Rayleigh-Bénard 対流の定常解に対する精度保証付き数値計算

A Numerical Verification for Stationary Solutions of Rayleigh-Bénard Convection

渡部 善隆†
Mitsuhiro T.Nakao
山本 野人*
西田 孝明*

† 九州大学大学院工学研究科
* 電気通信大学情報工学科
† † 京都大学大学院理学研究科

要旨

Rayleigh-Bénard 対流として知られる熱対流問題を記述する 2 次元 Oberbeck-Boussinesq 方程式の定常解に対する精度保証付き数値計算法について述べる。問題を長方形領域に制限し、Fourier-Galerkin 法により得られる近似解のまわりで定常解の存在証明と定量的誤差限界を与える数値的検証手順を提案し、いくつかの数値例を示す。なお、この計算は理論的解が困難な定常解問題に対する計算機援用証明のために行なったものであり、それに関する詳細は稿を改めて述べられであろう。

1 定常熱対流問題

Rayleigh-Bénard 対流を記述する次の 2 次元 (x-z 座標) Oberbeck-Boussinesq 方程式 (cf.[1],[3],[5]):

\[
\begin{align*}
\psi_t + \psi u_x + \omega = & \quad p_z + \mathcal{P} \Delta \psi, \\
\omega_t + u \omega_x + \omega = & \quad p_z - \mathcal{P} \mathcal{R} \theta + \mathcal{P} \Delta \omega, \\
\psi_x + \omega_z = & \quad 0, \\
\theta_t + \omega + u \theta_x + \omega \theta z = & \quad \Delta \theta
\end{align*}
\] (1)

の定常問題を考える。ここで (u, ω), p, θ はそれぞれ流速場, 压力場, 自然な温度場からの距離をあらわす。また P と R はそれぞれ Prandtl 数, Rayleigh 数とよばれる無次元数である。

連続の式 u_x + \omega = 0 が満たされるように流速関数 \psi を用いて流速場を (u, ω) = (−\psi_z, \psi_x) と表現し, (1) の第 1 式を \psi で, 第 2 式を \theta で微分することにより圧力項を消去する。さらに \Theta := \sqrt{\mathcal{P} \mathcal{R} \theta} とおくことで次の定常熱対流方程式を導く:

\[
\begin{align*}
\mathcal{P} \Delta^2 \psi = & \quad \sqrt{\mathcal{P} \mathcal{R} \theta} - \psi_z \Delta \psi_x + \psi_x \Delta \psi_z \quad \text{in} \ \Omega, \\
-\Delta \Theta = & \quad -\sqrt{\mathcal{P} \mathcal{R} \psi_z + \psi_x \theta_x - \psi_x \theta_z} \quad \text{in} \ \Omega.
\end{align*}
\] (2)

ここで領域 Ω は \{0 < x < 2\pi/a, 0 < z < \pi\}, a > 0 は与えられた正定数とする。境界条件として, \psi = 0, \zeta = \zeta_0 において接線応力が 0 となる自由表面, \psi = 0, x = 2\pi/a において周期境界条件を仮定する。さらに, \psi は \psi に関して奇関数, \Theta は \psi に関して偶関数であるとする (e.g.[2])。

2 近似解と残差引き戻し

想定した境界条件から (2) の解 (\psi, \Theta) の形を次のように仮定して考える:

\[
\psi = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(amx) \sin(nz), \quad \Theta = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} B_{mn} \cos(amx) \sin(nz). \] (3)
(3) の形より，$k \geq 0$ に対する関数空間を以下で定義する:

$$
X^k := \left\{ \Psi = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(amx) \sin(nz) \mid A_{mn} \in R, \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} ((am)^{2k} + n^{2k}) A_{mn}^2 < \infty \right\},
$$

$$
Y^k := \left\{ \Theta = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} B_{mn} \cos(amx) \sin(nz) \mid B_{mn} \in R, \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} ((am)^{2k} + n^{2k}) B_{mn}^2 < \infty \right\}.
$$

