Iterative Methods for Eigenvalue Problems of a General Complex Matrix

Kazuo Ishihara (石原 和夫) *

Department of Applied Mathematics Osaka Women's University, Sakai, Osaka 590–0035 Japan

1 Introduction

Let C be the set of complex numbers. We consider the following eigenvalue problem of a general complex $n \times n$ matrix A

$$Az = \lambda z, \quad ||z||^2 = 1.$$

Here $A = (a_{i,j}), a_{i,j} \in C, 1 \leq i, j \leq n, \lambda \in C, z = (z_1, z_2, \dots, z_n)^T \in C^n, ||z|| = \sqrt{z^H z}, T$ and H denote transpose and conjugate transpose, respectively. In order to obtain approximate eigenvalue λ and its corresponding eigenvector z, (1) can be written as a system of complex nonlinear equations

(2)
$$F(Z) = F(z, \lambda) = \begin{pmatrix} Az - \lambda z \\ -\frac{1}{2}(||z||^2 - 1) \end{pmatrix} = 0.$$

Here $Z = (z_1, z_2, \cdots, z_n, \lambda)^T \in C^{n+1}$.

Remark 1. We note that $||z||^2 = \sum_{j=1}^{n} |z_j|^2$ is not a differentiable function of

complex variables z_1, z_2, \cdots, z_n .

We use the following notations $(t > 0, d \in C^{n+1}, I_n$ denotes the $n \times n$ identity matrix):

$$g(Z) = \frac{1}{2} \|F(Z)\|^2, \quad g'(Z,d) = \lim_{t \to +0} \frac{g(Z+td) - g(Z)}{t},$$
$$J(Z) = J(z,\lambda) = \begin{pmatrix} A - \lambda I_n & -z \\ -z^H & 0 \end{pmatrix}$$

*email: ishi@appmath.osaka-wu.ac.jp

Remark 2. When A, λ , z are real-valued, J(Z) represents the Jacobian matrix of F(Z). However, when A, λ , z are complex-valued, J(Z) does not represent the Jacobian matrix of F(Z) because of the nondifferentiable term.

2 Iteration and Convergence

For solving (2) by iteration with line search, we put $Z_k = (z_{1,k}, \dots, z_{n,k}, \lambda_k)^T$, $k = 0, 1, 2, \dots$ Then we have the following iterative method GDNM(generalized damped Newton method) by using initial vector Z_0 and constants β , $\sigma \in (0, 1)$.

(3)
$$\begin{cases} step \ 1 : By assuming that \ F(Z_k) \neq 0 \text{ and } J(Z_k) \text{ is nonsingular,} \\ \text{solve } F(Z_k) + J(Z_k)d_k = 0 \text{ to get } d_k. \\ step \ 2 : Let \ m_k \text{ be the smallest nonnegative integer } m \text{ such that} \\ g(Z_k + \beta^m d_k) - g(Z_k) \leq \sigma \beta^m g'(Z_k, d_k), \quad m = 0, 1, 2, \cdots. \\ \text{Set } Z_{k+1} = Z_k + \alpha_k d_k \text{ with } \alpha_k = \beta^{m_k}. \\ step \ 3 : \text{Test } Z_{k+1} \text{ for convegence.} \end{cases}$$

Furthermore, when $J(Z_k)$ is singular we also have the following iterative method GDGNM(generalized damped Gauss-Newton method) by using initial vector Z_0 and constants β , $\sigma \in (0,1)$, $\mu > 0$.

(4)
$$\begin{cases} step \ 1 : By assuming that \ J(Z_k)^H F(Z_k) \neq 0, \text{ solve} \\ J(Z_k)^H F(Z_k) + \left(J(Z_k)^H J(Z_k) + \mu I_{n+1}\right) d_k = 0 \text{ to get } d_k. \\ step \ 2 : Let \ m_k \text{ be the smallest nonnegative integer } m \text{ such that} \\ g(Z_k + \beta^m d_k) - g(Z_k) \leq \sigma \beta^m g'(Z_k, d_k), \quad m = 0, 1, 2, \cdots. \\ \text{Set } Z_{k+1} = Z_k + \alpha_k d_k \text{ with } \alpha_k = \beta^{m_k}. \\ step \ 3 : \text{Test } Z_{k+1} \text{ for convegence.} \end{cases}$$

Some lemmas are prepared.

Lemma 1 [5]. Let λ be an eigenvalue and z be a corresponding eigenvector of A. Then λ is simple if and only if $J(z, \lambda)$ is nonsingular.

