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1 Introduction

1.1 Problem
The discrete Boltzmann equation appears in the discrete kinetic theory of rarefied gases.
This system of equations describes the motion of gas particles with a finite number of
velocities. It is interesting and important to analyze the asymptotic behavior of the
solution under boundary effects not only as a purely mathematical problem, but also
from the physical point of view.

The aim of this research is to show the unique existence and the stability of a station-
ary solution to the system in the half space $\mathbb{R}_{+}:=\{x>0\}$ with the reflective boundary
condition.

$\nu_{i}(\partial_{t}F_{i}+v:\partial_{x}F_{i})=Q.\cdot(F)$ for $i\in\Lambda$ , (1.1)

$\nu_{i}F_{i}(0,t)=\sum_{j\in\Lambda_{-}}\mathfrak{B}_{ij}F_{j}(0,t)$
for $i\in\Lambda_{+}$ , (1.2)

$F.\cdot(x, 0)=F_{i0}(x)$ for $i\in\Lambda$ , (1.3)

where each $F=(F_{i})_{i\in\Lambda}$ is an unknown function representing the mass density of gas
particles; $\Lambda$ is a finite set $\{1, 2, \ldots m\},$ $\Lambda_{\pm}:=\{i\in\Lambda:v_{i<}>0\}$ and $\Lambda_{0}:=\{i\in\Lambda : v_{i}=0\}$ ;
each $\nu_{i}$ is a positive integer; each $v_{i}$ is a constant representing the $x$-component of the i-
th velocity and $v_{i}’ \mathrm{s}$ are not necessarily distinct and not necessarily non-zero; each $Q_{i}(F)$

is a given function called the collision term; each $\prime \mathrm{B}_{ij}$ is a nonnegative constant. We
assume that the compatibility condition holds, that is, the initial data $F_{0}=(F_{i0})_{i\in\Lambda}$

satisfies (1.2) at $x=0$ . Moreover, it is assumed that the initial data $F_{0}$ satisfies the
spatial asymptotic condition,

$F_{i0}(x)$ a $M_{:}$ as $xarrow\infty$ for $i\in\Lambda$ , (1.4)
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where $M=(M_{i})_{i\in\Lambda}$ is a Maxwellian, i.e. $Q(M)=0$ and $M_{i}>0$ for $i\in\Lambda$ .
The Boltzmann equation (1.1), the reflective boundary condition (1.2) and the initial

data (1.3) are expressed in a vector form as

$I^{\nu}(F_{t}+VF_{x})=Q(F)$ , (1.5)
$R^{+}I^{\nu}F(0,t)=\mathfrak{B}R^{-}F(0,t)$ , (1.6)
$F(x, 0)=F_{0}(x)arrow M$ as $xarrow\infty$ , (1.7)

where $I^{\nu}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\nu_{i})_{i\in\Lambda},$ $V=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(v_{*}.)_{i\in\Lambda}$ and $\mathfrak{B}=(\mathfrak{B}_{ij})_{(i,j)\in\Lambda\cross\Lambda}+-;\mathfrak{B}$ is called a boundary
matrix in this paper. $R^{\pm}$ means the restriction to the subspace corresponding to $\Lambda_{\pm}$ ,
respectively:

$R^{\pm}\phi=R^{\pm}(\phi_{i})_{i\in\Lambda}=(\phi_{i})_{i\in\Lambda}\pm\cdot$

A stationary solution is a function $\tilde{F}(x)=(\tilde{F}_{i}(x))_{i\in\Lambda}$ in $\mathfrak{B}^{0}[0, \infty)$ satisfying (1.5),
(1.6) and (1.7). Precisely,

$V^{\nu}\tilde{F}_{x}=Q(\tilde{F})$ , (1.8)
$R^{+}I^{\nu}\tilde{F}(0)=\mathfrak{B}R^{-}\tilde{F}(0)$ , (1.9)
$\tilde{F}(x)arrow M$ as $xarrow\infty$ , (1.10)

where $V^{\nu}:=I^{\nu}V=VI^{\nu}$ .
The existence of a stationary solution in the half space is first considered in [6] to

(1.8) and (1.10) with a pure diffusive boundary condition,

$F_{i}(0, t)=3_{i}$ for $i\in\Lambda_{+}$ (1.11)

where each $\mathfrak{B}.\cdot$ is a constant, under the additional assumption that $v_{i}\neq 0$ . This result
is developed in [2] to the general system including the possibility that $v_{i}=0$ . Also,
it is proved in [2] that the stationary solution approaches the asymptotic Maxwellian
exponentially fast. The stability of this stationary solution is discussed in [4].

