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ABSTRACT
In [15], we introduced class $\mathrm{A}(k)$ as a class of operators including p-

hyponormal and $\log$-hyponormal operators. In this report, we shall show
that “ if $T$ is an invertible class $\mathrm{A}(k)$ operator for $k\in(0,1])$ then $T^{n}$ is a
class $\mathrm{A}(\frac{k}{n})$ operator for all positive integer $n.$

”

Moreover, we shall show a similar result on powers of class $\mathrm{A}\mathrm{I}(s, t)$ op-
erators which were introduced in [7] as extensions of class $\mathrm{A}(k)$ operators,
that is, “if $T$ is $a$ class $\mathrm{A}\mathrm{I}(s, t)$ operator for $s,$ $t\in(0,1]$ , then $T^{n}$ is $a$ class
$\mathrm{A}\mathrm{I}(\frac{s}{n},\frac{t}{n})$ operator for all positive integer $n.$

”

1. INTRODUCTION

In what follows, a capital letter means a bounded linear operator on a complex

Hilbert space $H$ . An operator $T$ is said to be positive (denoted by $T\geq 0$ ) if
$(Tx, x)\geq 0$ for all $x\in H$ .

An operator $T$ is said to be $p$ -hyponormal if $(T^{*}T)^{p}\geq(TT^{*})^{p}$ for a positive

number $p$ , and $T$ is said to be $\log$ -hyponormal if $T$ is invertible and $\log T^{*}T\geq$

$\log T\tau^{*}$ . $p$-Hyponormal and $\log$-hyponormal operators were defined as extensions of
hyponormal operators, i.e., $T^{*}T\geq TT^{*}$ . It is well known that “ every p-hyponormal

operator is a $q$ -hyponormal operator for $p\geq q>0$ ” by the celebrated L\"owner-

Heinz theorem (( $A\geq B\geq 0$ ensures $A^{\alpha}\geq B^{\alpha}$ for any $\alpha\in[0,1],$” and “ every

invertible $p$ -hyponormal operator is a $\log$ -hyponormal operator” since $\log t$ is an

operator monotone function. It is also well known that there exists a hyponormal
operator $T$ such that $T^{2}$ is not a hyponormal operator [16, Problem 209]. Related
to this fact, the following result on $\mathrm{p}\mathrm{o}\mathrm{W}\mathrm{e}\mathrm{r}\mathrm{s}$. of p–hyponormal operators for $p>0$ was

shown by Aluthge-Wang [3] and Ito [19].
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Theorem A.l ([3, 19]). If $T$ is a $p$ -hyponormal operator for $p>0$ , then $T^{n}$ is a
$\min\{1, \mathrm{g}\}n$ -hyponormal operator for all positive integer $n$ .

We remark that Aluthge and Wang [3] showd Theorem A.l in case $p\in(\mathrm{O}, 1]$ . Then
Ito [19] showed Theorem A.l in case $p>0$ . Moreover, we obtained the following
result for $\log$-hyponormal operators.

Theorem A.2 ([23]). If $T$ is a $\log$ -hyponormal operator, then $T^{n}$ is also $a$ log-
hyponormal operator for all positive integer $n$ .

We remark that the best possibilities of Theorem A.l and Theorem A.2 were
shown in $[14, 19]$ . Theorem A.l and Theorem A.2 were shown as nice applications
of the following Theorem F.

Theorem $\mathrm{F}$ (Furuta inequality [9]).

If $A\geq B\geq 0$ , then for each $r\geq 0$ ,

(i) $(B^{\frac{r}{2}}A^{p}B \frac{r}{2})^{\frac{1}{q}}\geq(B^{\frac{r}{2}}B^{p}B\frac{r}{2})^{\frac{1}{q}}$

and

(ii) $(A^{\frac{r}{2}}A^{p}A \frac{r}{2})^{\frac{1}{q}}\geq(A^{\frac{r}{2}}B^{p}A\frac{r}{2})^{\frac{1}{q}}$

hold for $p\geq 0$ and $q\geq 1$ with $(1+r)q\geq p+r$ .

We remark that Theorem $\mathrm{F}$ yields the L\"owner-Heinz theorem when we put $r=0$ .
Alternative proofs of Theorem $\mathrm{F}$ are given in [6] and [20] and also an elementary
one page proof in [10]. Tanahashi [22] showed that the domain drawn for $p,$ $q$ and
$r$ in the Figure 1 is the best possible one for Theorem F.

