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A density of the information-theoretic Wehrl entropy in terms of the Hu-

simi $Q$ -function is defined. The entropic density is then applied to describe

the quantum properties of some optical fields including Fock states, cohe-

rent and squeezed states, superposition of chaotic and coherent states, and

Schr\"odinger cat and cat-like states. The entropic density is compared with

both the conventional Wehrl entropy and the Husimi phase distribution.

It is shown that the entropic density is a good measure of the phase-space

uncertainty (noise), and the phase locking or phase bifurcation effects. The

advantages of the entropic description of the superposition principle are

presented. It is also demonstrated that the entropic density properly de-

scribes phase randomization processes, thus can be used as a measure of

decoherence.

I. INTRODUCTION

Quantum entropy is one of the most fundamental concepts of quantum physics [1], parti-

cularly useful in quantum information [2]. Quantum entropy has been applied, e.g., as a

measure of quantum entanglement, qualltum decoherence, photocount statistics, quantum
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optical correlations, purity of states, quantum noise or accessible information in quantum

measurement (capacity of quantum channel).

Quantum entropy, as a natural generalization of classical Boltzmann entropy, was propo-

sed by von Neumann [3]. A classical-like entropy associated with quantum fields was intro-

duced by Wehrl [4] in terms of the Glauber coherent states and the Husimi $Q$-function [5].

A rigorous proof that the von Neumann entropy tends to the Wehrl entropy in the clas-

sical limit $\hslasharrow 0$ was given by Beretta [6]. The quantum von Neumann entropy can be

expanded in power series of classical entropies. As was shown explicitly by Pe\v{r}inov\’a et

al. [7], the first term of this expansion is the Wehrl entropy. Bu\v{z}ek et al. [8] related the

von Neumann entropy with the sampling entropies based on operational approach to a

phase-space measurement. They also identified the Wehrl entropy as a particular example

of the sampling entropy, when the quantum ruler is represented by coherent states. Other

aspects of the relation between classical and quantum-mechanical entropies have also been

extensively studied (see, e.g., excellent surveys by Wehrl [9], and Ohya and Petz [1] with

references included therein).

The Wehrl entropy has been successfully applied in a description of different properties of

quantum optical fields. In particular, it has been shown explicitly that the Wehrl entropy

is a useful measure of phase-space uncertainty (quantum noise, phase-space localization,

wave-packet spreading) [8,10-14], quantum interference [10], decoherence [11,15,16], ioni-

zation [14], squeezing [16-18], Schr\"odinger cat formation $[13,19]$ or, in general, splitting

of $Q$ -function [15].

The von Neumann entropy becomes zero for all pure states, thus cannot be used in

discriminating them. Paradoxically, the classical Wehrl entropy is more sensitive in di-

stinguishing states than the quantum von Neumann entropy, since it is dependent on the

choice of pure states. However, there are properties of quantum fields (including phase

decoherence or unique description of superposition states), which are not enough precisely

described by the conventional Wehrl entropy. Therefore, we propose a new entropic me-
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asure-the phase-density of the Wehrl entropy. We analyze several quantum and classical

optical states of light to show the usefulness and advantages of the new entropic measure

in comparison to the conventional Wehrl entropy.

II. DEFINITIONS

The density matrix $\rho\wedge$ for an arbitrary (pure or mixed) state of light can be represented

by the classical-like Husimi $Q(\alpha)$ -function [5],

$Q( \alpha)=\frac{1}{\pi}\mathrm{T}\mathrm{r}(\rho\urcorner\alpha\rangle\langle\alpha|)=\frac{1}{\pi}\langle\alpha|\rho\gamma\alpha\rangle$ , (1)

in terms of coherent states $|\alpha\rangle$ . Eq. (1) is normalized to unity,

$\int Q(\alpha)\mathrm{d}^{2}\alpha=1$ , (2)

where $\mathrm{d}^{2}\alpha\equiv \mathrm{d}Re\alpha \mathrm{d}Im\alpha=|\alpha|\mathrm{d}|\alpha|\mathrm{d}\mathrm{A}\mathrm{r}\mathrm{g}\alpha$ . The Husimi representation (1) provides,

equivalently to the Glauber-Sudarshan or Wigner representations, a basis for a formal

equivalence between the quantum and classical descriptions of optical coherence [20].

The classical information-theoretic Wehrl entropy $[4,21]$ :

$S_{\mathrm{W}}=- \int Q(\alpha)\ln Q(\alpha)\mathrm{d}^{2}\alpha$ (.3)

is defined via the Husimi $Q$-function (1). The Wehrl entropy (3) is also called the Shannon

information of $Q$ -function [11]. We define the following entropic measure:

$S_{\theta}=- \int Q(\alpha)\ln Q(\alpha)|\alpha|\mathrm{d}|\alpha|$ , (4)

which might be interpreted as the Wehrl phase distribution or the phase density of the

Wehrl entropy. In fact, the Wehrl entropy (3) can be obtained from Eq. (4) by simple

integration,

$s_{\mathrm{w}\equiv-} \int\int Q(\alpha)\ln Q(\alpha)|\alpha|\mathrm{d}|\alpha|\mathrm{d}\theta=\int S_{\theta}\mathrm{d}\theta$ , (5)
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where $\theta=\mathrm{A}\mathrm{r}\mathrm{g}\alpha$ . For brevity, the terms entropic density and Wehrl phase distribution will

be used for the function (4). We will show some formal similarities but also essential dif-

ferences between the entropic density (4) and phase distributions, including the so-called

Husimi phase distribution [23]

$P_{\theta}= \int Q(\alpha)|\alpha|\mathrm{d}|\alpha|$ , (6)

defined as the marginal function of the Husimi Q-function.