Obviously, the pure diffusive boundary condition (1.11) is more easily handled by
mathematical analysis than the reflective boundary condition (1.2). However, the latter
(1.2) seems more realistic than the former (1.11) from the physical point of view. The
reason is that while the pure diffusive boundary condition (1.11) requires that the behav-
iors of particles on the boundary $\{x=0\}$ are known a priori in gas dynamic context, the
reflective boundary condition (1.2) only assumes the rules of reflection on the boundary
$\{x=0\}$ .

Applying results in [2], we prove the existence of the stationary solution with the
reflective boundary condition (1.2). First, we obtain the existence of a stationary solu-
tion to the linearized system and show that it is expressed by a certain explicit formula.
We then define a functional by this formula on a certain Banach space with a suitably
weighted supremum norm. The existence and the uniqueness of the stationary solution
to (1.8), (1.9) and (1.10) are established by showing that this functional is a contrac-
tion mapping. These discussions also show that the stationary solution approaches the
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asymptotic Maxwellian state $M$ exponentially fast as the spatial variable $x$ tends to
infinity.

The stability of the stationary solution is proved by the energy method. Here, we
adopt the idea in [4]. This idea makes it possible to handle some error terms, arising from
the energy method, by utilizing the exponential convergence of the stationary solutions
to the Maxwellian $M$ at the spatial asymptotic point.

In conclusion, it is worth noting that our theory is general enough to cover concrete
models of the Boltzmann equation such as Cabannes’ 14-velocity $\mathrm{m}o$ del and the 6-velocity
model with multiple collisions. The readers are referred to [3] for these applications.

1.2 Basic results and reformulation
A vector $\phi$ which is orthogonal to the collision term $Q(F)$ for each $F\in \mathbb{R}^{m}$ is called a
collision invariant. The set of the collision invariants is denoted by $\mathfrak{M}$:

$vn=$ { $\phi,$
$\in \mathbb{R}^{m};\langle\phi,$ $Q(F)\rangle=0$ for $\forall_{F}\in \mathbb{R}^{m}$ }. (1.12)

$\mathfrak{M}$ is not an empty set nor the total space $\mathbb{R}^{m}$ owing to the formulation of the collision
term $Q(F)$ . Thus, let $d(1\leq d\leq m-1)$ denote the dimension of $\mathfrak{M},$ $\{\phi_{i}\}_{i=1,\ldots,d}$ the
basis of the subspace $\mathfrak{M}$ and $\{\phi_{i}\}_{i=d+1,\ldots,m}$ the basis of the orthogonal complement $\mathfrak{M}^{\perp}$

of $\mathfrak{M}$ ;

$\mathfrak{M}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\phi_{1}, \phi_{2}, \ldots, \phi_{d}\}$ , .
$\mathfrak{M}^{\perp}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\phi_{d+1}, \phi_{d+2}, \ldots, \phi_{m}\}$ . (1.13)

Taking the inner product of (1.1) and a collision invariant $\phi=(\phi_{i})_{i\in\Lambda}\in \mathfrak{M},$
$\mathrm{w}..\mathrm{e}$ have

a conservation law:
$\partial_{t}\sum_{i=1}^{m}\nu_{i}\phi_{i}F_{i}+\partial_{x}\sum_{i=1}^{m}\nu_{i}\phi_{i}F_{i}=0$ .