On the other hand, related to p–hyponormal, $\log$-hyponormal and paranormal
(i.e., $||T^{2}x||\geq||Tx||^{2}$ for every unit vector $x\in H$ ) operators, we introduced classes
of operators in [15] as follows:

Definition 1 ([15]).
(i) An operator $T$ belongs to class A $if|T^{2}|\geq|T|^{2}$ where $|T|=(T^{*}T)^{\frac{1}{2}}$ .
(ii) For each $k>0$ , an operator $T$ belongs to class $\mathrm{A}(k)$ if
(1.1) $(T^{*}|\tau|^{2}k\tau)^{\frac{1}{k+1}}\geq|T|^{2}$ .

(iii) For each $k>0_{f}$ an operator $T$ is said to be $ab_{S}olute- k$ -paranormal if
$|||T|^{k}Tx||\geq||Tx||k+1$

holds for every unit vector $x\in H$ .
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We remark that class $\mathrm{A}(1)$ equals class $\mathrm{A}$ , and absolute-l-paranormal equals para-
normal. Related to these classes, we obtained the following result on inclusion rela-
tions among them in [15].

Theorem $\mathrm{B}([15])$ .
(i) Every $\log$ -hyponormal operator is $a$ class $\mathrm{A}(k)$ operator for all $k>0$ .

(ii) Every invertible class $\mathrm{A}(k)$ operator is $a$ class $\mathrm{A}(l)$ operator for $l\geq k>0$ .
(iii) Every $ab_{SO}lute-k$ -paranormal operator is a $ab_{S}olute- l$ -paranormal operator for

$l\geq k>0$ .
(iv) For each $k>0_{f}$ every class $\mathrm{A}(k)$ operator is a $ab_{S}olute- k$ -paranormal operator.

Inclusion relations among the classes of operators mentioned above can be ex-

FIGURE 2
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Related to Theorem A.l and Theorem A.2 on powers of p–hyponormal and log-

hyponormal operators, Ito [18] showed the following results on powers of class A

operators as follows:

Theorem C.l ([18]). If $T$ is an invertible class A operator, then $T^{n}$ is also $a$ class

A operator for all positive integer $n$ .

Theorem C.2 ([18]). Let $T$ be an invertible class A operator. Then

(i) $|T^{n}|^{\frac{2}{n}}\geq\cdots\geq|T^{2}|\geq|T|^{2}$

and
(ii) $|T^{*}|^{2}\geq|T^{2^{*}}|\geq\cdots\geq|T^{n*}|^{\frac{2}{n}}$

hold for all positive integer $n$ .

It is interesting to point out that these theorems are parallel results to the follow-

ing theorems on paranormal operators.

Theorem C.3 ([8]). If $T$ is a paranormal operator, then $T^{n}$ is also a paranormal

operator for all positive integer $??,$ .

Theorem C.4 ([8, 18]). Let $T$ be a paranormal operator. Then

$||T^{n}x||^{\frac{2}{n}}\geq\cdots\geq||T^{2_{X}}||\geq||TX||^{2}$

hold for every unit vector $x\in H$ and all positive integer $n$

In this report, firstly, we shall show a result on powers of invertible class $\mathrm{A}(k)$

operators for $k\in(0,1]$ in Theorem 1, which is more precise result than Theorem

C.l. Secondly, we shall show similar results to Theorem 1 for related classes to class

A $(k)$ .

2. POWERS OF CLASS $\mathrm{A}(k)$ OPERATORS

Theorem 1. If $T$ is an invertible class $\mathrm{A}(k)$ operator for $k\in(0,1]$ , then $T^{n}$ is a

class $\mathrm{A}(\frac{k}{n})$ operator for all positive integer $n$ .

Corollary 2. If $T$ is an invertible class A operator, then $T^{n}$ is $a$ class $\mathrm{A}(\frac{1}{n})$ operator

for all positive integer $n$ .

By using (ii) of Theorem $\mathrm{B}$ , Corollary 2 yields Theorem C.l since class $\mathrm{A}(\frac{1}{n})$ is

included in class $\mathrm{A}$ , so that Corollary 2 is a more precise result than Theorem C.l.

To prove Theorem 1, we prepare the following Proposition 3 and Lemma F.
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Proposition 3. $T$ is $a$ class $\mathrm{A}(k)$ operator for $k>0$ if and only if
(2.1) $(|T^{*}||T|^{2}k|T*|) \frac{1}{k+1}\geq|T^{*}|^{2}$ .

