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Numerical Analysis of Nedelec’s Edge Elements

Fumio Kikuchi (F9# ) *
Graduate School of Mathematical Sciences
University of Tokyo, Tokyo 153-8914 Japan

1 Introduction

To solve electromagnetic problems effectively by FEM, the Nedelec edge elements [12],[13]
is in wide use, and such use is now considered to be essential [4],[8],[14]. This may be
mainly attributed to the facts that such elements are usually free from the spectral pollu-
tion by spurious modes and they are robust to geometric singularities such as caused by
reentrant corners. Moreover, they are easy to calculate the rotations of vector fields and
to deal with the electromagnetic boundary conditions. However, it has not been easy to
show their mathematical validity since the formulations using edge elements are usually
based on some mixed variational principles and hence we must prove various conditions
such as the inf-sup one, the discrete compactness, etc. for respective schemes.

Thus we have performed theoretical analysis of the edge elements, and, in particu-
lar, we showed the discrete compactness properties for the simplest Nedelec simplex ele-
ments [8],[9]. Especially, such properties play essential roles in showing that the associated
finite element schemes for electromagnetic spectral problems are free from the spectral
pollution. However, the corresponding properties for more general edge elements have
been quite difficult to prove. Recently, Prof. Boffi has obtained remarkable results [2],[3]
on the discrete compactness, and this work is devoted to giving some related results such
as an alternative proof supplementing his original one.

2 Physical formulations of a model problem

To explain our finite element method, we will use a model problem. That is, let us
consider the cavity resonator eigenvalue p10blem which is essentially to determine non-
trivial time-harmonic electromagnetic fields E and H satisfying the Maxwell equations in
a vacuum cavity () surrounded by a perfectly conducting wall (992).
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More specifically, the Maxwell equations for a vacuum region with the above boundary
conditions are givend by
-~ 0B - . - . S
rotE+——a—t— =0,divD=p(=0), rot H——=35(=0), divB=0 inQ, (1)

Exi=0, B-i=0 ondQ, (2)
where E = electric field, H = magnetic field, D = electric flux density = sE, B =
magnetic flux density = Moﬁ , €0 = dielectric constant of vacuum > 0, py = magnetic
permeability of vacuum > 0, p = electric charge density, f: electric current density, 1 =
outward unit normal on 9¢2, and ¢t = time variable.

Introducing the time-harmonic assumption, i.e., the unknown fields vary like €™ in
time, we have

rotE:~iwu0ﬁ, divE =0, rot H = iwekE, divH =0 in , (3)
Exit=0, H-#=0 ondQ, (4)

where ¢ = imaginary unit, w = angular frequency, and the vector fields are now functions
of space variables only.
It is now possible to give formulations in terms of E' or H only.

E-formulation : Find non-trivial E and \ = gotiow?(€ R) such that
rotrot E=ME, divE=0 inQ; Exd=0 ondQ. (5)

H-formulation : Find non-trivial H and X = eouow?(€ R) such that
rottot H=XH, divH=0 inQ; H-i=0, (tot H)x@=0 on Q. (6)

The equivalence of these two formulations is well known for A # 0 at least physically,
and can be also shown mathematically under appropriate setting of functions spaces for
vector functions.

3 Mathematical preliminaries

Let Q C R? be a bounded domain with Lipschitz boundary 9. Furthermore, we also
assume that € is simply-connected and 0f2 is connected. Then we can assure the existence
of both the scalar and vector potentials under appropriate boundary conditions.

Besides the usual Sobolev spaces such as H}(Q), H3(Q) and L,(Q) (1 < p < +00), we
will also use some Sobolev-like spaces for vector fields:

H(rot;Q) = {@ € Ly(Q)* rot @ € Ly(Q)*}, (7)
Hy(rot: Q) = {@ e H(rot;Q); @ x 7 =0 on 9Q}, (8)



H(rot% Q) = {i € H(rot;Q); rot @ =0}, 9)
Hy(rot% Q) = Hy(rot; Q) N H(rot% Q), (10)
H(div;Q) = {i@ € Ly(Q)? div 1'[ € Ly,(Q)}, (11)
Hy(div; Q) = {4 € H(div;Q); @ -7 =0 on 00}, - (12)
H(div%; Q) = {# € H(div;); div @ = 0}, (13)
Hy(div®: Q) = Hy(div; Q) N H(div’; Q), (14)

where the subscript “0” means that the tangential or normal components of the vector
functions vanish on 91, and the superscript “0” does that the vector fields are divergence-
or rotation-free. These function spaces become Hilbert spaces when equipped with appro-
priate inner products. Moreover, we will use (-,-) and || - || respectively as the notations
of the inner product and the norm of {Ly(2)}? as well as those of Ly(£2). For details of
the above spaces, especially the definitions of boundary conditions, cf. [5],[7]. It is also
to be noted that, for the present €2, the existence of the scalar potentials is assured in the

sense
H(rot%: Q) = grad H*(Q), Hy(rot’; Q) = grad H; (), (15)

where grad H'(Q2) for example implies {grad ¢; ¢ € H'(Q)}.
To analyze the Maxwell operator, the following compactness properties stated in [1] are
essential :