Also, the direct computation yields Boltzmann H-theorem:

$\partial_{t}\sum_{i\in\Lambda}\nu_{i}F_{i}\log F_{i}+\partial_{x}\sum_{i\in\Lambda}\nu_{i}v_{i}F_{i}\log F_{i}=\langle\log F, Q(F)\rangle\leq 0$ (1.14)

where $\log F:=(\log F_{i})_{i\in\Lambda}$ . The last equality in (1.14) holds if and only if $F$ is a
Maxwellian, i.e., $Q(F)=0$ .

It is convenient to introduce an unknown function $\tilde{f}$ and express solutions to (1.8)
by

$\tilde{F}=M+I_{M}\tilde{f}$ , (1.15)

where $I_{M}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(M_{i})$ . Substituting (1.15) in (1.8), (1.9) and (1.10), we have

$V_{M}\tilde{f}_{x}+L_{M}\tilde{f}=\Gamma_{M}(\tilde{f})$ , (1.16)
$(R^{+}I^{\nu}-\mathfrak{B}R^{-})I_{M}\tilde{f}(0)=-\mu$ , (1.17)
$\tilde{f}(x)arrow 0$ as $xarrow\infty$ . (1.18)
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where

$V_{M}=I^{\nu}VI_{M}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\nu_{i}v_{i}M_{i})$ (1.19)
$L_{M}=-D_{F}Q(M)I_{M}$ , (1.20)
$\Gamma_{M}(\tilde{f})=Q(M+I_{M}\tilde{f})-Q(M)-D_{F}Q(M)I_{M}\tilde{f}$ . (1.21)

It is known that the linearized collision operator $L_{M}$ is real symmetric and non-negative
definite. Moreover, it holds that

$\Re(L_{M})=\mathfrak{M}$, $\Re(L_{M})=\mathfrak{M}^{\perp}$ ,

$\Gamma_{M}(\varphi)\in \mathfrak{M}^{\perp}$ for $\forall_{\varphi}\in \mathbb{R}^{m}$ .
The quantity $\mu$ in the right hand side of (1.17) is given by

$\mu=(\mu_{i})_{i\in\Lambda}+:=(R^{+}I^{\nu}-\mathfrak{B}R^{-})M$,
$\mu_{i}=\nu_{i}M_{i}-\sum_{j\in\Lambda_{-}}\prime B_{ij}M_{j}$

for $i\in\Lambda_{+}$ . (1.22)

$\mu$ measures the distance between the prescribed asymptotic Maxwellian state $M$ and a
boundary state satisfying the reflective boundary condition (1.6). It is shown in Theorem
2.1 that if the stationary solution exists then the consistency condition (1.23) holds:

$\mu\in(R^{+}I^{\nu}-\mathfrak{B}R^{-})(V^{\nu}\mathfrak{M})^{\perp}$ . (1.23)

2 Assumptions and main results
First, we state assumptions necessary in showing the existence of a stationary solution.

[S.1] If $L_{M}\phi=0$ and $V_{M}\phi--0$ for $\phi\in \mathbb{R}^{m}$ , then $\phi=0$ .

$\dim R^{+}\mathfrak{R}_{M}^{\perp}=\#\{\gamma<0;\det(\gamma V_{M}+L_{M})=0\}$, (2.1)

where we count the multiplicity of generalized eigenvalues $\gamma$ .
$\mathfrak{B}R^{-}(V^{\nu}\mathfrak{M})^{\perp}\subset R^{+}I^{\nu}(V^{\nu}\mathfrak{M})^{\perp}$ (2.2)

$\nu_{\mathrm{j}}v_{j}+\sum_{+i\in\Lambda}v_{i}B_{ij}\leq 0$
for $j\in\Lambda_{-}$ . (2.3)

$m_{-}\mathfrak{B}_{ij}M_{j}+\mu_{i}\geq 0$ for $(i,j)\in\Lambda_{+}\cross\Lambda_{-}$ . (2.4)

where $m_{-}:=\#_{\Lambda_{-}}$ .
We use the notations:

