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1 Introduction
The following Ginzburg-Landau equation with a variable coefficient in a bounded domain
$D\subset \mathrm{R}^{2}$ subject to Neumann boundary condition are considered:

$(P)$

where $a(x, y)$ is a positive smooth function, $\partial/\partial\nu$ denotes the outer normal derivative on
the boundary $\partial D$ and $\Phi(x, y)$ is a complex valued function, say $\Phi(x, y)=u(x, y)+iv(x, y)$ .
$\Phi(x, y)$ , which is called order parameter describing a superconducting state, is always iden-
tified with the two-component real vector function $(u(x, y),$ $v(x, y))$ . This equation $(P)$ is
a simplified model to describe a superconducting phenomenon in a thin material with a
variable thickness. The thickness of the material with the bottom $D$ is denoted by $a(x, y)$ .

For type II super conductors a third state exists, which is known as the mixed state.
The mixed state is neither wholly superconducting nor wholly normal but consists of many
normal filaments embedded in a superconducting material. These filaments are often known
as vortices. Each of these filaments carries with it a quantized amount of magnetic flux
and is circled by a vortex of superconducting current; thus these filaments are often known
as vortices. From an industrial perspective, it is interesting to know the behavior of vor-
tices, especially their stable condition. If vortices move, electromagnetic induction occurs,
causing voltage drop, and therefore loss of energy. Moreover, to apply a superconducting
phenomenon (for example “ pinning effect”), the position where the vortices appear should
be investigated.

Stable solutions of $(P)$ with zero are called vortex solutions. Mathematically, the vortices
are considered zero points of $\Phi(x, y)$ . For constant $a(x, y)$ , there is no stable nonconstant
solution to the Ginzburg-Landau equation in any convex domain with Neumann boundary
condition [3]. The objective is therefore to investigate the relation between the thickness
$a(x, y)$ and the stable vortex solution. Such interest acts as a catalyst for the proposition of
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the following numerical method. By applying the discrete Morse semiflow (time discretized
functional method) to this problem, numerical experiments are carried out.

2 Mathematical results
$(P)$ is the Euler-Lagrange equation for the energy functional

$E( \Phi)=\int_{D}\{|\nabla\Phi|2+\frac{\lambda}{2}(1-|\Phi|^{2})^{2}\}a(X, y)dXdy$ . (2.1)

We call the solution of $(P)$ is stable if it is a local minimizer of (2.1) (cf. [6]).
Let $h>0$ and let $D$ be a bounded domain in $\mathrm{R}^{2}$ with smooth boundary. Let $a(x, y)>0$

be a bounded function on $\overline{D}$ . Here, smoothness of $a(x, y)$ is not assumed.
Now the sequence of functionals will be defined,

$E_{n}^{h}(\Phi)$ $=$ $\int_{D}\frac{|\Phi-\Phi_{n}^{h}-1|^{2}}{h}a(x, y)d_{Xdy}+E(\Phi)$ , (2.2)

$\Phi\in \mathrm{K}$ $=$ $W_{\psi}^{1,2}(D;\mathrm{R}2)\cap L^{4}(D;\mathrm{R}^{2})$ .

If suitable $h$ and $\lambda$ are chosen, the minimizer is uniquely determined for each functional
$E_{n}^{h}(\Phi)$ .

Lemma 2.1. For any $m\in \mathrm{N}$ , if $1/h>\lambda$ holds, the minimizer of $E_{m}^{h}$ is uniquely determined.

proof) It holds that

$E_{m}^{h}( \Phi)=\int_{D}\{(\frac{1}{h}-\lambda)|\Phi|^{2}-\frac{2}{h}\Phi\cdot\Phi h|m-1^{+\frac{1}{h}}\Phi hm-1|^{2}+|\nabla\Phi|2+\frac{\lambda}{2}(1+|\Phi|^{4})1^{a}(x, y)dXdy$ .

Then we have, for $1\leq\theta\leq 1$ ,

$(1-\theta)E_{m}^{h}(\Phi)+\theta Eh(m)\Psi-E^{h}m(\Phi+\theta(\Psi-\Phi))$

$\geq(1-\theta)\theta\int_{D}\{(\frac{1}{h}-\lambda)|\Phi-\Psi|^{2}+|\nabla(\Phi-\Psi)|^{2\}}a(X, y)d_{Xdy}$ .

If $1/h-\lambda$ is positive, the functional $E_{m}^{h}(\Phi)$ is convex. Therefore its minimizer is unique. $\square$

The sequence of functions $\{\Phi_{n}^{h}\}_{n=1}^{\infty}$ is called discrete Morse semiflow (see [7], [8], [9] and
[10] $)$ . The boundedness of $\Phi_{m}^{h}$ for each $m$ is given.