In the next Sections, we will calculate the Husimi $Q$-function, the Wehrl entropy and

its phase density for some common states of light. We will show the advantages of the

entropic density over the standard Wehrl entropy and phase distributions in a description

of quantum properties of radiation.

III. ENTROPIC DESCRIPTION OF COMPLETE DECOHERENCE

We show, by analyzing states with random phase, that the entropic density properly de-

scribes fields, which are completely decoherent. States with random phase are usually defi-

ned by uniform classical phase distributions $[22,23]$ , uniform quantum Pegg-Barnett phase

distribution $[24,23]$ or, equivalently, by rotated-quadrature distributions independent of

the reference phase [25]. These definitions can also be formulated in terms of the rotational-

ly symmetric quasiprobability distributions, including Wigner or Husimi functions $[25,23]$ .

Consequently, the states with random phase, described by the phase-independent Husimi

function $Q(\alpha)=f(|\alpha|)$ , have also the phase-independent entropic density $S_{\theta}$ . Thus, the

Wehrl entropy $S_{\mathrm{W}}$ is simply related to its density $S_{\theta}$ by the formula $S_{\theta}=S_{\mathrm{W}}/(2\pi)$ . We

briefly discuss two examples of such states.

A. Fock states

The Fock state $|n\rangle$ is described by the phase-independent $\mathrm{H}\mathrm{u}\mathrm{s}\mathrm{i}_{\mathrm{I}}\mathrm{n}\mathrm{i}Q$ -function in the form

of the Poissonian distribution
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1 $|\alpha|^{2n}$

$Q(\alpha)=\overline{\pi}\overline{n!}\exp(-|\alpha|^{2})$ . (7)

Consequently, the entropic density is given by:

$S_{\theta}= \frac{1}{2\pi}S_{\mathrm{W}}=\frac{1}{2\pi}[1+n-n\psi(n+1)+\ln(\pi n!)]$ , (8)

where $\psi’(n+1)=-\gamma+\sum_{k=1}^{n}\frac{1}{k}$ is the digamma function defined by Euler’s constant $\gamma=$

$0.57721566\cdots$ . Eq. (8) instantly comes from the well-known expression for the Fock-state

Wehrl entropy (see, e.g., Ref. [18,7]). The entropic densities for Fock states $|n\rangle$ with

$n=0,10,$ $\cdots,$
$50$ are depicted in polar coordinates in Fig. 1 (a).

B. Chaotic field

The chaotic (Gaussian) field is defined as a state with the maximal von Neumann entropy.

Its Husimi $Q$ -function reads as [20]:

$Q( \alpha)=\frac{1}{\pi(\langle n_{c,\mathrm{h}}\rangle+1)}\exp(-\frac{|\alpha|^{2}}{\langle n_{\mathrm{c}\mathrm{h}}\rangle+1})$ , (9)

where $\langle n_{\mathrm{c}\mathrm{h}}\rangle$ is the mean number of photons. The mean photon number of thermal

(blackbody) radiation at thermal equilibrium at temperature $T$ , is given by $\langle n_{\mathrm{c}\mathrm{h}}\rangle=$

$\{\exp(\hslash\omega/k_{B}T)-1\}^{-1}$ , where $k_{B}$ is the Boltzmann constant. The entropic density of the

FIG. 1. Entropic density for (a) Fock states and (b) chaotic fields with the mean photon

numbers $n=\langle n_{\mathrm{c}\mathrm{h}}\rangle$ equal to: $0$ (inner circle), 10, 20, .30, 40, 50 (outer circle).
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chaotic light is then given by

$S_{\theta}=‘ \frac{1}{2\pi}S_{\mathrm{W}}=\frac{1}{27\mathrm{i}^{\sim}}[1+\ln\pi+\ln(\langle n_{\mathrm{c}\mathrm{h}}\rangle+1)]$ . (10)

The Wehrl entropy $S_{\mathrm{W}}$ , given by Eq. (10), was disctlssed in Refs. [7,20,18]. $\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{e}\mathrm{c}\mathrm{t}1\}^{r}$

circular representations of the phase-independent entropic densities for chaotic states are

plotted in Fig. 1(b). For comparison, the entropic densities for Fock states in Fig. 1(a)

and for chaotic states in Fig. $1(\mathrm{b})$ are shown for the same mean-photon numbers $l_{1}n_{\mathrm{c}\mathrm{h}}\rangle$ $=$

$\langle n_{\mathrm{F}\mathrm{o}\mathrm{c}\mathrm{k}}\rangle\equiv n$ .

The Pegg-Barnett phase distribution [24] and the marginal quasiprobability phase distri-

butions [23], including the Husimi phase function $P_{\theta}$ , are equal to $1/(2\pi)$ for any state

with random phase. The entropic density (4), although independent of phase, remains

dependent on the mean number of photons in the field with random phase. Hence, the

density $S_{\theta}$ contains more information than the phase distributions, but still fulfills the

requirement for a good measure of phase properties or decoherence.

