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1. Introduction

Consider the Dirichlet problem

$-\Delta u=f(x, y)$ in $\Omega$ , (1.1)

$u=g(x, y)$ on $\Gamma=\partial\Omega$ , (1.2)

where $\Omega$ is a bounded domain of $\mathbb{R}^{2}$ and $f,$ $g$ are given functions. We
assume the (unique) existence of a solution $u$ for $(1.1)-(1.2)$ .

It was recently shown by Yamamoto [8] and Matsunaga-Yamamoto
[7] that the Shortley-Weller approximation applied to $(1.1)-(1.2)$ had a
superconvergence property and numerical examples illustrating this fact
were also given there.

To state the result, we construct a net over $\overline{\Omega}=\Omega\cup\Gamma$ by the grid
points $P_{ij}=(x_{i}, y_{j})$ in $\overline{\Omega}$ with the mesh size $h$ . The set of the grid
points is denoted by $\Omega_{h}$ . We denote by $P_{\Gamma}$ the set of points $P_{ij}$ such
that at least one of $(x_{i}\pm h, y_{j}),$ $(x_{i}, y_{j}\pm h)$ does not belong to $\Omega$ and
put $\mathcal{P}_{0}=\Omega_{h}\backslash p_{\Gamma}$ . Furthermore, we denote by $\Gamma_{h}$ the set of points of
intersection of grid lines with $\Gamma$ and $S_{h}(\kappa)$ by the set of points $P_{ij}\in\Omega_{h}$

which satisfy dist $(P_{ij}, \Gamma)\leq\kappa h$, where $\kappa$ is a constant with $\kappa>1$ , which is
arbitrary chosen independently of $h$ . We define the neighbors of $P\in\Omega_{h}$
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to be four points in $\Omega_{h}\cup\Gamma_{h}$ which are adjacent to $P$ and on horizontal
and vertical grid lines through $P$ . As is shown in Figures 1.1 and 1.2,
these points are denoted by $P_{E},$ $P_{W},$ $P_{S},$ $P_{N}$ and their distance to $P$ by
$h_{E},$ $h_{W},$ $h_{S},$ $h_{N}$ . Note that at least one of $P_{E},$ $P_{W},$ $P_{S},$ $P_{N}$ is on $\Gamma$ if and
only if $P\in \mathcal{P}_{\Gamma}$ and that all of them are in $\Omega$ if and only if $P\in P_{0}$ , in
which case we have $h_{E}=h_{W}=h_{S}=h_{N}=h$ .

rlgure 1.1 Figure 1.2

We denote by $U(P)$ an approximate solution at $P\in\Omega_{h}$ . Then the
Shortley-Weller (S-W) $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-\triangle_{h}(SW)\mathrm{f}_{0}\mathrm{r}-\triangle$ at $P$ is defined by

$-\triangle_{h}(SW)U(P)$ $=$ $( \frac{2}{h_{E}h_{W}}+\frac{2}{h_{S}h_{N}})U(P)-\frac{2}{h_{E}(h_{E}+h_{W})}U(P_{E})$

$- \frac{2}{h_{W}(h_{E}+h_{W})}U(P_{W})-\frac{2}{h_{S}(h_{S}+h_{N})}U$ (Ps)

$- \frac{2}{h_{N}(h_{s+}h_{N})}U(P_{N})$ ,

which includes the usual centered five point formula

$- \triangle_{h}U(P)=\frac{1}{h^{2}}[4U(P)-U(PE)-U(P_{W})-U(P_{s)()]}-UPN$

as a special case $h_{E}=h_{W}=h_{S}=h_{N}=h$ . Hence, if $P\in \mathcal{P}_{0}$ , then the
S-W approximation means the centered five point approximation.

As is easily seen, if $u\in C^{3,1}(\overline{\Omega})$ , then the local truncation error $\tau^{(SW)}(P)\equiv$

$-[\triangle_{h}(SW)u(P)-\triangle u(P)]$ of the S-W formula at $P$ is estimated by

$|\tau^{(sW)}(P)|\leq$ $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{f}h_{E}=h,W=hs=h_{N}=h$
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where $L$ is a Lipschitz constant common to all third order derivatives
$\partial^{3}/\partial x^{i}\partial y^{3-i},$ $0\leq i\leq 3$ and

$M_{3}= \sup_{P\in\Omega}\{|\frac{\partial^{3}u(P)}{\partial x^{i}\partial y^{3-i}}||i=0,1,2,3\}$.