$| \mu|=\sum_{i\in\Lambda+}|\mu_{i}|$
,

$|g|_{\sigma}= \sup_{x\geq 0}e^{\sigma x}|g(x)|$
, (2.5)

where $\sigma$ is an arbitrary positive constant satisfying

$\sigma\leq\overline{\sigma}=\min\{|\gamma|;\gamma<0, \det(\gamma V_{M}+L_{M})=0\}$ . (2.6)
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Theorem 2.1. (i) Suppose that the stationary problem, (1.8), (1.9) and $(1.10)_{f}$ admits
a solution. Then the asymptotic Maxwellian state $M$ satisfies the consistency condition
(1.23).
(ii) Suppose that conditions [S.1], (2.1), (2.2), (2.3) and (2.4) hold. $Also_{f}$ let the consis-
tency condition (1.23) hold. Then, there exists a positive constant $\overline{\mu}$ such that $if|\mu|\leq\overline{\mu}$ ,
the stationary problem, (1.8), (1.9) and (1.10), has a unique solution $\tilde{F}=(\tilde{F}_{i})_{i\in\Lambda}$ in a
small neighborhood of the Maxwellian state $M$ with respect to the norm $|\cdot|_{\sigma}$ defined by
(2.5). Furthermore, this solution $\tilde{F}(x)$ belongs to $C^{\infty}[0, \infty)$ and verifies the estimate

$|\partial_{x}^{k}(\tilde{F}(x)-M)|\leq C_{k}|\mu|e^{-\sigma x}$ (2.7)

for each integer $k\geq 0_{f}$ where $C_{k}$ is a positive constant depending on $k$ and $\sigma$ .

The stronger condition than [S.1] is necessary to prove the stability of the stationary
solution:

[S.2] If $L_{M}\phi=0$ and $V\phi=\gamma\phi$ for $\phi\in \mathbb{R}^{m},$ $\exists_{\gamma}\in \mathbb{R}$ , then $\phi=0$ .

Theorem 2.2. Suppose that conditions [S.2], $(2.2)_{f}$ (2.3) and (2.4) hold as well as
the stationary solution $\tilde{F}(x)$ exists. Then there exists a positive constant $\delta_{0}$ such that
if $||F_{0}-M||1\leq\delta_{0}$ , the initial boundary value problem (1.5), (1.6) and (1.7) has a
unique global solution $F(x, t)$ in the class of functions, $F-M\in C^{0}([0, \infty);H^{1}(\mathbb{R}_{+}))\cap$

$C^{1}([0, \infty);L^{2}(\mathbb{R}_{+}))$ . Furthermore, the solution $F(x, t)$ is asymptotically stable. Namely,
it holds that

$x \in \mathbb{R}\sup_{+}|F(x, t)-\tilde{F}(x)|arrow 0$ as $tarrow\infty$ . (2.8)

3 Outline of proofs

3.1 Existence of stationary solutions

Proof of (i) in Theorem 2.1. Taking the inner product of $\phi\in \mathfrak{M}$ and the equation (1.8)
yields that

$\langle I^{\nu}V\phi, F\rangle_{x}=0$ . (3.1)

Integrating (3.1) over $[0, \infty)$ , we obtain that

$\langle I^{\nu}V\phi, F(\mathrm{O})-M\rangle=0$ . (3.2)

This equality (3.2) implies $F(\mathrm{O})-M\in(I^{\nu}V\mathfrak{M})^{\perp}$ . Then, by using the boundary condition
(1.9) we have

$(R^{+}I^{\nu}-\mathfrak{B}R^{-})M\in(R^{+}I^{\nu}-\mathfrak{B}R^{-})(I^{\nu}V\mathfrak{M})^{\perp}$.
This is the consistency condition (1.23). $\square$
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Outline of proof of (ii) in Theorem 2.1. As this proof needs algebraic preparation, we
state the outline only. For details, see [2] and [3]. The proof is divided into three steps.
1st step. We consider the linearized system with diffusive boundary.