IV. ENTROPIC DESCRIPTION OF PARTIAL DECOHERENCE AND PHASE

LOCKING

We will show, by referring to the examples of pure or ”noisy” coherent fields, that the

entropic density describes properly the influence of noise on coherent field (decoherence

effect) as well as phase locking effect observed with the increasing mean number of photons

of the partial phase states (amplification of coherence).

A. Signal with noise

A superposition of coherent signal with complex amplitude $\alpha_{0}$ and chaotic noise with the

mean photon number $\langle n_{\mathrm{c}\mathrm{h}}\rangle$ can be described by the following Husimi $Q$ -function [20]:

$Q( \alpha)=\frac{1}{\pi(\langle n_{\mathrm{c}\mathrm{h}}\rangle+1)}\exp(-\frac{|\alpha-\alpha_{0}|^{2}}{\langle n_{\mathrm{c}\mathrm{h}}\rangle+1})$ . (11)
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After integration, according to Def. (4), we find the closed-form expression of the entropic

density for the superposition of coherent signal and noise as follows:

$S_{\theta} \equiv S_{\theta}(\alpha_{0}, n_{\mathrm{c}\mathrm{h}})=\frac{1}{2\pi}\exp[-(X_{0}^{2}-X^{2})]\{\exp(-X^{2})f_{2}+\sqrt{\pi}X[1+\mathrm{e}\mathrm{r}\mathrm{f}(X)]f_{1}\}$ , (12)

where

$f_{j}=X_{0}^{2}-X^{2}+\ln[\langle n_{\mathrm{c}\mathrm{h}}\rangle+1]+\ln\pi+j/2$ , and $X= \frac{|\alpha_{0}|}{\sqrt{\langle n_{\mathrm{c}\mathrm{h}}\rangle+1}}\cos(\theta-\theta_{0})$ , (13)

which, for the special choice of $\theta$ , is denoted by $X_{0}=X(\theta=\theta_{0})=|\alpha_{0}|/\sqrt{\langle n_{\mathrm{c}\mathrm{h}}\rangle+1}$,

where $\theta_{0}$ is the phase of $\alpha_{0}$ . Analogously, for the field described by Eq. (11), we derive

the following Husimi phase distribution

$P_{\theta} \equiv P_{\theta}(\alpha_{0}, n_{\mathrm{c}\mathrm{h}})=\frac{1}{2_{T}}\exp[-(X_{0}^{2}-X^{2})]\{\exp(-X^{2})+\sqrt{\pi}X[1+\mathrm{e}\mathrm{r}\mathrm{f}(X)]\}$, (14)

where $X$ is defined by Eq. (13). It is seen, by comparing Eqs. (12) and (14), that the

entropic density $S_{\theta}$ differs from the Husimi phase distribution $P_{\mathrm{H}}(\theta)$ by the factors $f_{j}$ .

Eq. (12) goes over into Eq. (14) by putting $f_{1}=f_{2}=1$ . The Wehrl entropy for the field

(11) reads as $[7,20]$ :

$S_{\mathrm{W}}=1+\ln\pi+\ln(\langle n_{\mathrm{c}\mathrm{h}}\rangle+1)$, (15)

which can be obtained by direct integration of the entropic density (12). The Wehrl

entropy (15) is independent of the complex amplitude of the coherent signal. Eq. (12)

reduces to the phase-independent density (10) for chaotic field without coherent signal

$(\alpha_{0}=0)$ . The entropic density for the Glauber coherent state is another special case of

Eq. (13).

B. Coherent states

The Husimi $Q$ -function for the Glauber coherent state $|\alpha_{0}\rangle$ reads as
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$Q( \alpha)=\frac{1}{\pi}\exp\{-|\alpha-\alpha_{0}|^{2}\}$ . (16)

Coherent state (16) is the most common example of the partial phase state [24]. Eq.

(16) is the special case of Eq. (11) for the signal field $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{o}\iota \mathrm{l}\mathrm{t}$ noise $(\langle n_{\mathrm{c}\mathrm{h}}\rangle=0)$ . Thus,

the entropic density for the coherent state is given by Eq. (12), while the Husimi phase

distribution by Eq. (14), where $f_{j}=X_{0}^{2}-X^{2}+\ln\pi+j/\underline{9}$ and $X=|\alpha_{0}|\cos(\theta-\theta_{0})$ . The

$s$ -parametrized phase distribution for the coherent state was obtained by Tana\’{s} et al. [26].

Their solution in the special case for $s=-1$ reduces to the Husimi phase distribution

$P_{\theta}(\alpha_{0}, n_{\mathrm{c}\mathrm{h}}=0)$ , given by Eq. (14).