X^k, Y^k は $H^k(\Omega)$ の閉部分空間である。次に，近似空間 $S_N^{(1)}, S_N^{(2)}$ を

$$
S_N^{(1)} := \left\{ \Psi_N = \sum_{m=1}^{M_1} \sum_{n=1}^{N_1} \hat{A}_{mn} \sin(amx) \sin(nz) \mid \hat{A}_{mn} \in R \right\},
$$

$$
S_N^{(2)} := \left\{ \Theta_N = \sum_{m=0}^{M_2} \sum_{n=1}^{N_2} \hat{B}_{mn} \cos(amx) \sin(nz) \mid \hat{B}_{mn} \in R \right\}
$$

で定義する。 (2) の右辺の非線形項を

$$
\left\{
\begin{array}{l}
\hat{f}_1(\Psi, \Theta) := \sqrt{\mathcal{P}} \hat{\Psi}_x - \hat{\Psi}_z \hat{\Theta}_x + \hat{\Psi}_z \hat{\Theta}_z,
\hat{f}_2(\Psi, \Theta) := -\sqrt{\mathcal{P}} \hat{\Psi}_x + \hat{\Psi}_z \hat{\Theta}_x - \hat{\Psi}_z \hat{\Theta}_z
\end{array}
\right.
$$

とおき，Fourier-Galerkin 法による近似解 $(\hat{\Psi}_N, \hat{\Theta}_N) \in S_N^{(1)} \times S_N^{(2)}$ を有限次元非線形方程式

$$
\left\{
\begin{array}{l}
\mathcal{P}(\Delta^2 \hat{\Psi}_N, v_N^{(1)})_{L^2} = (f_1(\hat{\Psi}_N, \hat{\Theta}_N), v_N^{(1)})_{L^2} \quad \forall v_N^{(1)} \in S_N^{(1)},
-(\Delta \hat{\Theta}_N, v_N^{(2)})_{L^2} = (f_2(\hat{\Psi}_N, \hat{\Theta}_N), v_N^{(2)})_{L^2} \quad \forall v_N^{(2)} \in S_N^{(2)}
\end{array}
\right.
$$

を数値的に解くことによって決定する。ただし $(\cdot, \cdot)_{L^2}$ は Ω 上の L^2 内積とする。ここで $(\hat{\Psi}_N, \hat{\Theta}_N)$ は $S_N^{(1)} \times S_N^{(2)}$ の元であれば必ずしも (4) を正確に満たす必要はないことに注意する。

$(\hat{\Psi}_N, \hat{\Theta}_N)$ を用い，(Ψ, Θ) を

$$
\Psi = \hat{\Psi}_N + w^{(1)}, \quad \Theta = \hat{\Theta}_N + w^{(2)}
$$

と書き表すことで，(2) と同値な残差形式の方程式:

$$
\left\{
\begin{array}{l}
\mathcal{P}(\Delta^2 w^{(1)}) = f_1(\hat{\Psi}_N + w^{(1)}, \hat{\Theta}_N + w^{(2)}) - \mathcal{P}(\Delta^2 \hat{\Psi}_N) \quad \text{in} \ \Omega,
-(\Delta w^{(2)}) = f_2(\hat{\Psi}_N + w^{(1)}, \hat{\Theta}_N + w^{(2)}) + \Delta \hat{\Theta}_N \quad \text{in} \ \Omega
\end{array}
\right.
$$

を得る。以降は $(w^{(1)}, w^{(2)})$ の存在検証について考える。

3 不動点定式化

(5) を不動点問題に書き直す。

$$
\begin{align*}
w &:= (w^{(1)}, w^{(2)}), \\
h_1(w) &:= f_1(\hat{\Psi}_N + w^{(1)}, \hat{\Theta}_N + w^{(2)}) - \mathcal{P}(\Delta^2 \hat{\Psi}_N), \\
h_2(w) &:= f_2(\hat{\Psi}_N + w^{(1)}, \hat{\Theta}_N + w^{(2)}) + \Delta \hat{\Theta}_N, \\
h(w) &:= (h_1(w), h_2(w))
\end{align*}
$$
とおく。 Sobolev の埋め込み定理と f_1, f_2 の形より、h は $X^3 \times Y^1$ から $X^0 \times Y^0$ への連続写像であり、有界集合を有界集合に写す。次に、任意の $(g_1, g_2) \in X^0 \times Y^0$ に対し、(5) の線形問題:

$$
\begin{align*}
\begin{cases}
\mathcal{P}\Delta^2 \Psi &= g_1 \quad \text{in } \Omega,
\quad \\
-\Delta \Theta &= g_2 \quad \text{in } \Omega
\end{cases}
\end{align*}
$$

は一意の解 $(\Psi, \Theta) \in X^4 \times X^2$ を持つ。ここで、(g_1, g_2) から (Ψ, Θ) への対応に埋め込み $H^4(\Omega) \times H^2(\Omega) \hookrightarrow H^3(\Omega) \times H^1(\Omega)$ まで含めた写像を K とおくと、K は $X^0 \times Y^0$ から $X^3 \times Y^1$ への compact 写像となる。したがって (5) は $X^3 \times Y^1$ 上の compact 作用素 $F := K \circ h$ に対する不動点問題:

$$
w = Fw
$$

と同値であり、Schauder の不動点定理が適用できる。すなわち、空でない有界閉集合 $W \subset X^3 \times Y^1$ に対し

$$
FW \subset W
$$

が成り立つならば、(7) の不動点が W 内に存在する。以下、このような条件を満たすことが期待される「候補者集合」を計算機内で実現するアルゴリズムを与える。

4 数値的検証手順

$(g_1, g_2) \in X^0 \times Y^0$ に対し、(6) の解 (Ψ, Θ) の $S_N^{(1)} \times S_N^{(2)}$ への projection

$$
P_N(\Psi, \Theta) := (P_N^{(1)} \Psi, P_N^{(2)} \Theta)
$$

を次で定義する:

$$
\begin{align*}
\begin{cases}
\mathcal{P}(\Delta^2 P_N^{(1)} \Psi, v_N^{(1)})_{L^2} &= (g_1, v_N^{(1)})_{L^2} \quad \forall v_N^{(1)} \in S_N^{(1)},
\quad \\
-(\Delta P_N^{(2)} \Theta, v_N^{(2)})_{L^2} &= (g_2, v_N^{(2)})_{L^2} \quad \forall v_N^{(2)} \in S_N^{(2)}.
\end{cases}
\end{align*}
$$

ここで $P_N^{(1)} \Psi$ および $P_N^{(2)} \Theta$ は、それぞれ (3) の形をした Ψ の (M_1, N_1)-truncation および Θ の (M_2, N_2)-truncation に一致することに注意すれば、$\|\Psi - P_N^{(1)} \Psi\|_{H^2}$, $\|\Theta - P_N^{(2)} \Theta\|_{H^2}$ および他のノルム $(L^2, H^2$ など) の構成的 a priori 誤差評価を得る。さらに埋め込み $H^2 \hookrightarrow L^\infty$ の構成的評価を用いることにより、途中計算に必要となる L^∞ 誤差評価も得ることができる。

$X^3 \times Y^1$ 上の不動点問題 $w = Fw$ は projection P_N により有限次元 (projection) と無限次元 (error) とに分けて

$$
\begin{align*}
\begin{cases}
P_N w &= P_N Fw, \\
(I - P_N) w &= (I - P_N) Fw
\end{cases}
\end{align*}
$$

と書くことができる。さらに有限次元部分を次のように書き直す:

$$
\begin{align*}
\begin{cases}
P_N w &= P_N w - [I - P_N K f'(\hat{w}_N)]^{-1} P_N (I - F) w, \\
(I - P_N) w &= (I - P_N) F w,
\end{cases}
\end{align*}
$$

