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On the background of biology such as taxonomy, cladistics and phylogeny, the principle of
maximum parsimony also called Wagner Parsimony has been mathematically formulated and then
a mathematical and algorithmic theory has been develoPing[2-12] . The principle assumes that the
total amount of evolutionary changes is globally minimized. The problems and related problems
on this minimization have been called the Most‐Parsimonious Reconstruction (abbreviated to
MPR) Problems in phylogeny.

In Narushima [8], the MPR Problems are classified into two kinds of topics. One is called
the First MPR Problem “given a phylogenetic tree with the external nodes (which express the
operational taxonomic units) of which characters are stated, find an assignment of character‐
states to all internal nodes (which express the hypothetical taxonomic units) of the tree, so as
to minimize the length (the total amount of evolutionary changes) of the tree.” This is also
known as “the character‐state minimization.” The other is the Second MPR Problem (or the
Wagner Tree Problem) “given a set of operational taxonomic units of which characters are stated,
find a phylogenetic tree with the set as the external nodes, and simultaneously an assignment of
character‐states to all internal nodes of the tree, so as to minimize the length of the tree.” Such
an optimal phylogenetic tree is called a Wagner tree. It is well‐known that the latter problem
is strongly related to the Steiner Problem in Phylogeny (SPP) and the Rectilinear Steiner Tree
(RST) problem etc. Both problems described above originate in Farris [2]. In this paper, we
discuss the former problem under linearly ordered character‐states, that is, in the framework
based on the method of Hanazawa, Narushima and  Minaka[3] .

We use the notation in [3, 6, 9, 10]. In this paper, let the set  \Omega of linearly ordered character‐
states be the set  R of real numbers unless otherwise stated, because we discuss the completeness
of posets, introduced later. Let  \Omega^{n} denote the  n‐dimensional Cartesian product of  \Omega . Let  T=

(V,  E,  \sigma ) be any undirected simple tree whose endnodes are evaluated by a weight function a :
 V_{O}arrow\Omega^{n} , which is called a multi‐character state function, where  V is the set of nodes,  V_{O} is
the set of endnodes,  V_{H} is the set of internal nodes, and  E is the set of branches. Note that
 V_{O}\cup V_{H}=V and   V_{O}\cap V_{H}=\emptyset . We call this tree an  el‐tree. For an  e1‐tree  T , we define an
assignment  \lambda :  Varrow\Omega^{n} such that  \lambda|V_{O} (the restriction of  \lambda to  V_{O} )  =\sigma , where  \lambda(u) is called
a state of  u under  \lambda . This assignment is called a reconstruction on an  e1‐tree  T . We denote
the restriction of  \lambda‐range to the i‐th component of  \Omega^{n}(1\leq i\leq n) by  \lambda_{i} . For each branch  e

in  E of an  e1‐tree  T with a reconstruction  \lambda , we define the length  l(e) of branch  e=\{u, v\} by
  \sum_{i=1}^{n}|\lambda_{i}(u)-\lambda_{i}(v)| , which is said to be the Manhattan distance or the rectilinear distance. The
length  L(T|\lambda) of an  e1‐tree  T under the reconstruction  \lambda is the sum of the lengths of the branches.
That is,  L(T| \lambda)=\sum_{e\in E}l(e) . Then we define the minimum length  L^{*}(T) of  T by

  L^{*}(T)= \min{   L(\tau|\lambda)|\lambda is a reconstruction on  T}.

Note that  L^{*}(T) is well‐defined. A reconstruction  \lambda such that  L(T|\lambda)=L^{*}(T) is called a most‐
parsimonious reconstruction (abbreviated to MPR) on  T . Generally, an  e1‐tree  T has more than
one MPR. The following is one of the key concepts in the subject. The set {  \lambda(u)|\lambda is an MPR on  T }
of states is called the  MPR‐set of a node  u and written as  S_{u} .

We here note the following important fact. Considering the definitin of  L(T|\lambda) , that is,

 L(T| \lambda)=\sum_{Ee\in}l(e)=\sum_{i=1u}\sum_{\{,v\}\in E}|\lambda_{i()}u-
\lambda_{i}(v)| ,
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we see that this minimization allows us to treat each component (character) independently. In‐
deed, this independence among characters is a crucial assumption of our method. So, hereafter,
we treat only the single‐character case for an el‐tree.