The first term in braces in Eq. (12) plays an essential role for small $|\alpha_{0}|$ . By expanding

Eq. (12) in power series of $|\alpha_{0}|$ , and by putting $\langle n_{\mathrm{c}\mathrm{h}}\rangle=0$ , we find

$S_{\theta}= \frac{1+\ln\pi}{2\pi}+\frac{1+2\ln\pi}{4\sqrt{\pi}}|\alpha_{0}|\cos(\theta-\theta_{0})+\mathcal{O}(|\alpha_{0}|^{2})$ , (17)

which is the approximation of the entropic density (12) for coherent state with small

amplitude. The corresponding Husimi phase distribution

$P_{\theta}= \frac{1}{2\pi}+\frac{1}{2\sqrt{\pi}}|\alpha_{0}|\cos(\theta-\theta_{0})+\mathcal{O}(|\alpha_{0}|^{2})$ (18)

is obtained from the exact Eq. (11). For $|\alpha_{0}|=0$ , both $S_{\theta}$ and $P_{\theta}$ are phase indepen-

dent. For large $|\alpha_{0}|$ , the second term of Eq. (12) predominates resulting in the following

asymptotic formula

$S_{\theta} \approx\frac{f_{1}}{\sqrt{\pi}}X\exp[-(X_{0}^{2}-X^{2})]$ . (19)

The error function $\mathrm{e}\mathrm{r}\mathrm{f}(X)$ in Eq. (12) was replaced by unity in the derivation of Eq. (19).

Similarly, the asymptotic Husimi phase distribution is

$P_{\theta} \approx\frac{1}{\sqrt{\pi}}X\exp[-(X_{0}^{2}-X^{2})]$ . (20)

The asymptotic formulas (19) and (20) are valid $\mathrm{f}\mathrm{o}\mathrm{r}-\pi/2\leq(\theta-\theta_{0})\leq\pi/2$ only. However,
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FIG. 2. Entropic density for coherent states [figs. (a) and $(\mathrm{b})$ ] and for superpositions of

coherent signal and noise with $\langle n_{\mathrm{c}\mathrm{h}}\rangle=10$ [figs. (c) and $(\mathrm{d})$] for the coherent amplitllde $\alpha_{0}$ equal

to: $0$ (thickest solid line), 0.4, 0.8, 1.2, 1.6 (thinnest line).

Eq. (12), which is given in terms of the error function, holds for arbitrary phase $\theta$ . From

Eq. (15) follows that the Wehrl entropy for a coherent state is constant, i.e. $S\mathrm{w}=1+\ln\pi$ ,

although its density is dependent on the amplitnde $\alpha_{0}$ .

Entropic densities are depicted for the coherent signals in Figs. $2(\mathrm{a},\mathrm{b})$ and for the super-

positions of the coherent signal and noise in Figs. $2(\mathrm{c},\mathrm{d})$ for various values of the mean

photon numbers. It is seen that, for the fixed mean number of chaotic photons, the en-

tropic density functions become sharper with the increasing mean number of coherent

photons. It is a signature of the so-called phase locking. This phenomenon can be de-

scribed within the optical phase formalisms $[24,23]$ . Here, we have presented alternative

entropic description of the phase locking. It is also evident, by comparing Figs. $2(\mathrm{b})$ and

$2(\mathrm{d})$ for fixed number of photons $|\alpha_{0}|^{2}$ in the coherent signal, that (i) the area covered by

the entropic density (which is the Wehrl entropy) increases, while (ii) the entropic densi-

ty itself becomes less phase dependent with increasing noise. Thus, the entropic density
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serves as a measure of both (i) noise (phase-space uncertainty) and (ii) decoherence.

V. ENTROPIC DESCRIPTION OF PHASE BIFURCATION

The bifurcation phenomenon arising in the phase probability distribution of highly squ-

eezed states was discovered by Schleich et al. [28]. We explain this effect by tlsing the

entropic density concept.

A. Squeezed states

The ideal squeezed states (two-photon coherent states) are defined to be [27]

$|\alpha_{0},$ $\zeta\rangle=\hat{D}(\alpha_{0})\hat{S}(\zeta)|0\rangle$ , (21)

where $\hat{D}(\alpha_{0})=\exp(\alpha_{0}a^{\uparrow}-\wedge\alpha_{0^{\mathit{0})}}^{*^{\wedge}}$ is the displacement operator with the complex displace-

ment parameter $\alpha_{0}$ , and $\hat{S}(\zeta)=\exp(\frac{1}{2}\zeta^{*}a^{2}-\wedge\frac{1}{2}\zeta a\dagger\wedge 2)$ is the unitary sqneeze operator with

the squeeze parameter $\zeta$ . For simplicity, we assume that (is real. The Husimi Q-function

for the state (21) is

$Q( \alpha)=\frac{1}{\pi\sigma_{1}\sigma_{2}}\exp\{-\frac{{\rm Im}^{2}(\alpha-\alpha_{0})}{\sigma_{1}^{2}}-\mathrm{f}\frac{\mathrm{f}\mathrm{i}^{2}(\alpha-\alpha_{0})}{\sigma_{2}^{2}}\}$, (22)

where $\sigma_{1,2}=\sqrt{\frac{1}{2}(\mathrm{e}^{\pm 2(}+1)}$. We find, by assuming that $\alpha_{0}$ is real, the following entropic

density for the squeezed state:

$S_{\theta}= \frac{1}{2\pi}\frac{\sigma_{1}\sigma_{2}}{\sigma^{2}}\exp[-(X_{0}^{2}-X^{2})]\{\mathrm{e}^{-X^{2}}f_{2}+\sqrt{\pi}X[1+\mathrm{e}\mathrm{r}\mathrm{f}(X)]f_{1}\}$, (23)

where

$f_{j}= \sigma_{2}^{2}(\frac{X_{0}^{2}}{\sigma^{2}}-\frac{X^{2}}{\sigma_{1}^{2}})+\ln(\pi\sigma_{1}\sigma_{2})+\frac{j}{2}$ , and $X=X( \theta)=\frac{\sigma_{1}}{\sigma_{2}\sigma}\alpha_{0}\cos\theta$ . (24)