ただし $\hat{w}_N := (\hat{\Psi}_N, \hat{\Theta}_N)$、また $[I - P_N K f'(\hat{w}_N)]^{-1}$ は作用素 $P_N [I - K f'(\hat{w}_N)]$ を $S_N^{(1)} \times S_N^{(2)}$ に制限したものの逆写像である。実際に逆写像が存在することは、同値な条件となる行列の可逆性を計算機内で検証することにより可能となる。

以上より、作用素 T を

$$
Tw := P_N w - [I - P_N K f'(\hat{w}_N)]^{-1} P_N (I - F) w + (I - P_N) F w
$$
で定義すると，\([I - P_N Kf'(\hat{w}_N)]_N^{-1} \) が存在するという仮定のもと，2つの不動点問題 \(w = Tw, w = Fw \) は同値となる。

次に，Schauder の不動点定理を満たすことが期待される候補者集合の構成方法について述べる。\(S_{N}^{(1)}, S_{N}^{(2)} \) の基底を \(\psi_i, \theta_i \) とし，\(\dim S_{N}^{(1)} = L_1, \dim S_{N}^{(2)} = L_2 \) とおくと，任意の \((w_{N}^{(1)}, w_{N}^{(2)}) \in S_{N}^{(1)} \times S_{N}^{(2)} \) は次のように基底と実数との一次結合で書きあらわすことができる:

\[
w_{N}^{(1)} = \sum_{i=1}^{L_1} a_i \psi_i, \quad w_{N}^{(2)} = \sum_{i=1}^{L_2} b_i \theta_i.
\]

\((w_{N}^{(i)})_i := |a_i|, (w_{N}^{(2)})_i := |b_i|, M := L_1 + L_2, \) に対し，候補者集合 \(W \subset X^3 \times Y^1 \) を \(M+2 \) 個の正数 \(W_i \) を用いて次のように定義する:

\[
W_N := \{(w_{N}^{(1)}, w_{N}^{(2)}) \in S_{N}^{(1)} \times S_{N}^{(2)} \mid (w_{N}^{(1)})_i \leq W_i (1 \leq i \leq L_1), (w_{N}^{(2)})_i \leq W_{L_1+i} (1 \leq i \leq L_2)\},
\]

\[
W^* := \{(w_1, w_2) \in (S_{N}^{(1)} \times S_{N}^{(2)}) \mid \|w_1\|_{H^3} \leq W_{M+1}, \|w_2\|_{H^1} \leq W_{M+2}\},
\]

\[
W := W_N \oplus W^* \subset X^3 \times Y^1.
\]

このとき，次の定理が成り立つ（[6]）。

Theorem 1

\[
\begin{align*}
&\{ P_{N}T(W) \subset W_N, \\
&(I - P_{N})F(W) \subset W^* \}
\end{align*}
\]

が成り立つならば，\(F \) の不動点 \(w \) が \(W \) 内に存在する。

次に，具体的な検証アルゴリズムを与える。

初期値 \(W_i^{(0)} > 0 (1 \leq i \leq M + 2) \) に対し，\(W^{(0)} := W_N^{(0)} \oplus W^*^{(0)} \) を決める。

\(k \geq 1 \) に対し，微小な正数 \(\delta > 0 \) を用いて

\[
W_i^{(k-1)} := W_i^{(k-1)}(1+\delta) (1 \leq i \leq M + 2),
\]

\[
W^{(k-1)} := W_N^{(k-1)} \oplus W^*^{(k-1)}
\]

を求める。次の候補者集合 \(W^{(k)} \) を以下で決定する：

\[
\begin{align*}
&\{ W_{N}^{(k)} := P_{N}T(W^{(k-1)}), \\
&W_{M+1}^{(k)} := C_1 \sup_{w \in W^{(k-1)}} \| h_1(w) \|_{L^2}, \\
&W_{M+2}^{(k)} := C_2 \sup_{w \in W^{(k-1)}} \| h_2(w) \|_{L^2}, \\
&W^{(k)} := W_N^{(k)} \oplus W^*^{(k)}\}
\end{align*}
\]