Hy(rot; Q)N H (div®; Q) and H (rot; Q)N Hy(div’; Q) are compactly imbedded to {Lo(Q)}>.

Here the divergence-free conditions are essential and may be expressed weakly as follows:
A vector field @ € Hy(rot; Q) (H(rot; (), resp.) satisfies

(@,grad ¢) =0; Vo € Hy(Q) (H'(Q), resp.). (16)

As above and henceforth, we will use @ instead of E and H.
We can now give fundamental variational formulations for (5) and (6) as follows.

[E] Find {\, @} € Rx{Hy(rot; Q) N H(div’;Q)} such that @ # 0 and

(rot @,rot ¥) = A(@,T) ; VU € Hy(rot; Q) . (17)
[H] Find {\, @} € Rx{H(rot; Q) N Hy(div’;Q)} such that @ # 0 and

(rot 4, rot ¥) = A\(4, V) ; VU € H(rot; Q) . (18)
These formulations are not symmetric with respect to & and v, i.e, the divergence-free
conditions are a priori imposed on @ but not on v. However, for A # 0, ¥ automatically sat-
isfies them in the sense of (16) even when they are not imposed, since grad ¢ € Hy(rot%; Q)
(H(rot% Q), resp.) for ¢ € H}(Q) (H'(Q), resp.), cf. [8]. Thus we will use formulations

with the divergence-free conditions omitted for numerical analysis. Of course, such con-
ditions play essential roles in theoretical analysis of spectral problems: under appropriate



settings, our problems become spectral problems of symmetric positive compact opera-
tors, i.e., very standard and typical problems in functional analysis. In fact, we have nice
properties such as:

(a) the set of eigenvalues is countable; they can be numbered as {\;}:2;,

(b) A; > 0 for Vi € N, and hence {);}$2, may be numbered in the increasing order with

lim \; = 400,
1—00

(c) finite multiplicity of each A;,
(d) completeness of the eigenfunctions in some associated spaces, etc.

Thus an essential point of numerical analysis is how to approximate the divergence-free
conditions appropriately, hence arises the concept of discrete compactness.

It is also possible to use the Lagrange multiplier to deal with the divergence-free condi-
tions. However, we can see that the multiplier is essentially zero for the present problems,
and hence we can avoid its use at least formally: see [8] for details.

4 Finite element approximations

Let us introduce finite dimensional spaces G* < H'(Q) and R" C H(rot;2), and then
define G := G" N H}(Q) and Rl := R" N Hy(rot; Q). For these, we assume the internal
existence of scalar potentials, analogously to (15):

grad G" = R" N H(rot% Q), grad G§ = Ry N H(rot’; Q). (19)

As usual, we first consider a family of finite element triangulations {7} }r>o of Q, where
h is the discretization parameter such that h | 0. Then we construct the above type of
spaces G, R" etc., often called finite element spaces, for each triangulation T}.

Now the divergence-free condition @ € H(div®; Q) (Hy(div®; ), resp.) for @ € Hy(rot; Q)
(H(rot; Q), resp.) is approximated by the orthogonality condition @, L grad G§ (grad G,
resp.) for @, € Ry (R", resp.), that is,

(i, grad @) = 0; Yo, € Gp (Gh, resp.) . (20)

We can give finite element schemes based on [E] and [H] with the divergence-free con-
ditions omitted.

[E]x Find {\,, @} €RxRE such that @, # 0 and
(I‘Ot ﬁh,rot Uh) = /\h(l—t’h,ﬁh) ; Yo, € Rg . (21)
[H], Find {\,, @} €RxR" such that @, # 0 and

(I’Ot Uy, rot ’Uh) = /\h(ﬁh,ﬁh) : VU, € R" . (22)



It is easy to see that @y of [E], or [H], for A, # 0 satisfies the approximate divergence-free
conditions (20) by taking @, as grad ¢, as assured by (19).

As in the continuous cases, we can use the Lagrange multiplier to deal with the
divergence-free conditions. However, under the present settings for R", R} G" and G!
with (19), we can again see that the (approximate) multiplier essentially vanishes.