Moreover, $X_{0}=X(\theta=0)=\alpha_{0}/\sigma_{2}$ and $\sigma^{2}=\sigma_{1}^{2}\cos^{2}\theta+\sigma_{2}^{2}\sin^{2}\theta$ . Eq. (23) for the squeezed

state has the same structure as Eq. (12) for the coherent signal field with noise, apart
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from the extra coefficient $\sigma_{1}\sigma_{2}\sigma^{-2}$ , and the modified definitions of the functions $f_{j}$ and

X. For $\zeta=0$ , which results in $\sigma=\sigma_{1}=\sigma_{2}=1$ , Eq. (23) reduces to a special case of Eq.

(12) for real coherent state $(\theta_{0}=\langle n_{\mathrm{c}\mathrm{h}}\rangle=0)$ . If we put $f(i)arrow 1$ , Eq. (23) will describe

the Husimi phase distribution $P_{\theta}$ for the squeezed state obtained by Tana\’{s} et al. $[26,23]$ .

By integrating the Husimi function (23), one readily obtains the Wehrl entropy

$S_{\mathrm{W}}=1+\ln(\pi\cosh\zeta)$ (25)

in agreement with the well-known results for the squeezed states obtained by Lee [17] and

Orlowski [18]. Eq. (23) is valid for arbitrary value of the displacement parameter $\alpha_{0}$ . The

entropic density $S_{\theta}$ for a highly displaced $(\alpha_{0}^{2}\gg 1)$ squeezed state can be approximated

by

$S_{\theta} \approx\frac{f_{1}}{\sqrt{\pi}}\frac{\sigma_{1}\sigma_{2}}{\sigma^{2}}X\exp[-(X_{0}^{2}-X^{2})]$. (26)

FIG. 3. Bifurcation of entropic density for squeezed states with: $\alpha_{0}=0$ (squeezed vacuum)

[figs. (a) and $(\mathrm{b})$ ] and $\alpha_{0}=1$ [figs. (c) and $(\mathrm{d})$ ] for different values of the squeeze parameter:

( $=0$ (dotted line), ( $=1$ (dashed line), and $\zeta=2$ (solid line).
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For $\alpha_{0}^{2}\ll 1$ , Eq. (23) can be expanded in power series in $\alpha_{0}$ . We find the following

small-amplitude entropic density

$S_{\theta}= \frac{1}{2\pi}\frac{\sigma_{1}\sigma_{2}}{\sigma^{2}}\{1+\ln(\pi\sigma_{1}\sigma_{2})+\sqrt{\pi}X[1/2+\ln(\pi\sigma_{1}\sigma_{2})]\}+\mathcal{O}(\alpha_{0}^{2})$ . (27)

For the squeezed vacuum, i.e., in the limit $\alpha_{0}arrow$ $0$ , Eq. (27) reduces to $S_{\theta}$ $=$

$1/(2\pi)\sigma_{1}\sigma_{2}\sigma^{-2}[1+\ln(\pi\sigma_{1}\sigma_{2})]$ . The entropic densities are plotted in Figs. $3(\mathrm{a})$ and $3(\mathrm{b})$

for squeezed vacua and in Figs. $3(\mathrm{c})$ and $3(\mathrm{d},)$ for squeezed states with the displacement

parameter $\alpha_{0}=1$ and different values of the squeeze parameter (. The entropic densi-

ty for a squeezed vacuum has a two-peak structure, which goes into a flat distribution

in the limit of no squeezing $(\zeta=0)$ . However, the entropic density (23) for the squ-

eezed state with nonzero displacement parameter undergoes a transition from a single-to

double-peak distribution either by increasing the squeeze parameter (or by decreasing

the displacement parameter $\alpha_{0}$ . This behavior of the entropic density (23) arises from

the competition between the coherent component exhibiting a single-peak structure and

the squeezed-vacuum component having a double-peak structure. The above transition

of the entropic density indicates the phase bifurcation phenomenon discovered by Schle-

ich et al. [28] by analyzing the Pegg-Barnett phase distribution with increasing value

of the product of the squeeze and displacement parameters for the state (21). Alterna-

tively, the phase bifurcation can be analyzed in terms of the marginal quasiprobability

distributions $[26,23]$ . The squeezed-state phase bifurcation has also a sirnple physical in-

terpretation according to the principle of the area of overlap in the phase space [28].