Lemma 2 . In GDNM, we have

$$g'(Z_k, d_k) = - \|F(Z_k)\|^2.$$

In GDGNM, we have

$$g'(Z_k, d_k) = -\left(J(Z_k)^H F(Z_k)\right)^H \left(J(Z_k)^H J(Z_k) + \mu I_{n+1}\right)^{-1} J(Z_k)^H F(Z_k).$$

Lemma 3. Suppose that $F(Z_k) \neq 0$ in $GDNM(or J(Z_k)^H F(Z_k) \neq 0$ in GDGNM). Then there exists a scalar $s_0 > 0$ such that for all $s \in [0, s_0]$

$$g(Z_k + sd_k) - g(Z_k) \le \sigma sg'(Z_k, d_k).$$

We are now in a position to obtain the following results.

Theorem 1 . Let $Z_* = (z_*, \lambda_*)$ be a solution of F(Z) = 0, where λ_* is a simple eigenvalue. Suppose that Z_0 is sufficiently close to Z_* . Let $\{Z_k\}$ be a sequence given by GDNM (3). If \tilde{Z} is any accumulation point of $\{Z_k\}$, then we have $F(\tilde{Z}) = 0$ and $\tilde{Z} = (\delta z_*, \lambda_*), \ \delta \in C$.

Remark 3. When A, λ , z are real-valued, GDNM (3) with $\alpha_k = 1$ ($m_k = 0$) reduces to the usual Newton method which locally converges quadratically. When A, λ , z are complex-valued, we are not able to establish its rate of convergence because of the nondifferentiable term $||z||^2$.

Theorem 2. Assume that $\{Z_k\}$ given by GDGNM (4) is bounded. If $\tilde{Z} = (\tilde{z}, \tilde{\lambda})$ is any accumulation point of $\{Z_k\}$, then we have $J(\tilde{Z})^H F(\tilde{Z}) = 0$ and $\|F(\tilde{Z})\| = \frac{1}{2}\sqrt{1 - \|\tilde{z}\|^4}$.

3 Numerical Results

Some numerical examples will be shown to indicate the effectiveness by using the following matrices ([2], [5]) with $i = \sqrt{-1}$.

Example 1:

$$\begin{pmatrix} 5+9i & 5+5i & -6-6i & -7-7i \\ 3+3i & 6+10i & -5-5i & -6-6i \\ 2+2i & 3+3i & -1+3i & -5-5i \\ 1+i & 2+2i & -3-3i & 4i \end{pmatrix}$$

eigenpair $\{\lambda_*, z_*\};$

$$\begin{cases} \lambda_{*,1} = 1 + 5i, \ z_{*,1} = \frac{1}{\sqrt{7}} \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix} \end{cases}, \quad \begin{cases} \lambda_{*,2} = 2 + 6i, \ z_{*,2} = \frac{1}{\sqrt{7}} \begin{pmatrix} 1\\2\\1\\1 \end{pmatrix} \end{pmatrix} \end{cases}, \\ \begin{cases} \lambda_{*,3} = 3 + 7i, \ z_{*,3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} \end{pmatrix} \end{cases}, \quad \begin{cases} \lambda_{*,4} = 4 + 8i, \ z_{*,4} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} \end{pmatrix} \end{cases}$$

Example 2:

$$\begin{pmatrix} 7 & 3 & 1+2i & -1+2i \\ 3 & 7 & 1-2i & -1-2i \\ 1-2i & 1+2i & 7 & -3 \\ -1-2i & -1+2i & -3 & 7 \end{pmatrix}$$

eigenpair $\{\lambda, z_*\};$

$$\begin{cases} \lambda_{*,1} = 0, \ z_{*,1} = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ -i \\ -i \end{pmatrix} \}, \\ \begin{cases} \lambda_{*,2} = \lambda_{*,3} = 8, \ z_{*,2} = \frac{1}{2} \begin{pmatrix} -1+i \\ 0 \\ 1 \\ i \end{pmatrix}, \ z_{*,3} = \frac{1}{2} \begin{pmatrix} i \\ 1 \\ 0 \\ 1+i \end{pmatrix} \}, \\ \begin{cases} \lambda_{*,4} = 12, \ z_{*,4} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \end{cases}$$

Example 3:

eigenpair $\{\lambda_*, z_*\};$

$$\begin{cases} \lambda_{*,1} = 5, \ z_{*,1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1\\ 0\\ 0\\ 0 \end{pmatrix} \end{cases}, \ \begin{cases} \lambda_{*,2} = \lambda_{*,3} = 2, \ z_{*,2} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\ 2\\ -1\\ 0\\ 0 \end{pmatrix} \end{cases}, \\ \begin{cases} \lambda_{*,4} = 1 + \sqrt{2} i, \ z_{*,4} = \frac{1}{4} \begin{pmatrix} 0\\ 0\\ -1\\ 2 - \sqrt{2} i\\ -1 + 2\sqrt{2} i \end{pmatrix} \end{cases}, \\ \begin{cases} \lambda_{*,5} = 1 - \sqrt{2} i, \ z_{*,5} = \frac{1}{4} \begin{pmatrix} 0\\ 0\\ -1\\ 2 - \sqrt{2} i\\ -1 + 2\sqrt{2} i \end{pmatrix} \end{cases}, \end{cases}$$

Table 1. Number of iterations for Example 1 ($\beta = 0.8$, $\sigma = 0.4$, $\mu = 10^{-7}$).

