{4}$ are trivial source modules and the characters of
their lifts correspond to the irreducible characters of $SD_{16}$ whose kernels
contain $P$ . We can easily determine the decomposition matrix of $H$ from
its character table and we can also determine the Loewy series of the
projective covers of all simple $kH$-modules (cf. Jenning’s theorem).

3.5 Here we explain an outline of determining (3.3). Assume that

$S \oint S_{12}$ .

Then we can determine all composition factors of $s_{\downarrow N}\overline{f}$ completely from
information (i), (ii) and (iii). The number of the composition factors are
rather small, and it follows that it is indecomposable from information
(iii). In particular, $S_{11\downarrow N}\overline{f}$ and $S_{18\downarrow N}\overline{f}$ are simple and

$S_{11}\Leftrightarrow s_{0}$ and $S_{18}\mapsto s_{3}’$ (3.5)

are Green correspondences and we may assume that

$s_{1}$

$S_{19\downarrow N}\overline{f}=s_{1}s_{4},\cdot$

(3.6)

Furthermore by Lemma 2.9 we can conclude that any indecomposable
projective direct summand of $s^{\uparrow G}\overline{e}$ for a simple $kN\overline{f}$-module $s$ is $P(S_{12})$ ,
that is the projective cover of $S_{12}$ .
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On the other hand, we can know the characters of the lifts of (3.4)
$\mathrm{h}\mathrm{o}\mathrm{m}$ information (i). In particular, we know that only $s_{3}^{;\uparrow c_{\overline{e}}},$ $s_{3}^{\uparrow G}\overline{e}$ and
$s_{4}^{\uparrow G}\overline{e}$ can have projective summands and we can deternine the projective
summand of $S_{3}^{;\uparrow \mathrm{h}}c_{\overline{e}}\mathrm{o}\mathrm{m}(\mathit{3}.5)$ . We can do the determination of heads and
socles of $S_{0}^{\prime\uparrow G}\overline{e},$ $s_{1}^{\uparrow G}\overline{e}$ and $s_{1}^{\prime \mathrm{T}G}\overline{e}$ and the determination of the Loewy
series of $s_{\downarrow N}\overline{f}$ simultaneously by Frobenius reciprocity theorem. Now we
know that these heads and socles are simple and if $S \oint S_{14}$ , then $s_{\downarrow \mathit{1}}\mathrm{v}\overline{f}$

is uniserial. We determine the projective summands of $s_{3}^{\uparrow G}\overline{e}$ and $s_{4}^{\uparrow G}\overline{e}$ ,
and then by Lemma 2.9 we know the projective summand $P_{\langle q)}$ of $S_{12\downarrow N}\overline{f}$.
Set

$S_{12\downarrow N}\overline{f}=W_{\langle q)}\oplus P_{\{q)}$ and $s_{\downarrow N}\overline{f}=S_{\langle q)}$ ,

where the suffix $(q)$ means that we are treating the case $G=G_{l}(q)=G(q)$ .

3.6 The remaining task is the characterization of $S_{(q)}$ and $W_{\langle q)}$ , and
furthermore we have $\mathrm{t}\mathrm{o}\Leftrightarrow \mathrm{u}\sigma \mathrm{a}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{e}$ that $S_{\{q)}$ (respectively, $W_{\langle q)}$ ) corre-
sponds $S_{\langle 2)}$ (respectively, $W_{\langle 2)}$ ) by $\mathrm{t}\mathrm{h}\mathrm{e}_{8}\sigma \mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$ Morita equivalence between
the principal 3-blocks of $N_{G\{q)(}Z(P))$ and $N_{G(2)(}Z(P))=H$ in Theorem
1.8.

If $S \oint S_{14}$ , then $S_{(q)}$ is uniserial and it is characterized as the unique
submodule in its injective $\mathrm{h}\mathrm{u}\mathrm{U}$ having $\mathrm{t}\mathrm{h}\mathrm{e}\Leftrightarrow\sigma \mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$ Loewy series and then
$S_{(q)}$ corresponds $S_{(2)}$ . If $S\sim S_{14}$ , then the $S_{(q)}$ is not uniserial but its
Loewy series is slim and it is also characterized by its Loewy series and
then $S_{\langle q)}$ corresponds $S_{\langle 2)}$ . Now we consider $W_{(q)}$ . We may assume that
the head of $s_{1}^{\uparrow G}\overline{e}$ is isomorphic to $S_{12}$ and that its socle is isomorphic to
$S_{19}$ . We have

$(s_{1}^{\uparrow c_{\overline{e}}})_{\downarrow N}\overline{f}=S1\oplus P(s’1)\oplus P(q)$ (3.7)

where $P(s_{1}’)$ is the projective cover of $s_{1}’$ . Here we set

$V=s_{1}^{\uparrow G}\overline{e}/\mathrm{S}\mathrm{O}\mathrm{C}(s^{\uparrow}1c_{\overline{e})}$ .

Then its head is isomorphic to $S_{12}$ and its composition factors are $(\alpha-$

$1)S_{18},$ $\beta S1\mathfrak{g},$ $\gamma S17,$ $s_{1}6$ and $S_{12}$ , and $V_{\downarrow N}\overline{f}$ has $P_{(q)}$ as the $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{C}\mathrm{t}\dot{\mathrm{i}}_{\mathrm{V}}\mathrm{e}$ direct
summand. Now the non-projective direct summand of $V_{\downarrow N}\overline{f}$ is a factor
module $Q$ of $P(s_{1}’)$ (cf. (3.6) and (3.7)).

First we observe that the isomorphism classes of the composition factors
of soc $(V)$ are mutually distinct. If we remove a composition factor $S$ from
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soc $(V)$ , then we get a smaller factor module of $P(s_{1}’)$ (actually it is a
factor module of $Q$ factored by a uniserial module $s_{\downarrow N}\overline{f}$), and since this
uniserial module is a unique submodule having the same Loewy series as
that of $s_{\downarrow N}\overline{f}$, the factor module is uniquely determined by this process.

Next we continue the above process for $V/S$ and gain a smaller factor
module of $P(s_{1}’)$ . It is known that $\alpha=\beta=\gamma=1$ when $q=2$ . When
we remove composition factors $s_{10,17}s$ and $S_{19}$ from $V$ according to the
above process, we get a factor module of $P(s_{1}’)$ whose socle is simple and
it is not isomorphic to the socle of $S_{18\downarrow N}\overline{f}$ nor $S_{17\downarrow N}\overline{f}$ nor $S_{19\downarrow N}\overline{f}$ . This
implies that we have already obtained $W_{\{q)}$ and $\alpha=\beta=\gamma=1$ for any $q$ .
Since we can guarantee that the factor module which we obtain in each
step is uniquely determined, the final $W_{\langle q)}$ is unique and characterized by
this removing process. Then $W_{(q)}$ corresponds to $W_{(2)}$ .
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