$V_{M}\tilde{f}_{x}+L_{M}\tilde{f}=h$ , (3.3)
$R^{+}\tilde{f}(0)=b$ , (3.4)
$\tilde{f}(x)arrow 0$ as $xarrow\infty$ . (3.5)

where $h(x)\in \mathfrak{M}^{\perp}$ . It is shown in [2] that the solution to this problem is given by the
formula:

$\tilde{f}=\Theta(b, h)(x)$ .
The explicit formula of $0$ is given in [2].
2nd step. We consider the linearized system with reflective boundary, (3.3), (1.17) and
(3.5). It is shown that $R^{+}\tilde{f}(0)$ is uniquely determined by the problem (3.3), (1.17) and
(3.5) for a fixed $M$ . Thus, we may regard $b:=R^{+}\tilde{f}(0)$ as the function of $\mu$ and obtain
the solution formula to the reflection boundary problem as

$\tilde{f}=\Theta(b(\mu), h)(x)$ . (3.6)

3rd step. Replacing $h$ by $\Gamma_{M}(\tilde{f})$ in (3.6), we have

$\tilde{f}=\Theta(b(\mu), \Gamma_{M}(\tilde{f}))(x)$ . (3.7)

Thus, the stationary wave $\tilde{f}$ to (1.16), (1.17) and (1.18) is a solution to (3.7). The
existence of a solution to (3.7) is confirmed by the contraction mapping principle. To
this end, we introduce a Banach space and its closed subset,

$X=\{\tilde{f}\in \mathfrak{B}^{0}[0, \infty);|\tilde{f}|_{\sigma}<\infty\}$,
$\mathfrak{S}_{R}=\{\tilde{f}\in X;|\tilde{f}|_{\sigma}\leq R|\mu|\}$ .

Then, it is shown that $0$ is a contraction map in $\mathfrak{S}_{R}$ with suitably chosen $R,$
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{d}\square$

that $|\mu|<<1$ .

3.2 Stability of stationary solutions
We introduce new known function $f=(f_{i})_{i\in\Lambda}$ by

$F=\tilde{F}+I_{M}f=M+I_{M}(\tilde{f}+f)$ ,

and obtain from (1.5), (1.6) and (1.7) that

$I^{\nu}I_{M}(f_{t}+Vf_{x})+L_{M}f+L(x)f=N(x,f)$ , (3.8)
$(R^{+}I^{\nu}-\mathfrak{B}R^{-})I_{M}f(0,t)=0$ , (3.9)
$f(x,0)=f_{0}(x):=I_{M}^{-1}(F_{0}(x)-M)-\tilde{f}(x)$ , (3.10)
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where

$L(x)=(D_{F}Q(M)-D_{F}Q(M+I_{M}\tilde{f}))I_{M}$ , (3.11)
$N(x,f)=Q(M+I_{M}\tilde{f}+I_{M}f)-Q(M+I_{M}\tilde{f})-D_{F}Q(M+I_{M}\tilde{f})I_{M}f$ . (3.12)

Sometimes it is convenient to rewrite (3.8) as
$I^{\nu}I_{M}(f_{t}+Vf_{x})=Q(F)-Q(\tilde{F})$ . (3.13)

The following norms are used.

$N(t)= \sup_{0\leq\tau\leq t}||f(\tau)||_{1}$ ,

$M(t)^{2}= \int_{0}^{t}||f_{x}(\tau)||^{2}+||f_{t}(\tau)||^{2}+|f^{-}(0, \tau)|^{2}+|f_{t}^{-}(0, \tau)|^{2}d\tau$ ,

where $f^{-}=R^{-}f$ .
Theorem 2.2 follows from the next proposition.

Proposition 3.1. Suppose that the stability condition [S.2] holds. $Furthermore_{f}$ assume
the conditions (2.4) and (2.3). Let $f=(f_{i})_{i\in\Lambda}$ be a solution to the problem $(3.8)_{f}(3.9)$

and $(3.10)_{f}$ satisfying
$f\in C^{0}([0, T];H^{1}(\mathbb{R}_{+}))\cap C^{1}([0, T];L^{2}(\mathbb{R}_{+}))$

for a certain $T>0$ . Then there is a positive constant $\overline{\delta}$ independent of $T$ and $|\mu|$ such
that if $N(T)+|\mu|\leq\overline{\delta}_{f}$ then it verifies the estimate:

$||f(t)||_{1}^{2}+ \int_{0}^{t}||f_{x}(\tau)||^{2}+||f_{t}(\tau)||^{2}d\tau\leq\overline{C}||f_{0}||_{1}^{2}$ , (3.14)

where $0\leq t\leq T$ and $\overline{C}>1$ is a constant independent of $T$ and $|\mu|$ .
The difficulty of proving the above proposition arises from the fact that we have no

information of the monotonicity of the stationary solution $\tilde{f}$. Usually, the monotonicity
of the traveling wave plays the essential role to estimate the error terms in the energy
method. This difficulty is overcome by taking advantage of the exponential convergence
at the spatial asymptotic point proved in Theorem 2.1.

