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Abstract

The author has investigated an FEM-CSM combined method for 2D exterior Laplace problems
during these years ([2], [3]). Here the abbreviation of CSM is employed for the charge simulation
method (See [1]). In the mathematical analysis for the method, especially in the proof of
an a priori error estimate for the approximate solutions obtained by the method, a relation
between continuous and discrete Fourier coefficients of equi-distant piecewise linear continuous
27-periodic function plays a key role. In this paper, the relation is introduced with illustrative

examples of application to the mathematical analysis mentioned above.

1. Relation between continuous and discrete Fourier coefficients for
equi-distant piecewise linear continuous 27-periodic functions

Let f(#) be a complex valued continuous 27-periodic function of #. For n € Z, a
continuous Fourier coefficient f, of the function f(6) is defined through

2
1 —ind
fo= 5= [ FO)edo.
0
Fix a positive integer N. Set
01:— Hj:j91 for jEZ

For n € Z, a discrete Fourier coefficient f{) of the function f(0) is defined through

59 = L5 e
n N J '
Jj=0
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It is to be noted that we have for any continuous 27-periodic function f(6),

(1) =" nez, rez-{o}.

n

Let w(6#) be the reference roof function defined through

NP I Tl U B U
w(B)_{ 0 = |9>1.

For any j € Z, define a piecewise linear basis function w}N)(H) through the following
formula:

ng)(O) = 1?)(0 — 6)j), —00 < § < oo.
61

A complex valued function f() is said to be an equi-distant piecewise linear contin-
uous 27-periodic function (with NV nodal points) in this paper if f(6) is represented
as Lo
N }
1(6) =3 1(O;)wi"(6), 0<6<om
=0

j
with
f2m) = £(0).
Introduce a function a(f) through the formula:
2(1 — cos )
02

Theorem 1 We have the following relation for any equi-distant piecewise linear con-

alf) = for 6#0, with «(0)=1.

tinuous 2m-periodic function (with N nodal points) f(0),
(2) fa=a@) ", nez.
Proof A straightforward calculus leads the relation. O

Corollary We have the following identity for any equi-distant piecewise linear contin-
uous 2m-periodic function (with N nodal points) f(6),

(3) fotnr = (n _i_nNr)zfn, neZ, reZ-{0}.
Proof Since we have
n 2
Oy e) = (n i ) a(0y), nez, rez-{o)

Theorem 1 together with Equality (1) implies Equality (3). O

2. Boundary bilinear forms of Steklov type for exterior Laplace problems
and its CSM-approximation forms
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Let D, be the interior of the disc with radius a being the origin as its center, and let I,
be the boundary of D,. Let Q. = (D, UT,)¢, which is said to be the exterior domain. We
use the notation r = r(f) for the point in the plane corresponding to the complex number
re® with r = |r| where |r| is the Euclidean norm of r € R?. Similarly we use a = a(f),
and g = §(0), corresponding to ae?® with a = |a|, and pe? with p = ||, respectively.

For functions u(a(f)) and v(a(f)) of H'/2(T,), let us introduce the boundary bilinear
form of Steklov type for exterior Laplace problem through the following formula:

(4) blu,v) =2 3 |n|fuTn,
where f,, and g,, are continuous Fourier coefficients of u(a(#)), and v(a(f)), respectively.
It is to be noted that the following fact:
If u(a(8)) is the boundary value on Ty of the function u(r) satisfying the following
boundary value problem (E):

—Au = 0 in Q.

(E) u = g on [,
sup |u| < oo,
Q.
with
¢ = u(a(f)),
then
ou
(5) b(u,v) = — s Evdf‘.

The CSM approximate form for b(u,v) of the first type, which is denoted by 5™ (u, v),
is represented through the following formula (6):

ou)

(Mdr
r, Or v ’

(6) A (u,v) = —

where u(¥)(r) is a CSM-approximate solution for u(r) satisfing (E) with ¢ = u(a(f)).
Namely u(")(r) is determined through the following problem (E():

N-1
uM(r) = > g;G;(r) + qn,
]:

(E™) ¢ uM(a;) = wu(a), 0<j<N-1,
N-1
E q9; = 0,
\ 7=0
where

a; = a(f;), p; = p(d;) with 0<p<a,
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Gy1) = B(r— )~ E@),  B(s) = —-logr.

