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TOPOLOGICAL PROPERTIES OF
PRODUCTS OF ORDINAL NUMBERS
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1. INTRODUCTION

The greek letters «, 3,7, ... denote ordinal numbers with the usual order topolo-
gles. A space means a T; (every one p01nt set is closed) toplogical space. A space
X is regular if every pomt z € X and every closed set F' with z ¢ F are separated
by disjoint open sets. It is easy to verify that:

(1) If X and Y are regular, then so is the product space X x Y.
(2) If X is regular and Y C X, then Y is regular.

A space X is normal if every pair of disjoint closed sets are separated by disjoint
open sets. All compact spaces are normal and all subspaces of ordinal numbers are
also normal. On the other hand, X = (w; + 1) X w; is not normal. Indeed, using
the Pressing Down Lemma, we can show that the diagonal {(a,a) € X : a < w1}
and the set {w;} x w; cannot be separated by disjoint open sets. Therefore:

(1) X = (w1 +1) and Y = w; are normal but X x Y is not normal.
(2) X = (w; + 1)% is compact so normal, but the subspace Y = (w1 + 1) X w;
- of X is not normal. ' :

Thus the notion of normality is completely different from that of regularity.

The simplest non-trivial space is w4+ 1, that is, the convergent sequence"wi’ch its
unique limit point. The following famous result was proved by Dowker [Do}:

Dowker’s Theorem. If X is normal, then X X (w+1) is normal iff X is countably
paracompact.

Here a space X is said to be countably paracompact(countably metacompact) if
for every countable open cover U = {Uy, : n € w}, there is a locally finite (point
finite, respectively) open refinement’ Y of U, where V is locally finite (point finite)
if for every z € X, there is a neighborhood U of z such that {V € V: V NU # 0}
is finite (if for every z € X, {V € V : z € V'} is finite, respectively), moreover an
open cover V is said to be an open refinement of U if for every V € V, there is
UelUwithV CU. ~ '

Dowker asked in [Do] whether there exists a normal space which is not countably
paracompact. More than twenty years later, M. E. Rudin constructed in [Ru] such
a space in ZFC.

In these connections, we present more definitions. A space X is Collection Wise
Normal(abbreviated as CWN) if for every discrerte collection F of closed sets of
X, there exists a disjoint (equivalently, discrete) collection U = {U(F') : F € F}
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of open sets with F' C U(F'), where a collection F is discrete if for every z € X,
there is a neighborhood U of z with [{F € F: UNF # 0}| < 1. A space X is
expandable if for every locally finite collection F of closed sets, there is a locally
finite collection U = {U(F) : F € F} of open sets with F' C U(F'). For every space,
it is not difficult to verify:

(1) CWN — normal.

(2) expandable — countably paracompact — countably metacompact.
(3) normal + countably metacompact — countably paracompact.

(4) normal + expandable ++ CWN + countably paracompact.

(5) (w1 +1) x w; is expandable but not normal.

2. RESULTS

In the past 10 years, we have investigated such topological properties described
in section 1 of product spaces of ordinal numbers. In this section, a denotes an
arbitrary large ordinal number. First we proved in [KOT]:

Theorem 1. For every pair of subspaces A and B of «,

(1) A x B is normal iff it is CWN.

(2) A x B is countably paracompact iff it is expandable.

(3) If Ax B is normal, then it is countably paracompact. Note that (w;+1) X w;
s countably paracompact but not normal.

(4) For every pair of subspaces A and B of wy, Ax B is normal iff it is countably
paracompact iff A or B are non-stationary or AN B is stationary. Thus, if
A and B are disjoint stationary sets of wy, then A X B is neither normal
nor countably paracompact.

We asked in [KOT]:

(a) Is A x B countably metacompact for every pair of subspaces A and B of a?
- (b) Are normality and CWN equivalent for all subspaces of a??
(c) Are countable paracompactness and expandability equivalent for all sub-
spaces of a2?

On (a), we got in [KS1] and [KS2]:
Theorem 2.

(1) All subspaces of a® are countdbly metacompact.
(2) All subspaces of wl are countably metacompact for every n € w.
(3) There is a subspace of wy which is not countably metacompact.

After then we got an affirmative answer of (b) in [KNSY]:
Theorem 3. Normality and CWN are equivalent for all subspaces of a?.

However, the question (c) still remains open.
In connection with (4) of Theorem 1, we asked in [KNSY]:

(d) Are normality and countable paracompactness equivalent for all subspaces
of w2?

On (d), we proved in [KSS]:



Theorem 4. For every subspace X of w?,

(1) X is normal iff X is expandable iff X is countably paracompact and strongly
collectionwise Hausdorff, where a space is strongly collectionwise Hausdorff
(collectionwise Hausdorff) if for every subset F' of X with the collection
{{z} : z € F} discrete, there is a discrete (disjoint, respectively) collection
U={U(z):z e F} of open sets with z € U(x).

(2) If V=L or the Product Measure Extension Aziom are assumed, then X is
normal iff X is countably paracompact.

(3) X is collectionwise Hausdorff.

This theorem also says that the question (c) is closedly related to (d).

3. ON THE QUESTION (d)

Now we conjecture that there is a model in which (d) is not true, that is, there is
a countably paracompact but not normal subspace of w?. American young mathe-
maticians Eisworth, Just, Pavlov, Smith, Szeptycki are working on this problem. In
discussion with them, we have had a candidate of such a subspace. The remaining
is an unpublished work with them.

Let Lim = {o < w; : o islimit } and Succ = w;\Lim. For each a € Lim,
fix a strictly increasing w-sequence L, cofinal in o, moreover for simplicity of our
discussion we assume L, C Succ. Then we call L = {L, : @ € Lim} a ladder system.
Set L(L) = UgeLim La» then L(L) C Succ. The ladder space X (L) determined by
L is defined as follows:

X)) =1 U {e}x{Belim:a<plul |J ({a}ULe)x {a+1}].

acL(L) - a€lim

This is our candidate. The following are proved in our discussion:

(1) In ZFC, X (L) is not normal for every ladder system L.

(2) If MA(w,) is assumed, then for every ladder system £, X (£) is not countably
paracompact. In fact, MA(w;) destroys the property (+) below.

(3) In ZFC, X (L) is not countably paracompact for some ladder system L.

So our conjecture is:

(d’) In some model, there is a ladder system L such that X (L) is countably
paracompact.

Finally we present a combinatorial equivalent property due to Pavlov and Szeptycki,
independently.
(4) Let £ be a ladder system. Then X (L) is countably paracompact iff £
satisfies the following two properties (WU) and (+):

(WU) Vf : Lim = w3g : L(L) = [w]<“Va € Lim(|{8 € Lqs : f(a) ¢ g(B)} <w).
(+) Vf: L(L) = w({a € Lim : |f"Ls| = w} is not stationary).

So the conjecture (d’) can be written as:
(d”) In some model, there is a ladder system L satisfying both (WU) and (+).
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