Lemma $\mathrm{F}([11,15])$ . Let $A$ and $B$ be invertible operators. Then

$(BAA^{*}B*)^{\lambda}=BA(A^{*}B^{*}BA)^{\lambda-}1A^{*}B^{*}$

holds for any real number $\lambda$ .

Proof of Proposition 3. Let $T=U|T|$ be the polar decomposition of $T$ . Then $\tau*=$

$U^{*}|T^{*}|$ is also the polar decomposition of $\tau*$ . Suppose that $T$ is a class $\mathrm{A}(k)$ operator.

Then
$(|T^{*}||\tau|^{2k}|\tau*|)^{\frac{1}{k+1}}$ $=$ $UU^{*}(| \tau^{*}||\tau|2k|T*|)\frac{1}{k+1}UU*$

$=$ $U(U^{*}|\tau^{*}||T|2k|\tau*|U)^{\frac{1}{k+1}U}*$

$=$ $U(T^{*}|T|^{2k\frac{1}{k+1}}T)U^{*}$

$\geq$ $U|T|^{2}U^{*}$ since $T$ is a class $\mathrm{A}(k)$ operator

$=$ $|T^{*}|^{2}$ .

Hence (2.1) holds.
Conversely, suppose that (2.1) holds. Then

$(T^{*}|\tau|^{2}k\tau)^{\frac{1}{k+1}}$ $=$ $(U^{*}|T^{*}|| \tau|2k|\tau*|U)\frac{1}{k+1}$

$=$ $U^{*}(|T^{*}|| \tau|2k|\tau*|)\frac{1}{k+1}U$

$\underline{>}$ $U^{*}|T^{*}|^{2}U$ by (2.1)
. $\tau$

$=$ $|T|^{2}$ .

Hence $T$ is a class $\mathrm{A}(k)$ operator.
Whence the proof of Proposition 3 is complete. $\square$

Proof of Theorem 1. Suppose that $T$ is an invertible class $\mathrm{A}(k)$ operator for $k\in$

$(0,1]$ . Then we have

(2.1) $(|T^{*}||T|^{2}k|T*|) \frac{1}{k+1}\geq|T^{*}|^{2}$

by Proposition 3. By (ii) of Theorem $\mathrm{B},$ $T$ is a class A operator, and also we have

the following inequalities by Theorem C.2:

(2.2) $|T^{n}|^{\frac{2}{n}}$
$\geq$ $|T|^{2}$ ,

(2.3) $|T^{*}|^{2}$ $\geq$
$|T^{n*}|^{\frac{2}{n}}$ .

Then we have

(2.4) $(|T^{*}||T^{n}| \frac{2k}{n}|T*|)^{\frac{1}{k+1}}\geq(|T^{*}||\tau|2k|T*|)\frac{1}{k+1}\geq|T^{*}|^{2}$
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by (2.1), (2.2) and L\"owner-Heinz theorem. (2.4) implies the following (2.5) by
Lemma $\mathrm{F}$ :

(2.5) $|T^{*}||Tn| \frac{k}{n}(|Tn|^{\frac{k}{n}}|T^{*}|^{2}|\tau^{n}|\frac{k}{n})^{\frac{1}{k+1}-}1|Tn|^{\frac{k}{n}}|T^{*}|\geq|T^{*}|^{2}$.

(2.5) is equivalent to

(2.6) $|T^{n}|^{\frac{2k}{n}} \geq(|T^{n}|^{\frac{k}{n}}|T*|^{2}|\tau^{n}|^{\frac{k}{n})}\frac{k}{k+1}$ .

By (2.3), (2.6) and L\"owner-Heinz theorem, we have

(2.7) $|T^{n}|^{\frac{2k}{n}} \geq(|T^{n}|\frac{k}{n}|T^{*}|2|\tau^{n}|^{\frac{k}{n})}\frac{k}{k+1}\geq(|T^{n}|\frac{k}{n}|T^{n}*|^{\frac{2}{n}}|\tau n|^{\frac{k}{n})}\frac{k}{k+1}$ .

(2.7) implies the following by Lemma $\mathrm{F}$ :

$|T^{n}|^{\frac{2k}{n}} \geq|T^{n}|\frac{k}{n}|Tn*|^{\frac{1}{n}}(|\tau n*|\frac{1}{n}|\tau^{n}|\frac{2k}{n}|\tau^{n*}|\frac{1}{n})\frac{k}{k+1}1|\tau n*|^{\frac{1}{n}}|\tau^{n}|^{\frac{k}{n}}$ .