In the limit of strong squeezing $\zeta\gg\alpha_{0}^{2}$ , the peaks of the entropic density (23) are centered

at $\theta=\pm\pi/2$ and can approximately be expressed by

$S_{\theta} \approx\frac{\exp(\zeta-2\alpha_{0}^{2})}{2\pi}[\zeta+2\alpha_{0}^{2}+\ln(\pi/2)+1]$ , (28)

which shows that the peak height of $S_{\theta}$ is proportional to $\zeta \mathrm{e}^{\zeta}$ if we neglect the parameter

$\alpha_{0}$ small in comparison with (. In the same squeezing limit but for $\theta\neq\pm\pi/2$ , Eq. (23)

simplifies to
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$S_{\theta} \approx\frac{\mathrm{e}^{-(}}{2\pi}\sec^{2}\theta\{\mathrm{e}^{-2\alpha_{0}^{2}}f_{2}+\sqrt{2\pi}\alpha_{0}[\frac{\cos\theta}{|\cos\theta|}+\mathrm{e}\mathrm{r}\mathrm{f}(\sqrt{2}\alpha_{0})]f_{1}\}$, (29)

where $f_{j}\approx\ln(\pi/2)+s+j/2$ is obtained as the approximation of Eq. (24). For squeezed

vacuum, Eq. (29) reduces to $S_{\theta}\approx 1/(2\pi)f_{2}\mathrm{e}^{-(}\sec^{2}\theta$ . Eq. (29) is proportional to $\exp(-\zeta)$ ,

so the entropic density is negligible for $\theta$ not close to $\pm\pi/2$ . The exact entropic density

(23) is presented graphically both in polar [Figs. $3(\mathrm{a},\mathrm{c})$ ] and in Cartesian coordinates

[Figs. $3(\mathrm{b},\mathrm{d})$ ] in agreement with the approximate Eqs. (28)$-(29)$ for the case fulfilling

the condition $\zeta\gg\alpha_{0}^{2}$ . Finally, we conclude that the entropic density (23), having a

structure with two sharp peaks in the limit of strong squeezing, properly describes the

phase bifurcation effect.

VI. ENTROPIC DESCRIPTION OF SUPERPOSITION PRINCIPLE

Schr\"odinger cat or cat-like states (kittens) are the striking manifestations of the superpo-

sition principle in mesoscopic systems. Although, the Schr\"odinger cats have been experi-

mentally generated only recently $[30,31]$ , they have attracted lots of interest in quantum

and atom optics, quantum cryptography or quantum computing by allowing controlled

studies of quantum measurement or quantum entanglement and decoherence. We will

analyze simple prototypes of the Schr\"odinger cats and kittens states to show that the

entropic density is a good indicator of their formation and properties.

A. Schr\"odinger cat states

Superposition of two coherent states $|\alpha_{0}\rangle$ and $|-\alpha_{0}\rangle$ in the form

$|\alpha_{0},$ $\gamma\rangle=c(\gamma)\{|\alpha_{0}\rangle+\exp(\mathrm{i}\gamma)|-\alpha_{0}\rangle\}$ , (30)

with the normalization $c(\gamma)=\{2[1+\cos\gamma\exp(-2|\alpha_{0}|^{2})]\}^{-1/2}$ , is an example of the

Schr\"odinger cat (see, e.g., [32]). For the special choices of the superposition phase $\gamma$ ,
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the state (30) reduces to the well-known Schr\"odinger cats, including the Yurke-Stoler

coherent state for $\gamma=\pi/2[33]$ :

$|\alpha_{0}\rangle_{\mathrm{Y}\mathrm{S}}=|\alpha_{0},$ $\pi/2\rangle=\frac{1}{\sqrt{2}}(|\alpha_{0}\rangle+\mathrm{i}|-\alpha_{0}\rangle)$ , (31)

and the even $(\gamma=0)$ and odd $(\gamma=\pi)$ coherent states [20]:

$| \alpha_{0},0\rangle=c(0)(|\alpha_{0}\rangle+|-\alpha_{0}\rangle)=\frac{1}{\sqrt{\cosh|\mathit{0}_{0}|^{2}}}\sum_{n=0}^{\infty}\frac{\alpha_{0}^{2n}}{\sqrt{(2n)!}}|2n\rangle$ , (.32)

$|\alpha_{0},$ $\pi\rangle=c(\pi)(|\alpha_{0}\rangle-|-\alpha_{0}\rangle)=\frac{1}{\sqrt{\sinh(|\alpha_{0}|^{2})}}\sum_{n=0}^{\infty}\frac{\alpha_{0}^{2n+1}}{\sqrt{(2n+1)!}}|2n+1\rangle$ , (33)

respectively. The Husimi function for the cat (30) can be given as the sunl

$Q(\alpha)=c(\gamma)^{2}[Q_{1}(\alpha)+2Q_{12}(\alpha)+Q_{2}(\alpha)]$ (34)

FIG. 4. Entropic density for the three types of Schr\"odinger cats: even coherent states (thick

solid line), odd coherent states (thin solid line), and Yurke-Stoler coherent states (dashed line,

additionally with diamonds in figure $(\mathrm{d}))$ for the two values of the coherent amplitude: $\alpha_{0}=0.8$

[figs. (a) and $(\mathrm{b})$ ] and $\alpha_{0}=1.2$ [figs. (c) and $(\mathrm{d})$].
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FIG. 5. Wehrl entropy for Schr\"odinger cat $|\alpha_{0},$ $\gamma\rangle$ in its dependence on the superposition

phase $\gamma$ for different values of the coherent amplitude $\alpha_{0}$ .

of coherent terms $(k=1,2)$

$Q_{k}( \alpha)=\frac{1}{\pi}\exp\{-|\alpha+(-1)^{k}\alpha_{0}|^{2}\}$ (35)

and the interference term

$Q_{12}( \alpha)=\frac{1}{\pi}\exp(-|\alpha|^{2}-|\alpha_{0}|^{2})\cos[\gamma+2|\alpha||\alpha_{0}|\sin(\theta-\theta_{0})]$. (36)

There is no compact-form exact expression for the entropic densities for the cat (30).