Actually, the following estimates hold since the stationary solution decays sufficiently
fast.

Lemma 3.2.

$\int_{0}^{\infty}|\partial_{x}^{k}\tilde{f}||f^{1}|^{2}dx\leq C|\mu|(|f^{-}(0, \tau)|^{2}+||f_{x}^{1}||^{2})$ (3.15)

$\int_{0}^{\infty}|\partial_{x}^{k}\tilde{f}||f^{0}|^{2}dx\leq C|\mu|(|f^{-}(0, \tau)|^{2}+||f_{x}^{1}||^{2}+||f_{t}^{0}||^{2})$ (3.16)

$\int_{0}^{\infty}|\partial_{x}^{k}\tilde{f}||f|^{2}dx\leq C|\mu|(|f^{-}(0, \tau)|^{2}+||f_{x}^{1}||^{2}+||f_{t}^{0}||^{2})$ (3.17)

for $k=0,1,2,$ $\ldots$ , where $f^{1}=P_{1}f$ and $f^{0}=P_{0}f$ . $P_{1}$ and $P_{0}$ are the projections on
$\Re(V)$ and $\Re(V)_{f}$ respectively.
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Proof. First, observe the elemental equality:

$f^{1}(x, t)=f^{1}(0,t)+ \int_{0}^{x}1\cdot\frac{d}{dy}f^{1}(x, t)dy$ .

Thus, we obtain that

$|f^{1}(x,t)|\leq|f^{1}(0, t)|+\sqrt{x}||f_{x}^{1}||$ . (3.18)

Square (3.18), multiply by $|\partial_{x}^{k}\tilde{f}|\leq C|\mu|e^{-\sigma x}$ and then integrate the resulting inequality
over $x>0$ . Consequently,

$\int_{0}^{\infty}|\partial_{x}^{k}f^{\infty}||f^{1}|^{2}dx\leq\int_{0}^{\infty}C|\mu|e^{-\sigma x}(|f^{1}(0,\tau)|^{2}+x||f_{x}^{1}(\tau)||^{2})dx$

$\leq C|\mu|(|f^{1}(0, \tau)|^{2}+||f_{x}^{1}||^{2})$ .
Then applying the equality $|f^{1}(0, \tau)|^{2}\leq C|f^{-}(0, \tau)|^{2}$ , which is due to (3.9), we have the
estimate (3.15).

Solve (3.8) with respect to $f^{0}$ by the implicit function theorem and estimate the
resultant equality to obtain that

$|f^{0}|\leq C(|f^{1}|+|f_{t}^{0}|)$ .

Then, apply the estimate (3.15). This gives the estimate (3.16). Adding estimates (3.15)
and (3.16) yields (3.17). $\square$

Outline of proof of Proposition 3.1. Proposition (3.1) is proved by the energy method,
which is divided into the following 4 steps.

1st step: Estimate of $f,$ $(3.19)$ .
2nd step: Estimate of $f_{t},$ $(3.25)$ .
3rd step: Estimate of $f_{x},$ $(3.26)$ .
4th step: Estimate of the remained terms, (3.37).

Summing up these four estimates yields the estimate (3.14).

Lemma 3.3 (1st step).