Then we have

$(| \tau^{n*}|^{\frac{1}{n}}|\tau n|\frac{2k}{n}|Tn*|^{\frac{1}{n}})\frac{1}{k+1}\geq|T^{n*}|^{\frac{2}{n}}$ .

Put $A=(|T^{n*}|^{\frac{1}{n}}| \tau^{n}|^{\frac{2k}{n}}|T^{n*}|^{\frac{1}{n})}\frac{1}{k+1}$ and $B=|T^{n*}|^{\frac{2}{n}}$ , then $A\geq B>0$ . By using (i) of
Theorem $\mathrm{F}$ , we have

(2.8) $(B^{\frac{r}{2}}A^{p}B \frac{r}{2})^{\frac{1+\mathrm{r}}{\mathrm{p}+r}}\geq B^{1+r}$ for $p\geq 1$ and $r\geq 0$ .

Put $p=k+1\geq 1$ and $r=n-1\geq 0$ in (2.8). Then we have

(2.9) $(B^{\frac{n-1}{2}A^{k+1}B^{\frac{n-1}{2}}})^{\frac{n}{k+n}}\geq B^{n}$ .

(2.9) is equivalent to

$\{|T^{n*}|^{\frac{n-1}{n}}(|Tn*|^{\frac{1}{n}}|\tau^{n}|\frac{2k}{n}|T^{n*}|^{\frac{1}{n}})\frac{k+1}{k+1}|\tau n*|^{\frac{n-1}{n}}\}^{\frac{n}{k+n}}\geq|T^{n*}|^{2}$.

Then we have

(2.10) $(|T^{n*}|| \tau n|^{\frac{2k}{n}}|\tau^{n}*|)\frac{1}{\frac{k}{n}+1}\geq|T^{n*}|^{2}$.

Hence $T^{n}$ is a class $\mathrm{A}(\frac{k}{n})$ operator by Proposition 3. $\square$

Proof of Corollary 2. Put $k=1$ in Theorem 1. $\square$

3. POWERS OF CLASS AI $(s, t)$ OPERATORS

Very recently, the following classes of operators were defined in [7] as extensions
of class $\mathrm{A}(k)$ .
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Definition 2 ([7]).
(i) For each $s>0$ and $t>0$ , an operator $T$ belongs to class $\mathrm{A}(s, t)$ if
(3.1) $(|T^{*}|^{t}|\tau|2s|\tau^{*}|^{t})^{\frac{t}{s+t}}\geq|T^{*}|^{2}t$ .

(ii) For each $s>0$ and $t>0_{f}$ an operator $T$ belongs to class $\mathrm{A}\mathrm{I}(s, t)$

if $T$ is an invertible class $\mathrm{A}(s, t)$ operator.

We remark that class $\mathrm{A}(k)$ coincides with class $\mathrm{A}(k, 1)$ by Proposition 3. Re-
lated to class $\mathrm{A}(s,t)$ operators, the following theorem was obtained in [7] as a nice
application of Theorem F.

Theorem $\mathrm{D}([7])$ .
(i) For each $s>0$ and $t>0$ , every class $\mathrm{A}(s, t)$ operator is $a$ class $\mathrm{A}(s, r)$ operator

for $r\geq t>0$ .
(ii) For each $s>0$ and $t>0_{f}$ every class $\mathrm{A}\mathrm{I}(s,t)$ operator is $a$ class $\mathrm{A}\mathrm{I}(p, r)$

operator for $p\geq s>0$ and $r\geq t>0$ .

On the other hand, Aluthge and Wang defined $w$-hyponormal operators in [4]
which was related to hyponormal operators as follows: An operator $T$ is said to be
$w$-hyponormal if $|\tilde{T}|\geq|T|\geq|(\tilde{T})^{*}|$ where $\tilde{T}=|T|^{\frac{1}{2}}U|\tau|^{\frac{1}{2}}$ and $T=U|T|$ is the polar
decomposition of T. $\check{T}=|T|^{\frac{1}{2}}U|\tau|^{\frac{1}{2}}$ is called Aluthge transformation of $T$ . Aluthge
transformation was studied in [1, 2, 12, 13, 17, 21, 24]. Related to w-hyponormal
operators, the following result was shown in [5].