Lemma 2.2. $If||\Phi_{0}||_{\infty}\leq 1,$ $||\Phi_{m}^{h}||_{\infty}\leq 1$ for all $m\in \mathrm{N}$ holds.

proof) We suppose that our assertion holds for any $n\leq m-1$ . If $\Phi_{m}^{h}$ is a minimizer of
$E_{m}^{h}$ and $\{x;|\Phi_{m}^{h}|>0\}$ has a positive Lebesgue measure, the following comparison function

154



is chosen: $\Psi:=\Phi_{m}^{h}/|\Phi^{h}|m$ in $\{x;|\Phi_{m}^{h}|>1\},$ $:=\Phi_{m}^{h}$ in $\{x;|\Phi_{m}^{h}|\leq 1\}$ . Then
$E_{m}^{h}(\Psi)<E_{m}^{h}(\Phi_{m}^{h})\square$

is obtained by direct calculation. It contradicts $\Phi_{m}^{h}$ is a minimizer.

Throughout this paper, an initial data $\Phi_{0}$ satisfies $||\Phi_{0}||_{\infty}\leq 1$ is supposed.

Lemma 2.3. It holds that

$E( \Phi_{M}^{h})+\sum_{m=1}^{M}\int D\frac{|\Phi^{h}m-\Phi^{h}m-1|^{2}}{h}a(X, y)d_{Xdy}\leq E(\Phi_{0})$.

proof) Because $\Phi_{m}^{h}$ is the minimizer of $E_{m}^{h}$ , it holds the following inequality,

$E_{m}^{h}(\Phi_{m}^{h})$ $\equiv$
$\int_{D}\frac{|\Phi_{m}^{h}-\Phi_{m}^{h}-1|2}{h}a(x, y)d_{Xdy}+E(\Phi_{m}^{h})$ (2.3)

$\leq$ $E_{m}^{h}(\Phi_{m}^{h}-1)=E(\Phi^{h}-1)m$ .

By summing up the both sides of (2.3), Lemma 2.3 can be shown. $\square$

Now, the existence of the limit function $\Phi_{\infty}^{h}$ of the subsequence $\{\Phi_{m}^{h}\}$ will be shown.

Lemma 2.4. For any subsequence $\{\Phi_{m_{j}}^{h}\}\subset\{\Phi_{m}^{h}\}$ , there exists a subsequence $\{\Phi_{m_{\mathrm{j}_{\nu}}}^{h}\}$

$\subset\{\Phi_{m_{j}}^{h}\}$ and a function $\Phi_{\infty}^{h}$ on $D$ such that

$\Phi_{m_{j\nu}}^{h}arrow\Phi_{\infty}^{h}$ weakly in $W^{1,2}$ , (2.4)
$\Phi_{m_{j\nu}}^{h}arrow\Phi_{\infty}^{h}$ $\mathit{8}trongly$ in $L^{2}$ , (2.5)

$\Phi_{m_{j\nu}}^{h}arrow\Phi_{\infty}^{h}$ weakly in $IP$ , $\forall p>1$ , (2.6)

as $\nuarrow\infty$ . Moreover, we have

$|\Phi_{\infty}^{h}|\leq 1$ $a.e$ . in D. (2.7)

proof) By Lemma 2.3, $\{\Phi_{m}^{h}\}$ is weakly compact in $W^{1,2}$ . Therefore it holds (2.4) by use of
a weak compactness argument and by Rellich’s theorem (2.5) is obtained. We readily

$\mathrm{g}\mathrm{e}\mathrm{t}\square$

(2.6) and (2.7) by Lemma 2.2.

Theorem 2.1. The limit function $\Phi_{\infty}^{h}$ is a minimizer of the functional

$E_{\infty}^{h}( \Phi)=\int_{D}\frac{|\Phi-\Phi_{\infty}^{h}|^{2}}{h}a(x, y)d_{Xdy}+\int_{D}\{|\nabla\Phi|^{2}+\frac{\lambda}{2}(1-|\Phi|^{2})^{2}\}a(x, y)d_{Xdy}$

in $\mathrm{K}$, hence, $\Phi_{\infty}^{h}$ satisfies
$\int_{D}\nabla\Phi^{h}\nabla\phi\infty a(x, y)d_{X}dy-\int_{D}\lambda\Phi_{\infty}^{h}(1-|\Phi_{\infty}^{h}|^{2})\phi a(x, y)d_{Xdy}=0$
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for any $\phi\in C_{0}^{\infty}(D)$ .

proof) We assume that there exists $v\in \mathrm{K}$ such that

$E_{\infty}^{h}(\Phi_{\infty}^{h})-E^{h}\infty(v)=3d>0$ .