Problem (E™) is to find N + 1 unkmowns g;, 0 < j < N, and it is uniquely solvable for
any fixed p € (0,a).

The CSM approximate form for b(u, v) of the second type, which is denoted by ) (u,v),
is represented through the following formula (7):

2ma = 9u™ (a;) o)
N or

J=0

7(N)
(7) b (u,v) = — (ay),
which is the quadrature formula for b(¥) (u, v) with the use of trapezoidal rule.
We use the following notations:

b(v) = b(v,v)2, B (w) = b(v, )2, B (w) =5 (v, 0) 2.

Denote the totality of equi-distant piecewise linear continuous 2m-periodic functions (Wi‘th
N nodal points) v(a(f)) by Vy: ‘ ey

Let log 2
og .
M=—f  with 1

Theorem 2 We have the following inequalities for any v € Vy.
1 | 72

——b(v) <M (v) <

44/1 4 2¢(3) 2

provided that N > N(v), where

b(v)

=35

Theorem 3 For u,v € Vy, we have
|b(N)(u, v) — E(N)(u, v)| < 872Nb(N)(u)b(N)(v)

provided that N > N(v).

3. Proof of Theorem 2
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For a fixed positive integer N, introduce sets of integers N, through
N N
M:{n:~—2—§n—Nr<—2—, n # Nr}

with

r=0,41,42, -
For any integer n € [1, N — 1], define a function s{)(y) of v € (0,1), numbers A{") and
TN as follows.

v xn—l + xN—-n—l
(N) _
Sn (’7) - ‘/0 1— N dl’,
A — S%N) (v*) AN _ V%S%N) (7)
" s " s ()

We admit the validity of the following Proposition 1 without proof.
Proposition 1 For u,v € Vi, we have

b (u,v) =21 Y Afﬁ)f,SN)ggN)
neNo

and
E(N)(u,v) =27 Z Km)f,(LN)ggN),
nEN()

where fN) | and gtN), are discrete Fourier coefficients of u(a(8)), and v(a(8)), respectively.

Using the representation of A{™), we obtain
Proposition 2 If N > N(v), then

T < AW < 4, L<n<
16 2

An elemental calculus leads
Proposition 3 It holds

4
— <a(f) <1, - <0 <.

Proposition 4 For v € Vi, we have

% {27r > lnllgnIQ} < 6™ (v,0) < WZ {2” > lnllgnIQ}

nENo TLEN()
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provided that N > N (7).
Proof Due to Theorem 1 and Proposition 1, we have

1
b ™ (v, v) = 27 A(,iv)—|gn|2.
2 N e

Propositions 2 and 3 imply the conclusion of Proposition 4. O

Proposition 5 For v € Vy, we have

{zw > |n||gn|2} < b(v,) < (1+2¢(3)) {2vr > |n||gn12} :

neNo neNy

Proof Due to Corollary of Theorem 1, we have

1 n |3
—b(v,v) =Y > In/|gn|*.
27 7 neN n+ Nr
For r € Z — {0}, we have
n
— € .
ln + Nr| = |r|’ n€No

Therefore

bv,v) < (HQE%) {277 > |ann|2}.

nGNo
Hence the second inequality of the conclusion is valid, while the first one is trivial by
definition of b(u,v). O

Propositions 4 and 5 complete the proof of Theorem 2.

4. Proof of Theorem 3

Proposition 6 For an integer n € [1, N —1], define B, through the following formula:

pEZ qEZ

Then we have
s (7?) < B < (1487%)s{M(7?)

n

provided that N > N(v).
Proof A lengthy but straightforward calculus leads the conclusion. O

Proposition 7 For N > N(v), we have

A < TN < (14 842)AM),
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Proof Let

Then we have N2
A — s (v?)