Theorem E.l ([5]). An operator $T$ is a $w$-hyponormal operator if and only if
( $|T^{*}|^{\frac{1}{2}}|T|| \tau*|^{\frac{1}{2})}\frac{1}{2}\geq|T^{*}|$ and $|T| \geq(|T|^{\frac{1}{2}}|T^{*}||\tau|\frac{1}{2})^{\frac{1}{2}}$ .

By Theorem E.l, an invertible $w$-hyponormal operator coincides with a class
$\mathrm{A}\mathrm{I}(\frac{1}{2}, \frac{1}{2})$ operator since the first inequality in Theorem E.l is equivalent to the sec-
ond inequality in Theorem E.l in case $T$ is invertible by Lemma F. Moreover, the
following Theorem E.2 for $w$-hyponormal operators was shown by Aluthge and Wang
[5].

Theorem E.2 ([5]). If $T$ is an invertible w-hyponormal $operator\text{ノ}$ then $T^{2}$ is also a
$w$-hyponormal operator.

In this section, we shall show the following results for class $\mathrm{A}\mathrm{I}(s, t)$ operators and
$w$-hyponormal operators as parallel results to Theorem 1 for class $\mathrm{A}(k)$ operators.

Theorem 4. If $T$ is $a$ class $\mathrm{A}\mathrm{I}(s, t)$ operator for $s,$ $t\in(0,1]$ , then $T^{n}$ is $a$ class
$\mathrm{A}\mathrm{I}(\frac{s}{n}, \frac{t}{n})$ operator for all positive integer $n$ .
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Corollary 5. If $T$ is an invertible $w$ -hyponormal operatorj then $T^{n}$ is $a$ class $\mathrm{A}\mathrm{I}(\frac{1}{2n}, \frac{1}{2n})$

operator for all positive integer $n$ .

By (ii) of Theorem $\mathrm{D}$ and Theorem E.1, Corollary 5 yields Theorem E.2 since

class $\mathrm{A}\mathrm{I}(\frac{1}{2n}, \frac{1}{2n})$ is included in $w$-hyponormal for all positive integer $n$ .

Proof of Theorem 4. Suppose that $T$ is a class $\mathrm{A}\mathrm{I}(s, t)$ operator for $s,$ $t\in(\mathrm{O}, 1]$ , i.e.,

(3.1) $(|T^{*}|^{t}|\tau|2_{S}|\tau^{*}|\mathrm{f})^{\frac{t}{s+t}}\geq|T^{*}|^{2t}$.

By (ii) of Theorem $\mathrm{D}$ and Proposition 3, $T$ is a class A operator, and also we have

the following inequalities by Theorem C.2:

(2.2) $|T^{n}|^{\frac{2}{n}}\geq|T|^{2}$ ,

(2.3) $|T^{*}|^{2}\geq|T^{n*}|^{\frac{2}{n}}$ .

(2.2) and (2.3) imply the following (3.2) and (3.3), respectively, by L\"owner-Heinz

theorem for $s\in(0,1]$ and $t\in(0,1]$ :

(3.2) $|T^{n}|^{\frac{2_{\vee}}{n}}\leq|\tau|^{2s}$ ,

(3.3) $|T^{*}|^{2t}\geq|T^{n*}|^{\frac{2i}{n}}$ .

Then we have

(3.4) $(|T^{*}|^{t}|Tn| \frac{2s}{n}|\tau*|^{t})\frac{t}{s+t}\geq(|\tau^{*}|t|\tau|2s|\tau*|t)^{\frac{t}{s+t}}\geq|T^{*}|^{2t}$

by (3.1), (3.2) and L\"owner-Heinz theorem. (3.4) implies the following (3.5) by

Lemma $\mathrm{F}$ :

(3.5) $|T^{*}|^{t}|Tn| \frac{s}{n}(|Tn|\frac{s}{n}|T*|^{2t}|T^{n}|\frac{s}{n})^{\frac{t}{s+t}-}1|Tn|^{\frac{s}{n}}|T*|^{t}\geq|T^{*}|^{2t}$ .

(3.5) is equivalent to

(3.6) $|T^{n}|^{\frac{2s}{n}} \geq(|\tau^{n}|^{\frac{s}{n}1|^{2t}}\tau*|\tau^{n}|\frac{s}{n})^{\frac{\vee}{s+t}}$ .