For the analysis of the above finite element schemes, we usually require:

1) approximation capability for R", R?, G* and G,
0 0

(2) uniform lifting property (inf-sup condition), since our schemes are of mixed (or
saddle-point) type in a sense [5],[7],

(3) discrete compactness properties, since our finite element spaces R" and R? are not
necessarily contained in Hy(rot; Q) N H(div’; Q) or H(rot; Q) N Hy(div’; Q).

See [6] for details, where the spectral projection techniques are fully employed and the
importance of the discrete compactness is emphasized.

Finally, let us show the simplest examples of edge-type finite elements for R" introduced
by Nedelec [12], which are tetrahedral or rectangular parallelepiped shape.

(i) Tetrahedral element: in each element, @, = (uy, uz, u3) is of the form ), = d'—l—ﬁ/\f:
uy = ay + fox3 — B3y, uz = g + B3xy — Biwz, uz = as + Brxy — Bazy, (23)
where @ = (a1, az, a3) and E = (01, P2, Bs) are coefficients, and T = (x1, 22, Z3).
(ii) Cube-based element: @, in each rectangular parallelepiped element is of the form

Uy = oy + Bixy + Soxz + B3xox3, Up = g + Baxs + P51 + Persxn,
Uz = 3 + 57.’171 -+ /63332 + 69331.1'2 . (24)

In the above approximations, {2 must be an appropriate polyhedral domain so that the
triangulations may be possible. In addition, it is known for the above finite element spaces
that (19) hold true when  is simply-connected and 99 is connected [1],[12].

5 Discrete compactness property

In order to perform mathematical analysis of the present FEM, it is essential to show
some discrete compactness properties. For the analysis of [E],, a typical example of such
properties is stated as follows [2],[9].

[DC]g Let {iin}nso be an arbitrary h-family such that

in € Ry, |dnllggoney =1, i L grad G . (25)



Then there exist a subfamily, again denoted by {is }aso, and @y € Hy(rot; Q)N H(div®; Q)
such that @, — i, weakly in Hy(rot;Q) and strongly in {Ly(Q)}* as h | 0. (Here the
“strong-convergence” part is essential.)

Remark 1 For comparison, let us give a statement of the original compactness for [E]: Let
{@,}, be an arbitrary sequence such that @, € Hy(rot; Q), ||tn| H(rot;0) = 1, and satisfies
(@,,grad @) =0 (Vo € Hy(Q)) for each n. Then there exist a subsequence, again denoted
by {Un}32,, and iy € Ho(rot; Q) N H(div"; Q) such that i, — @y weakly in Hy(rot; Q) and
strongly in Lo(Q)? as n — oo.

It is also possible to give an example [DC|y of such properties for [H], in a quite
similar fashion. We will consider [DC]g only since the analysis is also similar to that
of [DC]g. Such a property can be effectively used to analyze finite element schemes for
the present spectral problems. More specifically, we can use the spectral projection to
evaluate numerical errors, cf. [3],[6]. In the present special case, it is also possible to apply
the Rayleigh quotient approach based on the min-max and max-min principles [11].

Moreover, by using the orthogonal projection operator Qg : Hy(rot; ) — Hy(rot?; Q) =
grad H}(Q), we can show that [DC]g is equivalent to the condition [11]

U || L.
lim sup WQ—f—’—UM =0 (26)
hi0 g, e{RR\{0}}N{grad G} L H’UhHH(mt;Q)

under the approximability condition for G : lg?g inf llon — @l = 05 Vo € Hy ().
LPhEGO

Let us now assume that the domain  is a bounded polyhedral domain. Then we
consider the regular family of triangulations {T"},so by tetrahedra or rectangular par-
allelepipeds, where h is the discretization parameter such that A | 0 and denotes the
maximum diameter of finite elements A’s in each T", cf. [7]. As R", we consider any
one in the family of edge element spaces given by Nedelec[12]. On the other hand, G"
associated with R" is the usual node-type finite element space with the corresponding
order [12]. Then we can show that (19) hold true for such G* and R".

Let us introduce the interpolation operator IIj, for the considered R", which was defined
by Nedelec [12] and plays essential roles in our analysis. More specifically, it mapps any
“sufficiently smooth” vector function ¥ to an element in R" by specifying the degrees of
freedom in the fashion stated in [12], and it is actually well-defined for some non-smooth
but element-wise smooth vector functions as well. Typical examples of d. 0. f. are moments
of edge-direction components of vector functions in R". Furthermore, IT,7 belongs to Rl
when ¥ also belongs to Hp(rot; Q) [12]. Then we should notice the following important
properties [1],[12]:

(i) Let ¢ be a “sufficiently smooth” scalar function in H'(Q) such that Il can operate
on grad ¢ € H(rot® Q). Then there erists o, € G" such that Il (grad @) = grad ¢4
Furthermore, when o belongs to H} () as well, oy is in Gp.



