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Abstract

It is shown that if a matrix with real components maps any “mono-
tone non-decreasing vector” to a “monotone increasing vector,” the
matrix has a “monotone increasing characteristic vector,” and the
modulus of corresponding characteristic value is the second largest
among the moduli of characteristic values of the matrix. This propo-
sition is proved as a corollary to more general propositions. Some
other corollaries to these general propositions are also remarked.

1 Introduction
Let $A=(a_{ij})$ be an $n\cross n$ matrix with real components. Let us call a
characteristic value $\lambda$ the $mth$ characteristic value of $A$ if $|\lambda|$ is the $m\mathrm{t}\mathrm{h}$

largest among the moduli of the characteristic values of $A$ . In the analysis
of asymptotic behavior of $A^{k}u_{0}$ as $karrow\infty$ for an intial vector $u_{0}$ , the first
characteristic value plays the main role.

In the case of stochastic matrix, i.e., if $a_{ij}\geq 0(i, j=1, \ldots n)$ and
$\Sigma_{j=1}^{n}a_{ij}=1(i=1,2, \ldots n)$ hold, $\lambda_{1}=1$ is always the first characteristic
value. Under suitable additional assumptions (for details, see, Lemma 5),
the corresponding left characteristic vector $\psi_{1}^{\mathrm{T}}=(\psi_{11}, \psi_{12}, \ldots, \psi_{1}n)$ becomes
the unique asymptotic stationary distribution of the finite state Markov chain
with transition probability matrix $A$ if $\sum_{j=1}^{n}\psi_{1j}$ is normalized to one. Here,
$\mathrm{T}$ indicates the transposition of a vector. In this case our next concern will be
the second characteristic value, which characterizes the rate of convergence
of $A^{k}u_{0}$ to $\psi_{1^{\mathrm{T}}}$ as $karrow\infty$ . So long as the author knows, however, not enough
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efforts have been made at getting necessary $or$ sufficient conditions for the
second characteristic value. (For a few related results, see, [1], [2].)

This note gives, in Propositions 1 and 2, simple sufficient conditions for
finding the second characteristic values for a nonnegative matrix. We will
prove them as corollaries to more general propositions (Propositions 6 and
7).

2 Simple Practical Forms

We say that a matrix $A$ is a nonnegative (resp. positive) matrix if all com-
ponents of $A$ are nonnegative (resp. positive). Let $u=(u_{1}, u_{2}, \ldots, u_{n})^{\mathrm{T}}$ be
a vector with real components. Let us call $u$ a horizontal vector (resp. a
non-horizontal vector) if $u_{1}=u_{2}=\ldots=u_{n}$ hold (resp. do not hold). We
say that $u$ is a monotone non-decreasing (resp. monotone increasing) vector
if $i>j$ implies $u_{i}\geq u_{j}$ (resp. if $i>j$ implies $u_{i}>u_{j}$ ). For two vectors $u$

and $v=(v_{1}, v_{2}, \ldots, v_{n})^{\mathrm{T}}(\neq u)$ with real components, we write $u\geq v$ (resp.
$u>v)$ if $u_{j}\geq v_{j}$ (resp. $u_{j}>v_{j}$ ) $(j=1,2, \ldots , n)$ hold.

The following proposition is a simplest practical form of our results:

Proposition 1 Let $A$ be a nonnegative matrix. Suppose that there exists
a natural number $r$ such that $A^{r}$ maps any non-horizontal monotone non-
decreasing vector to a monotone increasing vector. Then, there exist a pos-
itive number $\rho$ and a stochastic matrix $S$ such that $A=\rho S$ . The matrix $A$

has a monotone increasing right characteristic vector $\phi_{2}$ , which corresponds
to a real characteristic value $\lambda_{2}$ satisfying the following relations:

$\rho\equiv\lambda_{1}>\lambda_{2}>|\lambda_{3}|\geq\ldots\geq|\lambda_{n}|$ . (1)

Here, $\lambda_{1}i\mathit{8}$ the real characteristic value to which a horizontal right charac-
teristic vector corresponds.