.2
and B
+(N)
An == F—:lz

Hence Proposition 6 implies the conclusion. O

The proof of Theorem 3 is now straightforward. In fact, we have

_N —_—
M (u,v) — 87 (u,0) = 20 3 (A — K Vg,

n€./\fo

Hence it holds

1/2 1/2
= ——N —(N
6™ (u, v) B <uv|<2vr{z AL~ ,‘nRuﬂW} {z AL —Afnfngw} .

neNp neNy

Let N > N(v). Proposition 7 implies

A
lnl

| < 872A(N n € Ny.

In|

0 < [AGY -

Therefore we get

1/2 1/2
]b(N)(u,v) —E( (u,v)] < 8fy % {27;— z A |f N)|2} % {27r Z !nl lg(N)IQ}

neNy neNy

provided that N > N(v). Due to Proposition 1 we have the conclusion of Theorem 3.

5. Application to mathematical analysis of an FEM-CSM combined method
for exterior Laplace problems

Fix a simply connected bounded domain O in the plane. Assume that the boundary C
of O is sufficiently smooth. The exterior domain of C is denoted by 2.

Fix a function f € L?(Q2). Assume that the support of f, supp(f), is compact.

Choose a so large that the open disc D, may contain the union O U supp(f) in its
interior. ‘

As a model problem the following Poisson equation (E) is employed.

-Au = f in Q,
(E) u = 0 on C,

sup |lu| < oo.
|ri>a
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The intersection of the domain 2 and the disc D, is said to be the interior domain,
denoted by €; :
Q,=QnD,.

Consider the Dirichret inner product a(u,v) for u,v € H(;) :
alu,v) -——/ gradu gradv dS).
125

Since the trace v,v on I, is an element of H'/2(T',) for any v € H'(€;), the boundary
bilinear form of Steklov type b(u,v) is well defined for u,v € H(Q;). Therefore we can
define a continuous symmetric bilinear form :

t(u,v) = a(u,v) + b(u, v)

for u,v € H'().
Let F(v) be a continuous linear functional on H'(;) defined through the following
formula:

F(U):/;}fv dQ.
A function space V is defined as follows: 1
V:{’UEHI(Q,-):'UZO on C}.
Using these notations, the following weak formulation problem (II) is defined.

() { t(u,v) = F(v), veV,

ueV.

Admitting the equivalence between the equation (E) and the problem (II), we consider
the problem (IT) and its approximate ones.

Fix a positive number p so as to satisfy 0 < p < a. For a fixed positive integer N, set
the points pj,a;,0 < j < N — 1, as is defined in Section 2.

A family of finite dimensional subspaces of V :

{VNZN:N(),N0+1,"‘}

is supposed to have the following properties:

(Vn—1) Vv C C().
(Vy—2) For any v € Vi, v(a(h)) is an equi — distant piecewise linear
N continuous 2m — periodic function with respect to 0.
: C 2
(Vn — 3) min a(v — vy) < —|v|| g2, veVnNH(Q).
veVy N
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In the property (Vy — 3), C is a constant independent of NV and v, and
a(v) = a(v,v)/?, veV.
For u,v € H' () N C(Q;), we define bilinear forms ¢t (u,v) and E(N)(u, v) as follows.
tM (u, v) = a(u, v) + bV (u,v),

and
=(N)

: (N)

(u,v) = a(u,v) + b (u,v).

Now two approximate problems (II™)) and (ﬁ(N)) are stated as follows.

() tM (uy,v) = F(v), ve€ Vy,
uy € VN.

@) £ (ay0) = Fo), e Vi,
Uy € VN.

With the aide of Theorems 2 and 3 and other necessary discussions, we can show the
following error estimate.

Theorem 4 For a constant C, we have the following estimate.

llw — un||m )

< = |ullg2(ay)-

=le!

llu — uyllm(o,

In the above, the constant C is independent of the solution u of (II) and N.
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