The states analyzed in the former sections are among a few examples, for which entropic

densities can be expressed analytically in compact form. Nevertheless, the entropic density

for the well separated $(|\alpha_{0}|\gg 1)$ coherent states $|\alpha_{0}\rangle$ and $|-\alpha_{0}\rangle$ in the superposition (30)

can be approximated

$S_{\theta} \approx\frac{1}{2}\{S_{\theta}(\alpha_{0},0)+S_{\theta}(-\alpha_{0},0)+[P_{\theta}(\alpha_{0},0)+P_{\theta}(-\alpha_{0},0)]\ln 2\}$ , (37)

where the entropic densities for $S_{\theta}(\pm\alpha_{0},0)$ are given by Eq. (12) and the Husimi phase

distributions $P_{\theta}(\pm\alpha_{0},0)$ are defined by Eq. (14) in the special case for $\langle n_{\mathrm{c}\mathrm{h}}\rangle=0$ . In Fig. 4,

we have presented the entropic densities for the Yurke-Stoler coherent state, and the $e$ven

and odd coherent states. Figs. $4(\mathrm{a})$ and $4(\mathrm{c})$ are plotted in polar coordinates to show more
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explicitly the two-peak structures of the cats, whereas Figs. $4(\mathrm{b})$ and $4(\mathrm{d})\dot{\mathrm{a}}$re depicted in

Cartesian coordinates for better comparison of the values of the entropic densities. It is

seen that the maximum values of the entropic densities are dependent on the amplitude.

By analyzing Figs. $4(\mathrm{a},\mathrm{b})$ with Figs. $4(\mathrm{c},\mathrm{d})$ , one can conclude that differences between the

cats (31)$-(33)$ diminish with the increasing amplitude $\alpha_{0}$ .

The Wehrl entropy for the cat (30) has been studied numerically by Bu\v{z}ek et al. [10]

for arbitrary superposition phase $\gamma$ . Whereas, Jex and Ordowski [19] and Vaccaro and

Ortowski [13] studied the Wehrl entropy for the Yurke-Stoler coherent state generated in

a Kerr-like medium. In Fig. 5, we show the Wehrl entropies $\llcorner \mathrm{q}_{\mathrm{W}}$ for the cat (30) in their

dependence on the superposition phase $\gamma$ for various values of the separation amplitude

$\alpha_{0}$ . The curve for $\alpha_{0}=0.8$ corresponds to the case analyzed by Bu\v{z}ek et al. $[10,21]$ . The

differences between Wehrl entropies for the cats (31), (32) and (33) vanish with increasing
$|\alpha_{0}|$ . The Wehrl entropy in the amplitude limit, $|\alpha_{0}|arrow\infty$ , tends to $S_{\mathrm{W}}=1+\ln(2\pi)$ .

This value can be obtained by integrating the approximate entropic density (37). On

the scale of Fig. 5, the curve representing the Wehrl entropy for $\alpha_{0}=2.4$ is practically

indistinguishable from $1+\ln(2\pi)$ , i.e., the entropy in the infinite-amplitude $1\mathrm{i}_{1}\mathrm{n}\mathrm{i}\mathrm{t}$ .

B. Schr\"odinger cat-like states

The Schr\"odinger cat-like state (kitten state [29]) is a generalization of the Schr\"odinger

cat for macroscopic quantum-superposition state with more than two components. In

particular, the normalized superposition of $N$ coherent states:

$| \psi\rangle=\sum_{k=1}^{N}c_{k}|\exp(\mathrm{i}\phi_{k})\alpha_{0}\rangle$ (38)

is the standard example the Schr\"odinger cat for $N=2$ and the Schr\"odinger cat-like

state for $N>2$ . The cat (30) consists of two coherent states with the same amplitude,

but opposite phases $(\phi_{2}-\phi_{1}=\pi)$ . Eq. (38) generalizes Eq. (30) for arbitrary number,

amplitude and phase of the states in the superposition. The Husimi $Q$ -fnnction for the
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superposition state (38) reads as $[34,32]$ :

$Q( \alpha)=Q_{0}(\alpha)+Q_{\mathrm{i}\mathrm{n}\mathrm{t}}(\alpha)=\sum_{k=1}^{N}|c_{k}|^{2}Q_{k}(\alpha)+2\sum_{k>l}|c_{k}||c_{l}|Q_{kl}(\alpha)$ , (39)

where the free part $Q_{0}(\alpha)$ is the sum of the coherent terms

$Q_{k}( \alpha)=\frac{1}{\pi}\exp\{-|\alpha-\mathrm{e}^{\mathrm{i}\phi_{k}}\alpha_{0}|^{2}\}$ , (40)

and the interference part $Q_{\mathrm{i}\mathrm{n}\mathrm{t}}(\alpha)$ is given in terms of

$Q_{kl}(\alpha)=\sqrt{Q_{k}Q_{l}}\cos[\gamma_{k}-\gamma\iota+2|\alpha||\alpha_{0}|\cos(\phi_{kl}^{(+)}+\theta_{0}-\theta)\sin(\phi_{kl}^{(-)})]$ . (41)

The phases in Eq. (41) are defined as $\gamma_{k}=\mathrm{A}\mathrm{r}\mathrm{g}c_{k},$ $\theta=\mathrm{A}\mathrm{r}\mathrm{g}\alpha,$ $\theta_{0}=\mathrm{A}\mathrm{r}\mathrm{g}\alpha_{0}$ , and $\phi_{kl}^{(\pm)}=$

$\frac{1}{2}(\phi_{k}\pm\phi\iota)$ , where $\phi_{k}$ occurs in Eq. (38). The $\mathrm{H}\mathrm{u}\mathrm{s}\mathrm{i}_{1}\mathrm{n}\mathrm{i}$ function (39) is a generalization of Eq.