As we will see in section 4, we can use the following proposition to check
the premise in this proposition:

Proposition 2 An $n\cross n$ matm $F=(f_{ij})$ maps any non-horizontal mono-
tone non-decreasing vector to a monotone increasing vector if and only if
$g<h$ implies the following inequalities:

$\sum_{j=k}^{n}f_{gj}<\sum_{j=k}^{n}fhj$ , $k=2,3,$ $\ldots,$
$n$ . (2)
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An illustrative numerical example of these propositions are as follows:

Example 3 A stochastic matrix

$F=( \frac{}{\frac,3\frac 1_{1}06_{1}00}\frac{\frac{1}{\S-}}{\psi}$ $\frac{\frac{1}{135}}{\frac\frac\int_{6\frac{10}{5}}^{6_{7}0}q}$ $\frac{}{\frac,\frac{6_{1}0}{5}\frac{6_{1}0}{1^{6}1}}\frac{1}{1^{5}3}$ $\frac{}{\frac,6\frac{1^{0}}{5}\frac{201}{1^{6}1}}\frac{1}{\S}$ $\frac{\frac{\frac{1}{45}}{11\mathrm{B}}}{\frac,3\frac 620011\theta})$

$\mathit{8}ati_{\mathit{8}}fies$ inequalities (2). We can check that $F$ maps any non-horizontal
monotone non-decreasing (column) vector to a monotone increasing vector,
and $(-6, - \frac{7}{2}, -1, \frac{3}{2},4)^{\mathrm{T}}$ is the (right) characteristic vector corresponding to
the characteristic value $\frac{1}{6}$ . We $\mathit{8}ee$ that it $i_{\mathit{8}}$ the second largest among the
$charaCteri_{\mathit{8}}ti_{C}$ values 1, $\frac{1}{6},$

$\frac{\sqrt{2}}{30},$ $- \frac{1}{30},$ $\frac{\sqrt{2}}{30}$ .

From here on, we always deal with right characteristic vectors when we
consider characteristic vectors, so that we simply say “characteristic vectors,”
suppressing right.

3 General Framework
Let us consider characteristic values of an $n\cross n$ matrix $A$ . We deal with the
case where we can choose an $n\cross n$ nonsingular matrix $P$ such that

$A=P^{-1}BP$ (3)

and

$B=$ (4)

hold for some $m$ . In this case, we define submatrices $\tilde{P}_{1}$ and $\overline{P}_{2}$ of $P$ as
follows:

$P=(_{pn,1\cdot.p_{nn}}^{p.’ 1}1.. \cdot..\cdot..\frac{p_{m,1}..\cdot p_{mn}}{pm+1,1\cdot..\cdot,.pm+1,n}.\cdot..\cdot p.\cdot 1.\cdot n.\cdot/\backslash$ $=( \frac{\tilde{P}_{1}}{P_{2}})$ . (5)
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Let us begin with the following elementary observation:

Lemma 4 If an $n\cross n$ matrix $A$ is of the form (3) and (4), the characteristic
values of $A$ are the union of characteristic values of $\tilde{B}_{11}$ and $\tilde{B}_{22}$ , where $\tilde{B}_{11}$

and $\tilde{B}_{22}$ are defined in (4).

If $\tilde{B}_{22}$ is irreducible and satisfies

$b_{ij}\geq 0$ $i,$ $j=m+1,$ $m+2,$ $\ldots$ , $n$ , (6)

we can use the Perron-Frobenius theorem for identifying the first character-
istic value(s) of $\tilde{B}_{22}$ . The following expression is taken from [3, p.53]:

Lemma 5 (Perron-Frobenius) An irreducible (non-zero) nonnegative ma-
trix $A=(a_{ij})$ always $ha\mathit{8}$ a positive characteristic value $\rho$ that is a simple
root of the characteris$tic$ equation. The moduli of all the other $characteri\mathit{8}ti_{C}$

values do not exceed $\rho$ . To the maximal characteristic value $\rho$ there corre-
sponds a characteristic vector with positive coordinates. Moreover, if $A$ has
$h$ characteristic values $\lambda_{1}=\rho,$ $\lambda_{2},$

$\ldots,$
$\lambda_{h}$ of $modulu\mathit{8}\rho$ , then these numbers

are all distinct and are roots of the equation

$\lambda^{h}-\rho^{h}=0$ . (7)

More generally: The whole spectrum $\lambda_{1},$ $\lambda_{2},$

$\ldots,$
$\lambda_{n}$ of $A$ , regarded as a system

of points in the complex $\lambda$ -plane, goes over into $it\mathit{8}elf$ under a rotation of the
plane by the angle $\frac{2\pi}{h}$ . If $h>1$ , then $A$ can be put by means of a permutation
into the following ‘cyclic’ form:

$A=$ (8)

where there are square blocks along the main diagonal.