Then the following result holds for the S-W approximation.

Theorem 1.1 (Superconvergence of the S-W approximation [8], [7])
Let $\Omega$ be a bounded convex domain with a.piecewise $c^{2,\alpha}$ boundary. If

$u\in C^{l+2,\alpha}(\overline{\Omega}),$ $l=0$ or 1, $\alpha\in(0,1]$ , then

$|u(P)-U(P)|\leq$

This implies that if $u\in C^{3,1}(\overline{\Omega})$ , then we have

$u(P)-U(P)=O(h^{3})$ at $P\in S_{h}(\kappa)$

even if $\tau^{(SW)}(P)=O(h)$ and $u(P)-U(P)=O(h^{2})$ at other grid points.
Theorem 1.1 is a refinement of the following result due to Bramble-

Hubbard [1]:

Theorem 1.2. If $u\in C^{4}(\overline{\Omega})$ , then

$|u(P)-U(P)| \leq\frac{M_{4}}{96}d^{2}h^{2}+\frac{2M_{3}}{3}h^{3}=O(h^{2})$ $\forall P\in\Omega_{h}$ ,

where
$M_{4}= \sup_{P\in\Omega}\{|\frac{\partial^{4}u(P)}{\partial x^{i}\partial y^{4-i}}||i=0,1,2,3,4\}$

and $d$ denotes the diameter of the smallest circle containing $\Omega$ .

It is also known by Matsunaga’s numerical experiments [4] that even if
$u\in C^{4}(\overline{\Omega})$ , the Bramble and the Collatz approximations do not have the
superconvergence property like Theorem 1.1, although both have $O(h^{2})$

accuracy at every $P\in\Omega_{h}$ .
Now, we are interested in the behavior of the S-W approximate solution

for the case $u\not\in C^{l+2,\alpha}(\overline{\Omega})$ . Has the S-W approximation any superconver-
gence property for such a case? The purpose of this paper is to answer
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this question: Three examples with $\Omega=(0,1)\cross(0,1)$ are given in \S 2,
which show three kinds of different behavior: (i) nonsuperconvergence at
any point of $\Omega_{h},$ $(\mathrm{i}\mathrm{i})$ superconvergence near a part of $\Gamma$ and (iii) supercon-
vergence in a neighborhood of a point of F. Furthermore, in \S 3, we shall
give two theorems by which the above phenomena can be illustrated.

2. Numerical Examples

In this section, we give three examples in which the S-W approxima-
tions applied to $(1.1)-(1.2)$ show different behaviors.

Example 2.1. Let $f$ and $g$ be chosen so that the function

$u=\sqrt{x(1-x)}+\sqrt{y(1-y)}$

is the solution of $(1.1)-(1.2)$ . Observe that $u\in C(\overline{\Omega})\cap C^{\infty}(\Omega)$ , but
$u\not\in H^{1}(\Omega)$ . Then, as is shown in Table 2.1, we see

$u(P)-U(P)=O(h^{1/2})$ $\forall P\in\Omega_{h}$ (2.1)

and nonsuperconvergence occurs at any point in $\Omega_{h}$ .

Table 2. 1

It should also be remarked that $u^{(4)}(Q)=O(h^{1/2-}4)$ if $Q$ is close to the
boundary $\Gamma$ and the local truncation error $\tau(Q)$ approaches to infinity as
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$Q$ approaches to F. The distribution of errors $|u(P)-U(P)|$ in the case
$h=$ 1.0e-002 is shown in Figure 2.1.

Example 2.2. Let $f$ and $g$ be chosen so that the function

$u=\sqrt{x}+y$

is the solution of $(1.1)-(1.2)$ . Then

$|u(p)-U(p)|=\{_{o()}^{o(}h^{3}h1/2/2)$ $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\{(\mathrm{l}, y)|\mathrm{s}\mathrm{e}.0\leq y\leq 1\}$ (2.2)

The results are shown in Table 2.2 and Figure 2.2 for $h=$ 1.0e-002.