(34). In particular, Eq. (41) reduces to Eq. (36) for $N=2$ . There exists exact analytical

compact-form expression neither for the entropic density nor the Wehrl entropy. However,

for well separated states, the entropic density for the Schr\"odinger cat-like state (38) is

approximately equal to

$S_{\theta} \approx\frac{1}{N}\sum_{k=1}^{N}\{S_{\theta}(\mathrm{e}^{\mathrm{i}\phi_{k}}\alpha_{0},0)+P_{\theta}(e^{\mathrm{i}\phi_{k}}\alpha_{0},0)\ln N\}$ , (42)

where the coherent-field entropic densities $S_{\theta}(\exp\{\mathrm{i}\phi_{k}\}\alpha_{0},0)$ are given by Eq. (12), while

the coherent-field Husimi phase distributions $P_{\theta}(\exp\{\mathrm{i}\phi_{k}\}\alpha_{0},0)$ read as Eq. (14). In Eq.

(42), we have assumed for simplicity that superposition coefficients are the same for all

components of the cat-like state, i.e., $c_{k}=$ const $=1/\sqrt{N}$ . The approximate entropic

density (42) leads, after integration according to Def. (4), to the Wehrl entropy $S_{\mathrm{W}}\approx$

$1+\ln(N\pi)$ in agreement with the Jex and Orlowski result $[19,21]$ .

There have been proposed several methods to produce Schr\"odinger’s cat or cat-like states

(see Refs. [30,31] and [32] for review). In particular, it has been predicted that the coherent

light propagating in a Kerr-like medium, described by the Hamiltonian

$\hat{H}=\hslash\omega aa+\frac{1}{2}\wedge\dagger^{\wedge\wedge\uparrow 2^{\wedge}}\hslash\kappa aa^{2}$ , (43)
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FIG. 6. Husimi $Q$ -function for Schr\"odinger cat-like states generated in Kerr medium at dif-

ferent evolution times $\kappa t=2\pi/N$ for the field initially coherent with the mean photon number

$|\alpha_{0}|^{2}=9$ .

FIG. 7. Same as in Fig. 6, but for the initial condition $|\alpha_{0}|^{2}=4$ .

FIG. 8. Entropic density for Schr\"odinger cat-like states for the same cases as in Fig. 6 (de-

picted by thin lines) and in Fig. 7 (thick lines).
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can be transformed into the cat (Yurke-Stoler coherent state) [33] but also into the

Schr\"odinger kittens [34]. Jex and Orlowski [19] and Vaccaro and Oriowski [13] have shown,

by analyzing the model (43), that the Wehrl entropy gives a signature of the formation

of the Schr\"odinger cat-like states. The entropic density, in comparison to the Wehrl en-

tropy, offers more detailed description of cats and kittens, showing explicitly the phase

configuration and amplitudes of the components. The Husimi $Q$ -function and the entropic

densities for the Schr\"odinger cat-like states generated in the model (43) are presented in

Figs. 6-8 for different evolution times $\kappa t$ , where $\kappa$ is the coupling constant in the Hamil-

tonian (43). The number of peaks in $S_{\theta}$ clearly corresponds to the number of components

in the superposition state. The entropic densities also show how the amplitude of the

incident coherent beam determines the maximum number of well-distinguishable states.

For example, both the Husimi $Q$ -function in Fig. 6 and the entropic density depicted by

thin line in Fig. 8 have regular and well-distinguishable structures even of six-component

superposition for the initial amplitude $|\alpha_{0}|=3$ . However, as plotted in Figs. 7 and 8

(thick-line plots), the six-component superposition for the initial condition $|\alpha_{0}|=2$ is

highly deformed. Thus, the entropic density describes the influence of the interference

terms (41) on formation of the Schr\"odinger cat-like states.

VII. CONCLUSIONS

We have proposed a definition of the phase-density of the Wehrl entropy as a measure of

the various quantum-mechanical and information-theoretic properties of optical fields. We

have shown that the entropic density is more sensitive measure of, e.g., phase properties

than the Wehrl entropy. In particular, our measure clearly describes phase decoherence

(phase randomization), enhancement of coherence (including phase locking) and phase bi-

furcation of quantum systems. The conventional Wehrl entropy offers a crude estimation

of decoherence only [11,15,16], and it describes neither the high-intensity coherent-state

phase locking nor the squeezed-state phase bifurcation. Moreover, the entropic density
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of Wehrl entropy uniquely distinguishes the number and phase-space configuration of the

two-(Schr\"odinger cats) or multicomponent (Schr\"odinger kittens) quantum superpositions

of macroscopically distinguishable states. In contrast, the conventional Wehrl entropy con-

tains no information about the phase-space configuration and does not always distinguish

macroscopic quantum superpositions with different number or amplitude of their compo-

nents.
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