By expressing the non-negativity and irreducibility of $\tilde{B}_{22}$ in (4) in terms of
$A$ , we have the following proposition:

Proposition 6 Let $\tilde{P}_{2}$ be an $(n-m)\cross n$ matrix defined by (5) in terms of a
nonsingular matrix P. Suppose that an $n\cross n$ matrix $A$ satisfies the following
conditions for any $n$ -dimensional real vector $u$ :
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1. $\tilde{P}_{2}u\geq 0implie\mathit{8}\tilde{P}2Au\geq 0$ .

2. Suppose that $\tilde{P}_{2}u\geq 0$ and $\tilde{P}_{2}u\neq 0$ hold. Then, for any $j(j=$
$1,2,$

$\ldots,$
$n)$ , there is a natural number $r$ (depending on $j$ ) such that the

$jth$ component of $\tilde{P}_{2}A^{r}ui_{\mathit{8}}$ positive.

Then, the characteristic values of $A$ are composed of the following three types.

1. There are $m$ characteristic values $\lambda_{j}(j=1,2, \ldots, m)$ , any vector $u$ in
the corresponding root subspaces of which satisfies the following:

$\tilde{P}_{2}u=0$ . (9)

2. There are $h$ characteristic $value \mathit{8}\lambda_{j}=\exp(2\pi i\frac{-m-1}{h})\lambda_{m+1}(j=m+$

$1,$ $m+2,$ $\ldots,$ $m+h)$ , where $\lambda_{m+1}i\mathit{8}$ a real positive and the $charaCteri_{\mathit{8}}ti_{C}$

$PAP-1Canbevect_{\mathit{0}}r\phi_{m+}1Spondingto\lambda_{m}+1^{Sa}ti_{Sfi2}corputbymeansofapermutrees\tilde{P}\phi nationitm_{Ot}+1hef.lo>0_{oling}Ifh>w‘ 1,thcyclienc$

’

form:

$PAP^{-1}=$ , (10)

where there are square blocks along the main diagonal.

3. There are $n-m-h$ characteristic values $\lambda_{j}(j=m+h+1,$ $m+h+$
$2,$

$\ldots$ , $n$), which satisfy $|\lambda_{j}|<\lambda_{m+1}$ .

In the case of $m=1$ , the nonsingularity of $P$ assures that equation (9)
has just one nontrivial solution up to constant factor, which we denote by
$\phi_{1}$ . The characteristic value $\lambda_{1}$ is the component of 1 $\cross 1$ matrix $\tilde{B}_{11}$ . In
this sense, fixing an appropriate $\tilde{P}_{2}$ is equivalent to finding a characteristic
vector of $A$ if $m=1$ .

If $A$ itself is an irreducible nonnegative matrix, and $\phi_{1}>0$ holds, Lemma
5 assures that $\lambda_{1}$ in Proposition 6 is the first characteristic value of $A$ . In
this case, the first characteristic value of $\tilde{B}_{22}$ is just the second characteristic
value of $A$ :

Proposition 7 In addition to the same assumptions as in Theorem 6, $we$

further assume the followings:
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1. $m=1$ .

2. $a_{ij}\geq 0(i,j=1,2, \ldots, n)$ .

3. Equation (9) has a nontrivial solution $\phi_{1}$ satisfying $\phi_{1}>0$ .

Then, $\lambda_{m+1}(=\lambda_{2})$ defined in Proposition 6 is the second characteristic value.

4 Propositions 1, 2 and Other Corollaries
We will have any number of corollaries to Propositions 6 and 7 by taking
suitable $P$ in (3). A nonnegative matrix $A$ is a stochastic matrix multiplied
by a constant factor $c(>0)$ if and only if $\phi_{1}=(1,1, \ldots , 1)^{\mathrm{T}}$ is a characteristic
vector corresponding to a characteristic value $c$ . In this case, we can take
any nonsigular matrix $P$ satisfying

$\sum_{j=1}^{n}pij=0$ , $i=2,3,$ $\ldots$ , $n$ , (11)

for obtaining a sufficient condition for the second characteristic value.
As a simplest example, let us take $P$ such that each row except for the

first row contains just one “1” and one “
$- 1$

” as non-zero components, one of
which occupies the diagonal location. We see that (11) is naturally satisfied.
The condition $\tilde{P}_{2}u\geq 0$ defines a partial ordering among the components of
$u$ . Premise 1 in Proposition 6 means that this partial ordering is preserved
through the linear transformation defined by $A$ . Let us consider the following
$(n-1)\cross n$ matrix:

$\triangle_{n}\equiv$ .