Table 2.2

In this case, a superconvergence occurs near the side $x=1$ of $\Gamma$ .
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Example 2.3. Let $f$ and $g$ be chosen so that the function $u=\sqrt{x}+\sqrt{y}$

is the solution of $(1.1)-(1.2)$ . Then

$|u(P)-U(P)|=\{_{o()}^{O(h^{3}}h^{1^{/2}}/2)$ $\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{W}\mathrm{i}\mathrm{s}\mathrm{e}.(1,1)$

,
(2.3)

The superconvergence occurs only near the corner $(1,1)$ . (See Figure 2.3
for the case $h=1.0_{\mathrm{e}-}002$ ).

In the above examples, observe that the S-W approximation works well,
although

$P \Omega_{h}\max_{\in}|\tau^{(SW)}(P)|arrow+\infty$ as $harrow \mathrm{O}$ .

This is a nice feature of the finite difference method.

3. Convergence Theorems

It is possible to give mathematical proofs for the error estimates $(2.1)-$

(2.3). We can first prove the following results for the two-point boundary
value problem

$-u”(x)=\varphi(x)$ , $0<x<1$ (3.1)

$u(0)=\alpha,$ $u(1)=\beta$ , (3.2)

where $\varphi$ is a given function and $\alpha,$
$\beta$ are given constants.

Theorem 3.1. Let $d(x)= \min(x, 1-X),$ $0<x<1$ . If $0<p<1$ , and
the solution $u(x)$ of $(3.1)-(3.2)$ belongs to $C^{4}(0,1)$ and satisfies

$\sup_{x\in(0,1)}\frac{d(x)k|u(k)(X)|}{d(x)^{p}}<\infty$ , $k=0,1,2,3,4$ ,

then
$|u_{i^{-U_{i}}}|=^{o(}hp)$ $\forall i$ ,

where $\{U_{i}\}$ is the finite difference solution for $(3.1)-(3.2)$ and $u_{i}=u(X_{i})$ ,
$x_{i}=ih,$ $i=0,1,2,$ $\cdots$ , $n+1,$ $h=1/(n+1)$ . That is, superconvergence
does not occur at any $x_{i}\in\Omega_{h}$ .
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Theorem 3.2. If the solution $u(x)$ of $(3.1)-(3.2)$ satisfies

$\sup_{x\in(0,1)}\frac{x^{k}|u^{(k})_{(}X)|}{x^{p}}<\infty$ , $k=0,1,2,3,4$ (3.3)

with some constant $p\in(0,1)$ , then

$|u_{i}-U_{i}|\leq$ $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{W}\mathrm{i}\mathrm{s}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}x=\mathrm{l}\mathrm{e}$

.

That is, superconvergence occurs near $x=1$ .

Theorems 3.1 and 3.2 can be derived with the use of the fact (e.g.

Yamamoto-Ikebe [9] $)$ that the inverse of the $n\cross n$ tridiagonal matrix

$A=$
is given by

$A^{-1}=(\alpha ij)$ , $\alpha_{ij}=$ $(i\leq(i>j)j)$

so that

$h\alpha_{ij}--$

Now, consider the Dirichlet problem

$-\triangle u=F_{1}(x)+F_{2}(y)$ in $\Omega=(0,1)\cross(0,1)$ , (3.4)

$u=G_{1}(_{X})+G_{2}(y)$ on $\Gamma$ (3.5)

and $\{U_{ij}\}$ be the S-W approximation with the equal mesh size $h_{E}=h_{W}=$

$h_{S}=h_{N}=h$ at every $P\in\Omega_{h}$ . Let $\{U_{i}^{(1)}\}$ and $\{U_{i}^{(2)}\}$ be the usual finite
difference solution for the two-point boundary value problems

$-u”(x)=F1(x)$ , $0<X<1$
$u(0)=c_{1}(\mathrm{o}),$ $u(1)=G_{1}(1)$

38



$\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{d}$

$-u^{\prime/}(y)=F_{2}(y)$ , $0<y<1$
$u(\mathrm{O})=G_{2}(0),$ $u(1)=G_{2}(1)$ ,

respectively. Then, by the uniqueness of the S-W approximate solution
applied to $(3.4)-(3.5)$ , we have

$U_{ij}=U_{i}(1)+U^{()}j2$ , $\forall i,j$ .

Hence, all the phenomena stated in \S 2 can now be illustrated with the
use of Theorems 3.1 and 3.2 with $p=1/2$ .

Note: Proofs of Theorems 3.1 and 3.2 will be given elsewhere.
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