$||f(t)||^{2}+ \int_{0}^{t}|f^{-}(0, \tau)|^{2}d\tau+\int_{0}^{t}||Q(F)-Q(\tilde{F})||^{2}d\tau\leq C||f_{0}||^{2}+C|\mu|M(t)^{2}$ . (3.19)

Proof. Substitute $\tilde{F}=(\tilde{F}_{i})_{i\in\Lambda}$ in (1.14) to obtain that

$\partial_{t}\sum_{i\in \mathrm{A}}\nu_{i}\tilde{F}_{i}\log\tilde{F}_{i}+\partial_{x}\sum_{i\in\Lambda}\nu_{i}v_{i}\tilde{F}_{i}\log\tilde{F}_{i}=\langle\log\tilde{F}, Q(\tilde{F})\rangle$
. (3.20)
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Multiply (1.1) by $1+\log\tilde{F}_{i}(x)$ and sum up with respect to $i\in\Lambda$ . The result is that

$\partial_{t}\sum_{i\in\Lambda}\nu_{i}(1+\log\tilde{F}_{i})(F_{i}-\tilde{F}_{i})+\partial_{x}\sum_{i\in\Lambda}\nu_{i}v_{i}(\tilde{F}_{i}\log\tilde{F}_{i}+(1+\log\tilde{F}_{i})(F_{i}-\tilde{F}_{i}))$

.

$-$

$- \sum_{i\in\Lambda}\nu_{i}v_{i}\frac{(F_{i}-\tilde{F}_{i})}{\tilde{F}_{i}}\partial_{x}\tilde{F}_{i}=\langle\log\tilde{F}, Q(F)\rangle$ (3.21)

Subtracting (3.20) and (3.21) from (1.14),

$\partial_{t}\sum_{i\in\Lambda}\nu_{i}\Phi(F_{i},\tilde{F}_{i})+\partial_{x}\sum_{i\in\Lambda}\nu_{i}v_{i}\Phi(F_{i},\tilde{F}_{i})-\sum_{i\in\Lambda}\nu_{i}v_{i}\Psi(F_{i},\tilde{F}_{i})\partial_{x}\tilde{F}_{i}$

$=\langle\log F-\log\tilde{F}, Q(F)-Q(\tilde{F})\rangle$

$\leq-c|Q(F)-Q(\tilde{F})|^{2}+C|\tilde{F}-M|^{2}|f|^{2}$ , (3.22)

where

$\Phi(F_{i},\tilde{F}_{i})=F_{i}\log F_{i}-\tilde{F}_{i}\log\tilde{F}_{i}-(1+\log\tilde{F}_{i})(F_{i}-\tilde{F}_{i})\sim|F_{i}-\tilde{F}_{i}|^{2}\sim|f_{i}|^{2}$ (3.23)

$\Psi(F_{i},\tilde{F}_{i})=\log F_{i}-\log\tilde{F}_{i}-\frac{F_{i}-\tilde{F}_{i}}{\tilde{F}_{i}}=O(|F_{i}-\tilde{F}_{i}|^{2})=O(|f_{i}|^{2})$ . (3.24)

The inequality in (3.22) is obtained from estimating the collision term $Q(F)$ .
Integrate (3.22) over $[0, t]\cross(0, \infty)$ and estimate the integration with respect to $t$ on

the boundary $x=0$ by using (2.3) to obtain (3.19). $\square$

Lemma 3.4 (2nd step).

$||f_{t}(t)||^{2}+ \int_{0}^{t}|f_{t}^{-}(0, \tau)|^{2}+||P_{L}f_{t}(\tau)||^{2}d\tau\leq C_{2}||f_{t}(0)||^{2}+C_{2}(|\mu|+N(t))M(t)^{2}$ (3.25)

where $P_{L}$ is the projection on $\Re(L_{M})=\mathfrak{M}^{\perp}$ .

Proof. Apply $\partial_{t}$ to (3.8), take the inner product with $f_{t}$ , and integrate over $[0,t]\cross(0, \infty)$ .
Then, use (2.3) to estimate integration in $t$ on $x=0$ and obtain the desired inequality
(3.25). $\square$

Lemma 3.5 (3rd step).

$||f_{x}(t)||^{2}+ \int_{0}^{t}||f_{x}(t)||^{2}d\tau\leq C(||f_{0}||_{1}^{2}+||f_{t}(0)||^{2})+C(|\mu|+N(t))M(t)^{2}$ . (3.26)

Proof. The estimate (3.26) is given by summing up the following 3 estimates.