(ii) sufficient conditions that 11, is applicable to ¥: ¥ € H(rot;Q)) satisfies, VK € T",
7K € {H2(K)}? for some § > 0, and rot 7|K € {L,(K)}® for some p > 2, where
H3%3(K) is the usual fractional Sobolev space over K.

N

(iti) Ho(rot; Q) N H(div% Q) ¢ {HH(Q))}3 (continuously) for some positive § <

By using IT, and the orthogonal decomposition of @, in (25), we can obtain the following
main results. ‘

Theorem 1 Let {T"}y5q be a regular family of triangulations of Q0 by tetrahedra or
rectangular parallelepipeds, and let {{ R}, G} }nso be the associated family of finite element
spaces introduced by Nedelec in [12]. Then [DC|g holds true.

Remark 2 The present theorem is essentially due to Boffi [2] based on the Fortin oper-
ator, but here we give an alternative proof and also supplement his proof in interpolation
error analysis. From the above, it is also easy to show the asymptotic uniform coerciveness
of the bilinear form for the rotation operator in the following sense: There exist C > 0
and hg > 0 such that, 0 < Vh < hy and Vi), € Rh N {grad Gh}+,

[[rot Ta|l = Cl|Oull 1 (rotse) - (27)

Sketch of proof: 1° Let us consider an arbitrary h-family {},}x~0 such that

i@y € R, @l Hrotsry = 1, and (i, grad ¢n) =0 (Vo € Ghy.

Then, as in [9], let us use the orthogonal decomposition of Hy(rot;2) based on the pro-
jecition operator Qg : Hy(rot; Q) — Hy(rot?; Q) = grad H} (Q):

U = Qpiy+T";
Qpily = grad " for " € HY}(Q), " = (1 — Qg)in € Hy(rot; Q) N H(div’; Q).

Now by (26), what we should show is, as h | 0,
|QEUn| L) — 0 uni formly with respect to i, .

2°  Let us consider IT,p" for the above " It is actually well defined [1], and so there
exists o, € Gf such that I, (grad ¢") = grad ¢;. Similarly, I1,7" is also well defined, thus
we have from the identity @, = I}, that

grad " + 9" = grad ¢, + 7", or grad " — grad v, = 7" — 7"
3° Let us here consider a projection o} € GI of " defined by

(grad v}, grad ) = (grad ¢", grad ¥) (Vi € Gg).



Since the right-hand side of the above is evaluated as (i, — o, grad v,,) = 0, we find that
grad ¢; = 0. Then the best approximation property of grad ¢} to grad ¢* gives

1Qrinll = llerad "]l = [lgrad v} — grad "]
< inf [lgradey — grad ¢"|| < [lgrad @5 — grad "|.
Y EGH

Consequently we have ||Qgin|| < |lgrad vn — grad ¢*|| = ||0,o" — "] by 2°, which we
should show converges uniformly to 0 as h | 0 by using interpolation error analysis.

4° For interpolation error analysis, we should consider the affine transformation for the
covariant components of vector functions, cf. Nedelec[12]. Moreover, we should note that
rot 7y, € L,(§2) for any p > 0. As a result, we have the estimation

|7 = || < Chllrot @] + CRE* |4 ot

where ¢ is the parameter in (iii) of this section. By 2° and 3°, we can now show that
|QEetx|] — 0 uniformly with respect to @, as h | 0, and the proof is complete.

6 Concluding remarks

It appears that the fundamental difficulty of Nedelec’s edge elements is now overcome at
least in the simplest cases considered in this note. Although we have taken the cavity
resonator problem as a model one, the established results may be effectively used for
theoretical numerical analysis of various other electromagnetic problems such as

(1) Magnetostatic problems [10],
(2) Eddy current analysis,

(3) Forced vibration analysis of dielectric media required for e. g. design of microwave
ovens.

Further study, however, appears to be necessary to establish numerical analysis of elec-
tromagnetics by edge elements, and a few examples of such subjects are:

i) Discrete compactness for general curved, covariant) edge elements given in e. g. in
[1 1]a

(ii) Discrete compactness in the case of inhomogeneous media, where even stronger
singularity may appear in functions in the electromagnetic function spaces,

(iii) Development of appropriate iteration methods for solving the algebraic equations
obtained by the finite element discretization, especially for 3-D problems.
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