ここで \(C_1, C_2 \) はそれぞれ (6) の Fourier-Galerkin 近似に対する \(H^3, H^1 \) 誤差定数であり，数値的に決定できる数である。候補者集合の計算は無限次元の項を含むため正確な計算はできない。しかし，線形問題の a priori 誤差評価などを用いて上から評価することは可能である。

このとき，以下の検証条件が成り立つ。

Theorem 2

ある自然数 \(L \) で

\[
W_i^{(L)} < W_i^{(L-1)} \quad 1 \leq i \leq M + 2
\]

が成立するとき，\(\{ W_i^{(L)} \}_{1 \leq i \leq M + 2} \) から構成される集合 \(W^{(L)} = W_N^{(L)} \oplus W^*^{(L)} \subset X^3 \times Y^1 \) 内に \(w = Tw \) の不動点が存在する。
5 数値例

計算は Compaq Alpha Server XP1000 (Alpha 2126 500MHz; Tru64 UNIX 4.0E) で行なった。計算における丸め誤差を考慮するため、DIGITAL Fortran V5.2-705 に Fortran 90 の区間演算ライブラリ INTLIB_90 ([4]) を実装した。
表 1 は \(P = 10 \), \(N := M_1 = M_2 = N_1 = N_2 \) の検証例である。各 \(\mathcal{R} \) に対し、定常解 \((\Psi, \Theta) \in X^3 \times Y^1 \) が候補者集合

\[
\Psi \in \hat{\Psi}_N + W^{(1)}_N + W_\ast^{(1)}, \\
\Theta \in \hat{\Theta}_N + W^{(2)}_N + W_\ast^{(2)}
\]

内に存在することが検証できた。表中で step は検証完了までの反復回数 (Theorem 2 の \(L \)) である。

<table>
<thead>
<tr>
<th>(\mathcal{R})</th>
<th>(N)</th>
<th>step</th>
<th>(|\Psi_N|_{L^2})</th>
<th>(|\Theta_N|_{L^2})</th>
<th>(|W^{(1)}N|{L^\infty})</th>
<th>(|W^{(2)}N|{L^\infty})</th>
<th>(|W_\ast^{(1)}|_{H^3})</th>
<th>(|W_\ast^{(2)}|_{H^1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>10</td>
<td>3</td>
<td>0.95</td>
<td>3.61</td>
<td>9.40 x 10^{-12}</td>
<td>2.64 x 10^{-13}</td>
<td>8.83 x 10^{-12}</td>
<td>1.86 x 10^{-11}</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>5.45</td>
<td>16.03</td>
<td>1.31 x 10^{-7}</td>
<td>5.10 x 10^{-10}</td>
<td>8.93 x 10^{-8}</td>
<td>4.57 x 10^{-7}</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>6</td>
<td>0.68</td>
<td>1.15</td>
<td>4.43 x 10^{-10}</td>
<td>7.22 x 10^{-11}</td>
<td>1.43 x 10^{-8}</td>
<td>3.40 x 10^{-9}</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>20</td>
<td>9.24</td>
<td>22.67</td>
<td>4.25 x 10^{-9}</td>
<td>1.05 x 10^{-11}</td>
<td>2.49 x 10^{-9}</td>
<td>1.36 x 10^{-8}</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>13</td>
<td>3.55</td>
<td>16.27</td>
<td>9.13 x 10^{-5}</td>
<td>1.90 x 10^{-6}</td>
<td>4.78 x 10^{-5}</td>
<td>1.66 x 10^{-4}</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>5</td>
<td>13.17</td>
<td>28.70</td>
<td>9.06 x 10^{-10}</td>
<td>1.80 x 10^{-11}</td>
<td>4.21 x 10^{-10}</td>
<td>2.09 x 10^{-9}</td>
</tr>
<tr>
<td>40</td>
<td>25</td>
<td>14</td>
<td>5.93</td>
<td>24.12</td>
<td>1.37 x 10^{-6}</td>
<td>1.18 x 10^{-8}</td>
<td>6.75 x 10^{-7}</td>
<td>2.69 x 10^{-6}</td>
</tr>
</tbody>
</table>

参考文献

(http://interval.usl.edu/kearfott.html)