Now, we are ready to prove Propositions 1 and 2 as corollaries to Propo-
sitions 6 and 7.

(Proof of Proposition 1)
For $\tilde{P}_{2}=\triangle_{n}$ , premise 3 in Proposition 7 is assured by setting $\phi_{1}=(1,1, \ldots, 1)^{\mathrm{T}}$ .
From the assumption of the existence of $r$ satisfying $PA^{r}u>0$ for any non-
horizontal vector $u$ , we see that $B^{r}=PA^{r}P^{-1}$ is a positive matrix. Thus,
we have $h=1$ from Lemma 5. Proposition 1 follows from Proposition 7. $\square$
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(Proof of Proposition 2)
$\mathrm{S}\mathrm{e}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}PAP^{-}1.\tilde{P}_{2}--\triangle n$

and $h=1$ , Proposition 2 follows from the
$\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{n}\mathrm{e}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{i}}\mathrm{t}\mathrm{y}\mathrm{o}\mathrm{f}\square$

For other possible corollaries, if we take $(n-1)\cross n$ submatrix $\tilde{P}_{2}$ as

$\tilde{P}_{2}=$ ,

we obtain another sufficient condition for the second characteristic value $\lambda_{2}$ of
$A$ . In this case, any $n$-dimensional vector with the minimum first component
is mapped to a vector with the minimum first component. We need the
following proposition instead of Proposition 2:

Proposition 8 An $n\cross n$ matrix $F=(f_{ij})map_{\mathit{8}}$ any $n$ -dimensional vec-
$tor$ with the minimum first component to a vector with the minimum first
component if and only if the following inequalities hold:

$f_{gk}<f_{hk}$ , $k=2,3,$ $\ldots,$
$n$ . (12)

The characteristic vector $\phi_{2}$ corresponding to $\lambda_{2}$ has the minimum first com-
ponent.

If $m\geq 2$ , we must be satisfied with weaker results. Propositione 6 assures
that the first characteristic value of $B_{22}$ is equal to or larger than the $(m+1)\mathrm{t}\mathrm{h}$

characteristic value of $A$ . For example, let us take an $(n-m)\cross n$ matrix
$\tilde{P}_{2}=\triangle 1\triangle nm+2\cdot\cdot’\triangle n-m+-n$ . In the case of $m=2$ , in particular, we may
interpret the property $\tilde{P}_{2}\phi_{2}>0$ as the “convexity” of $\phi_{2}$ . We see that the
characteristic value to which $\phi_{2}$ corresponds is equal to or larger than the
third characteristic value.

5 Conclusion
We have given sufficient conditions for the second characteristic value of a
nonnegative matrix (Propositions 1, 2 and remarks in section 4), which we
have proved as corollaries to more general propositions (Propositions 6 and
7). Some other applications of these general propositions are also remarked.
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We would like to remark that we can generalize these results to those in
more abstract spaces by similar but slightly more careful reasoning. It will
be discussed it in anoter paper with application to a special type of time
series model.

6 Acknowledgement
The author is partially supported by the Grant-in-Aid for the Scientific Re-
search of the Ministry of Education, Science, Sports and Culture of the Gov-
ernment of Japan and by the Statistical Data Bank Project Research Fund
of the Ministry of Education, Science, Sports and Culture of the Government
$\mathrm{o}\mathrm{f}\mathrm{J}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{n}$ .

References
[1] Friedland, S. and Gurvits, L.: Upper bound for the real parat

of nonmaximal eigenvalues of nonnegative irrducible matarices,
SIAM J. Matrix Anal. Appl. $15:1015- 1017(1994)$

[2] Friedland, S. and Nabben, R.: On the second real eigenvalue
of nonnegative and $\mathrm{Z}$-matrices, Linear Algebra and Its Appl.,
$255:303- 313(1997)$ .

[3] Gantmacher, F.R.: Matrix Theory, Vol. 2, Chelsea: New York,
1957.

112