By (3.3), (3.6) and L\"owner-Heinz theorem, we have

(3.7) $|T^{n}|^{\frac{2s}{n}} \geq(|T^{n}|\frac{s}{n}|T^{*}|^{2t}|Tn|^{\frac{s}{n})}\frac{\epsilon}{s+t}\geq(|T^{n}|\frac{s}{n}|\tau^{n*}|^{\frac{2t}{\mathrm{n}}}|\tau n|^{\frac{s}{n})}\frac{s}{s+t}$ .

(3.7) implies the following by Lemma $\mathrm{F}$ :

$|T^{n}|^{\frac{2s}{n}} \geq|T^{n}|\frac{s}{n}|\tau^{n}*|\frac{t}{n}(|\tau^{n}*|\frac{\mathrm{t}}{n}|Tn|\frac{2_{\vee}}{n}.|\tau n*|\frac{t}{n})^{\frac{\vee}{s+t}1}.-|\tau n*|^{\frac{t}{n}}|Tn|^{\frac{s}{n}}$ .

Then we have
$(|T^{n*}| \frac{t}{n}|Tn|^{\frac{2s}{n}}|\tau n*|^{\frac{t}{n}})^{\frac{\frac{t}{n}}{\overline{\mathrm{n}}+\frac{\mathrm{f}}{n}}}.\cdot\geq|T^{n*}|^{\frac{2t}{n}}$

.

Hence $T^{n}$ is a class $\backslash \mathrm{A}\mathrm{I}(\frac{s}{n}, \frac{t}{n})$ operator. $\square$
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Proof of Corollary 5. Put $s= \frac{1}{2}$ and $t= \frac{1}{2}$ in Theorem 4. Then we obtain Corollary

5 since the class of all invertible $w$-hyponormal operators equals class $\mathrm{A}\mathrm{I}(\frac{1}{2}, \frac{1}{2})$ . $\square$

4. CONCLUDING REMARKS

Firstly, it is interesting to point out the contrast between the following two facts:

Theorem A.l asserts that if $T$ is a $p$-hyponormal operator for $p\in(0,1]$ , then $T^{n}$

belongs to the class of
than the class of p–hyponormal operators to which $T$ belongs. Contrary to Theorem
A.l, Theorem 1 asserts that if $T$ is an invertible class $\mathrm{A}(k)$ operator for $k\in(0,1]$ ,

then $T^{n}$ belongs to class $\mathrm{A}(\frac{k}{n})$ which is a smaller class of operators than class $\mathrm{A}(k)$

to which $T$ belongs.
Secondly, it is shown in (i) of Theorem $\mathrm{B}$ that every $\log$-hyponormal operator is

a class $\mathrm{A}(k)$ operator for all $k>0$ . Here, we shall discuss a more precise relation

between class $\mathrm{A}(k)$ and the class of $\log$-hyponormal operators than (i) of Theorem

B. Assume that $T$ is an invertible class $\mathrm{A}(k)$ operator. Then we have

(2.1) $(|T^{*}|| \tau|2k|T*|)\frac{1}{k+1}\geq|T^{*}|^{2}$

by Proposition 3. Then by using Lenlma $\mathrm{F},$ $(2.1)$ is equivalent to the following (4.1):

(4.1) $|T^{*}|| \tau|k(|\tau|^{k}|\tau^{*}|^{2}|\tau|k)\frac{-k}{k+1}|T|k|\tau*|\geq|T^{*}|^{2}$.

Hence an invertible class $\mathrm{A}(k)$ operator satisfies the following inequality by (4.1):

$|T|^{2}k\geq(|\tau|k|\tau^{*}|2|\tau|^{k})^{\frac{k}{k+1}}$ .

Then

(4.2) $\log|T|2k\geq\log(|\tau|k|\tau*|^{2}|\tau|^{k})^{\frac{k}{k+1}}$

holds since $\log t$ is an operator monotone function. (4.2) is equivalent to

(4.3) $\log|T|^{2(}k+1)\geq\log(|\tau|k|T*|^{2}|T|^{k})$ .

Let $karrow+\mathrm{O}$ in (4.3). Then we have $\log T^{*}T\geq\log TT*$ . Briefly speaking, the class

of $\log$-hyponormal operators can be regarded as invertible class $\mathrm{A}(\mathrm{O})$ . And it is well
known that $\log$-hyponormal also can be regarded as $0$ -hyponormal. It is interesting
to point out this contrast.
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