$Z_0 = (z_0, \lambda_0)$	GDNM(3)	GDGNM(4)	$\lim_{k\to\infty}\lambda_k$
$(1+i, 1+i, 1+i, 1+i, 0)^T$	8	8	$\lambda_{*,1} = 1 + 5i$
$(1+i, 1+i, 1+i, 1+i, 2.5+2.5i)^T$	7	7	$\lambda_{*,2} = 2 + 6i$
$(1+i, 1+i, 1+i, 1+i, 3.5+6.5i)^T$	8	8	$\lambda_{\star,3} = 3 + 7i$
$(1+i, 1+i, 1+i, 1+i, 4.5+7.5i)^T$	7	7	$\lambda_{*,4} = 4 + 8i$

Table 2. Number of iterations for Example 2 ($\beta = 0.8$, $\sigma = 0.4$, $\mu = 10^{-7}$).

$\overline{Z_0 = (z_0, \lambda_0)}$	GDNM(3)	GDGNM(4)	$\lim_{k\to\infty}\lambda_k$
$(1+i,1+i,1+i,1+i,1)^T$	8	8	$\lambda_{*,1} = 0$
$(1+i, 1+i, 1+i, 1+i, 5)^T$	8	7	$\lambda_{*,2} = \lambda_{*,3} = 8$
$(1+i, 1+i, 1+i, 1+i, 15)^T$	7	7	$\lambda_{*,4} = 12$

Table 3. Number of iterations for Example 3 ($\beta = 0.8$, $\sigma = 0.4$, $\mu = 10^{-15}$).

$Z_0 = (z_0, \lambda_0)$	GDNM(3)	GDGNM(4)	$\lim_{k\to\infty}\lambda_k$
$(1, 1, 1, 1, 1, 6)^T$	8	8	$\lambda_{*,1} = 5$
$(1, 1, 1, 1, 1, 1)^T$	27	29	$\lambda_{*,2} = \lambda_{*,3} = 2$
$(1+i, 1+i, 1+i, 1+i, 1+i, 2+2i)^T$	9	9	$\lambda_{*,4} = 1 + \sqrt{2} i$
$(1+i, 1+i, 1+i, 1+i, 1+i, 2-2i)^T$	9	9	$\lambda_{*,5} = 1 - \sqrt{2} i$

Table 4. Number of iterations of GDGNM(4) for Example 3 $(Z_0 = (1 + i, 1 + i, 1 + i, 1 + i, 1 + i, 2 - 2i)^T, \ \beta = 0.8, \ \sigma = 0.4).$

μ	10^{-1}	10^{-2}	10-3	10^{-5}	10^{-7}	10^{-15}
Number of iterations	164	28	13	10	9	9

Table 5. Numerical solutions of Example 3 for GDNM(3) $(Z_0 = (1, 1, 1, 1, 1, 6)^T, \ \beta = 0.8, \ \sigma = 0.4).$

k	m_k	λ_k	$g(\overline{Z_k})$
0	19	6.000000	1.925500×10^3
1	0	5.833238	$1.897355 imes 10^{3}$
2	0	5.722243	$3.030650 imes 10^{0}$
3	0	5.385764	1.896446×10^{-1}
4	0	5.113088	$6.961577 imes 10^{-3}$
5	0	5.007389	$2.275923 imes 10^{-5}$
6	0	5.000017	$9.753440 imes 10^{-11}$
7	0	5.000000	4.455883×10^{-22}
8		5.000000	$5.825032 imes 10^{-31}$
Exa	act $\lambda_{*,1}$	5.000000	