$||f_{x}^{1}(t)||^{2}\leq C(||f_{0}||^{2}+||f_{t}(0)||^{2})+C(|\mu|+N(t))M(t)^{2}$, (3.27)

$\int_{0}^{t}||f_{x}^{1}(t)||^{2}d\tau\leq C(||f_{0}||^{2}+||f_{t}(0)||^{2})+C(|\mu|+N(t))M(t)^{2}$ , (3.28)

$||f_{x}^{0}(t)||^{2}+ \int_{0}^{t}||f_{x}^{0}(t)||^{2}d\tau\leq C(||f_{0}||^{2}+||f_{t}(0)||^{2})+C(|\mu|+N(t))M(t)^{2}$ . (3.29)
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Derivation of (3.27). From (3.13), it holds that

$Vf_{x}=-f_{t}+(I^{\nu}I_{M})^{-1}(Q(F)-Q(\tilde{F}))$ . (3.30)

Square (3.30) and integrate the resultant equality over $[0, t]\cross(0, \infty)$ . Using Lenlma 3.3,
we have the estimate (3.27).
Derivation of (3.28). It is proved in citeSK that the stability condition [S.2] implies
that there exists a skew-symmetric matrix $K_{0}$ such that

$K_{0}=O$ on $\mathfrak{R}$ , (3.31)
$\langle(K_{0}V-VK_{0})\phi,\phi\rangle+\langle VL_{M}V\phi, \phi\rangle\geq c|P^{1}\phi|^{2}$ . (3.32)

Thus, it holds from (3.31) that

$\langle(K_{0}V-VK_{0})\phi, \phi\rangle\geq c|P^{1}\phi|^{2}-C|P_{L}V\phi|$ . (3.33)

Multiply (3.13) by $(I^{\nu}I_{M})^{-1}$

$f_{t}+Vf_{x}=(I^{\nu}I_{M})^{-1}(Q(F)-Q(\tilde{F}))$ . (3.34)

Multiply the equality (3.34) by $2K_{0}$ and take the inner product with $f_{x}$ to obtain

$\langle K_{0}f, f_{x}\rangle_{t}+\langle K_{0}f, f_{t}\rangle_{x}+\langle(I\mathrm{f}_{0}V-VK_{0})f_{x}, f_{x}\rangle$

$=-\langle 2K_{0}(I^{\nu}I_{M})^{-1}(Q(F)-Q(\tilde{F}), f_{x}\rangle$ . (3.35)

Integrate (3.35) over $[0,t]\cross(0, \infty)$ and apply (3.33). Then, estimate integration in $t$ on
the boundary $x=0$ with using (2.3) to obtain (3.28).
Derivation of (3.29). Apply $P_{0}$ on the equation (3.8) to obtain

$I^{\nu}I_{M}f_{t}^{0}+P_{0}L_{M}P_{0}f=-P_{0}L_{M}(I-P_{0})f+P_{0}(-L(x)f+N(x, f))$ . (3.36)

$P_{0}L_{M}P_{0}$ is real symmetric and positive definite on $\Re(V)$ owing to the stability condition
[S.1]. Apply $\partial_{x}$ on (3.36), take the inner product the resultant equality with $f_{x}^{0}$ and
integrate over $[0, t]\cross(0, \infty)$ . Then applying the estimates (3.17) and (3.28), we obtain
the desired estimate (3.29). $\square$

Lemma 3.6 (4th step).

$\int_{0}^{t}||f_{t}(\tau)||^{2}d\tau\leq C(||f_{0}||_{1}^{2}+||f_{t}(0)||^{2})+C(|\mu|+N(t))M(t)^{2}$ . (3.37)

Proof. From (3.13), we have
$f_{t}=-Vf_{x}+(I^{\nu}I_{M})^{-1}(Q(F)-Q(\tilde{F}))$ .

Square this equality, integrate the resultant equality over $[0, \infty)\mathrm{x}[0, t]$ , and apply the
estimates (3.19) and (3.28). Consequently, we have the inequality (3.37). $\square$
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