It is easy to see

$|E_{m_{j}}^{h}(v)-E_{\infty}^{h}(v)|$

$= \frac{1}{h}\int_{D}\{2v\cdot(\Phi_{\infty}h-\Phi^{h}-1m_{j})+(|\Phi_{mj^{-1}}^{h2}|-|\Phi_{\infty}^{h}|^{2})\}a(_{X}, y)dxdy$

$\leq\frac{1}{h}||a||_{\infty}\cdot||\Phi^{h}-\infty\Phi h|m_{j}-1|L2\mathrm{t}^{2}||v||_{L}2+||\Phi h-1|m_{j}|_{L^{2}}+||\Phi_{\infty}h||L^{2}\}$ .

Thus, there exists a positive number $M$ such that for all $j\geq M$

$|E_{m_{j}}^{h}(v)-E_{\infty}h(v)|\leq d$

holds.
On the other hand, by Lemma 2.4, it holds that

$\int_{D}|\nabla\Phi_{\infty}^{h}|^{2}dx$ $\leq$ $\lim\inf\int_{D}jarrow\infty|\nabla\Phi_{m_{j}}^{h}|^{2}dx$ ,

$\int_{D}\frac{1}{\delta}(1-|\Phi_{\infty}^{h}|^{2})2dx$ $\leq$ $\lim_{jarrow}\inf_{\infty}\int_{D}\frac{1}{\delta}(1-|\Phi_{m_{j}}^{h}|^{2})^{2}dx$.

Therefore there exists $M\in \mathrm{N}$ such that for $j\geq M$ we have

$E_{\infty}^{h}(\Phi_{\infty}^{h})\leq E_{m}^{h}(j\Phi_{m}h)j+d$.

Combining these estimates with a minimality of $E_{m_{j}}^{h}(\Phi_{m_{j}}^{h})$ , we have

$E_{m_{j}}^{h}(\Phi_{m_{j}}h)$ $\leq E_{m_{j}}^{h}(v)$

$\leq E_{\infty}^{h}(v)+d$

$=E_{\infty}^{h}(\Phi_{\infty}^{h})-2d$

$\leq E_{m_{j}}^{h}(\Phi_{mj}^{h})-d$.

This is a contradiction. $\square$

3 Numerical results

Here, the following some numerical experiments are introduced. These results are obtained
by minimizing method to the functional (2.2).
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The numerical scheme used here is the usual finite element method for elliptic variational
problems. A minimizer for each step is sought by use of a gradient method (see [9] and [10]
for examples). Note that, each minimizer is uniquely determined, if $h$ and $\delta$ are chosen
suitably by Lemma 2.1. The parameters chosen are $\delta=1.0\cross 10^{-5}$ and $\lambda=1/0.05$ .

Let $D=\{|x|<1\}$ and $a(x, y)=a(r)$ be a radially symmetric function. The thickness
$a(x, y)$ is defined

$a(x, y)=a(r)=\{$
1 $0.5<r\leq 1$ ,
$d$ $0\leq r\leq 0.5$ .

We may consider the $d$ plays an important role in the position of vortex. Numerical compu-
tations were tested in the three cases; $d=0.\mathrm{O}1,$ $d=0.5$ and $d=0.4$ . All of the cases, the
following function is chosen

$\Phi_{0}(x, y)=\{$

$0$ if $\rho=0$

$((x+\mathrm{O}.1)/\rho, y/\rho)$ otherwise

as the initial condition, where $\rho=\sqrt{(x+01)^{2}+y^{2}}$ .
Case 1 $\mathrm{d}=0.01$

The vortex solution whose vortex is at the center is unstable for constant $a(x, y)$ . How-
ever, the vortex of $\Phi_{\infty}$ is at the center of the domain. For the result of [5], the vortex solution
whose vortex is at the center is known. This fact is ascertained numerically.

The profile of $\Phi_{0}$ The profile of $\Phi_{\infty}$
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Case 2 $\mathrm{d}=0.5$

The vortex goes out from the domain. It is the same as $a(x, y)$ is constant.

The profile of $\Phi_{0}$ The profile of $\Phi_{\infty}$

Case 3 $\mathrm{d}=0.4$

The vortex is trapped in the domain. It can not go over the layer at $r=0.5$ .

The profile of $\Phi_{0}$ The profile of $\Phi_{\infty}$
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4 Conclusion

Here, the Ginzburg-Landau system was treated and its weak solutions were constructed by
use of a notion of discrete Morse semiflow. At the same time, numerical computations were
also carried out. The numerical scheme used here was the usual finite element method for
elliptic variational problems. A minimizer for each step was sought by use of a gradient
method. These minimizers were uniquely determined, and located relatively quickly.

Numerical experiments were carried out on a special shape of the domain. The stability
of the solution and the position of the vortex were affected by the thickness of the domain.
For the result of [5], the vortex solution whose vortex is at the center was known. This
fact was ascertained numerically, and our results suggested the existence of another vortex
solution exists.
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