\overline{k}	m_k	λ_k	$g(Z_{k})$
0	3	1.000000	1.773000×10^3
1	0	1.170667	$8.189538 imes 10^2$
2	0	1.284823	$3.243613 imes 10^{1}$
3	0	1.555609	$3.970212 imes 10^{0}$
4	0	1.696398	1.982624×10^{-1}
5	0	1.825814	5.118973×10^{-3}
6	0	1.919700	$4.259145 imes 10^{-5}$
7	0	1.961583	6.686242×10^{-7}
8	0	1.980819	$4.275822 imes 10^{-8}$
9	0	1.990409	$2.676738 imes 10^{-9}$
10	0	1.995205	1.672907×10^{-10}
11	0	1.997602	1.045567×10^{-11}
12	0	1.998801	$6.534791 imes 10^{-13}$
13	0	1.999401	$4.084245 imes 10^{-14}$
14	0	1.999700	$2.552653 imes 10^{-15}$
15	0	1.999850	$1.595408 imes 10^{-16}$
16	0	1.999925	$9.971308 imes 10^{-18}$
17	0	1.999963	$6.232045 imes 10^{-19}$
18	0	1.999981	$3.895013 imes 10^{-20}$
19	0	1.999991	2.434478×10^{-21}
20	0	1.999995	$1.521745 imes 10^{-22}$
21	0	1.999998	$9.519367 imes 10^{-24}$
22	0	1.999999	$5.922877 imes 10^{-25}$
23	0	1.999999	3.783560×10^{-26}
24	0	2.000000	2.251309×10^{-27}
25	1	2.000000	1.300824×10^{-28}
26	0	2.000000	$3.098399 imes 10^{-29}$
27		2.000000	2.197792×10^{-31}
Exact	$\lambda_{*,2} = \lambda_{*,3}$	2.000000	

Table 6. Numerical solutions of Example 3 for GDNM(3) $(Z_0 = (1, 1, 1, 1, 1, 1)^T, \ \beta = 0.8, \ \sigma = 0.4).$

Table 7. Numerical solutions of Example 3 for GDNM(3) $(Z_0 = (1 + i, 1 + i, 1 + i, 1 + i, 1 + i, 2 + 2i)^T, \ \beta = 0.8, \ \sigma = 0.4).$

k	m_k	λ_k	$g(Z_k)$
0	2	2.000000 + 2.000000i	3.613125×10^3
1	0	1.653234 + 2.274796i	$1.246445 imes 10^{3}$
2	0	1.333469 + 1.998749i	$9.134617 imes 10^{1}$
3	0	1.200091 + 1.736889i	$5.682852 imes10^{0}$
4	0	1.098347 + 1.556285i	$2.915130 imes 10^{-1}$
5	0	1.030216 + 1.455280i	7.324111×10^{-3}
6	0	1.002658 + 1.417781i	$2.143398 imes 10^{-5}$
7	0	1.000012 + 1.414230i	$2.790953 imes 10^{-10}$
8	0	1.000000 + 1.414214i	$2.839812 imes 10^{-20}$
9		1.000000 + 1.414214i	5.926901×10^{-31}
Exa	tct $\lambda_{*,4}$	1.000000 + 1.414214i	

k	m_k	λ_k	$g(Z_{k})$
0	2	2.000000 - 2.000000i	3.613125×10^3
1	0	1.653234 - 2.274796i	$1.246445 imes 10^{3}$
2	0	1.333469 - 1.998749i	$9.134617 imes 10^{1}$
3	0	1.200091 - 1.736889i	$5.682852 imes 10^{0}$
4	0	1.098347 - 1.556285i	$2.915130 imes 10^{-1}$
5	0	1.030216 - 1.455280i	7.324111×10^{-3}
6	0	1.002658 - 1.417781i	2.143398×10^{-5}
7	0	1.000012 - 1.414230i	2.790953×10^{-10}
8	0	1.000000 - 1.414214i	2.839797×10^{-20}
9		1.000000 - 1.414214i	3.827295×10^{-31}
Exac	t $\lambda_{*,5}$	1.000000 - 1.414214i	

Table 8. Numerical solutions of Example 3 for GDGNM(4) $(Z_0 = (1 + i, 1 + i, 1 + i, 1 + i, 2 - 2i)^T, \ \beta = 0.8, \ \sigma = 0.4, \ \mu = 10^{-15}).$

Thus, we can see that the iterative methods are effective and Theorems 1 and 2 are valid.

References

- X. Chen, Z. Nashed and L. Qi, Convergence of Newton method for singular smooth and nonsmooth equations using adaptive outer inverses, SIAM J. Optim. 7 (1997), 445-462.
- [2] R. T. Gregory and D. L. Karney, A collection of matrices for testing computational algorithms, Wiley-Interscience, 1969.
- [3] S. P. Han, J. S. Pang and N. Rangaraj, Globally convergent Newton methods for nonsmooth equations, *Math. Oper. Res.* 17 (1992), 586-607.
- [4] J. S. Pang, Newton's method for B-differentiable equations, Math. Oper. Res. 15 (1990), 311-341.
- [5] T. Yamamoto, Error bounds for computed eigenvalues and eigenvectors, Numer. Math. 34 (1980), 189–199.