For a given  e1‐tree  T=(V, E, \sigma) , we define a rooted  el‐tree  T^{(r)} rooted at any element  r in  V .
The rooted  e1‐tree  T^{(r)} is simply written  T if it is understood. The parent‐child relation  \{u, v\}
in  E on a rooted  e1‐tree  T is denoted by  uarrow v or  p(v)=u , which means  u is a parent of  v (or  v

is a child of  u). For each  u and  v in  V,  u is called an ancestor of  v , written  uarrow v* , if there is a
sequence of nodes  u=u_{1},  u_{2},  \cdots,  u_{n}=v in  V such that  u_{i}arrow u_{i+1}(1\leq i\leq n-1) . In a rooted
 e1‐tree, there is only one node without a parent, which is called the root, and a node without a
child is called a leaf. For each  u in  V , we denote a subtree of a rooted  e1‐tree  T induced from a
subset  \{u\}\cup\{v\in V|uarrow v\}* of  V by  T_{u} , where  u is the root. If  r is an endnode, i.e.,  r\in V_{O} and
 s is its unique child, we denote the rooted  e1‐tree  T^{(r)} by  (T_{s}, r) . In this case, the subtree  T_{s} is
called the body of the tree  T^{(r)} ; oherwise, i.e., if  r\in V_{H} , the body of  T^{(r)} is  T^{(r)} itself.

We denote the set  \{1, 2, \cdots, n\} of  n elements by  [n] . Let  a_{i}(i\in[2n]) be any elements in  \Omega ,
and be sorted in ascending order as follows:

 x_{1}\leq x_{2}\leq\cdots\leq x_{n}\leq x_{n}+1\leq\cdots\leq x_{2n} .

Then we call  x_{n} and  x_{n+1} the median two points of the numbers  a_{i}(i\in[2n]) , and denote
 \langle x_{n}, x_{n+}1\rangle by

 med2\langle a_{1,2}a, \cdots, a_{2n}\rangle or  med2\langle a_{i} : i\in[2n]\rangle .

Let  I_{i}(i\in[m]) be any family of closed intervals in  \Omega . Then we denote the median two points
of all the endpoints of  I_{i}(i\in[m]) by

 med2\langle I_{1}, I_{2}, \cdots, I_{m}\rangle or  med2\langle I_{i} : i\in[m]\rangle .

Let  med2\langle I_{i} : i\in[m]\rangle=\langle x, y\rangle . Then we call the closed interval  [x, y] in  \Omega the median interval

of  I_{i}(i\in[m]) , which is the key concept in a series of our papers, and denote it by

 med\langle I_{1}, I_{2}, \cdots, I_{m}\rangle or  med\langle I_{i} : i\in[m]\rangle .

For each node  u in the body of a rooted  e1‐tree  T , we assign a closed interval  I(u) of  \Omega

recursively as follows:

 I(u)=\{  [\sigma(u), \sigma(u)] if  u is a leaf,
 med\langle I(v) : u\mapsto v\rangle otherwise.

This  I(u) is called the characteris  tic interval of a node  u , and so is  I the characteris  tic interval
map on  T .

We now restate some previous results which are paticularly related to new results stated later.
The following is a qualitative expression of Theorem 1 (Theorem  3(ii) ) in [3], which shows the
necessary and sufficient condition for a reconstruction on  T to be an MPR on  T . This theorem
may be said to be the fundamental theorem on the first MPR problem.

Theorem A Let  T be a rooted  el‐tree  (T_{s}, r) and  \lambda be a reconstruction on T.  \lambda is an  MPR on
 T if and only if for any  u\in V_{H},  \lambda(u)\in med\langle[\lambda(p(u)), \lambda(p(u))], I(v) : uarrow v\rangle , where I is the
characteristic interval map on  T .

By using Theorem  A , we can recursively obtain all MPRs on a given  e1‐tree  T . For details see
 [3, 6] . Then we denote the set of MPRs on an  e1‐tree  T by  Rmp(T) . The following is Corollary
5 in [3], which gives a characterization for each MPR‐set.
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Corollary  B Let  u be any internal node of an  el‐tree T. Let I be the characteristic interval map
on a rooted  el‐tree  T^{(u)} . Then  I(u) is the  MPR‐set  S_{u} .

From Theorem  A , we see that  med\langle[\lambda(p(u)), \lambda(p(u))], I(v) : uarrow v\rangle is the MPR‐set of node  u

under the restriction that an element  \lambda(p(u)) in  S_{p(u)} has been assigned to  u' s parent  p(u) . We
denote this subset of the MPR‐set  S_{u} by  S_{u}|x . That is,

  S_{u}|x=med\langle[x, x], I(v) : uarrow v\rangle ,

where  x is an element in  S_{p(u)} .

The following is Theorem 1 in [6], which gives a recursive characterization for each MPR‐set.

Theorem  C Let  T be a rooted  el‐tree  (T_{S}, r) . Then each  MPR‐set  S_{u} for each internal node  u

of  T is recursively decided by

 S_{u}=[ \min(S_{u}|\min(S_{p(u}))), \max(S_{u}|\max(s_{p(u)}))] .

Fig. 1: An undirected  e1‐tree  T Fig. 2: All MPR‐sets on  T

Table 1:  Rmp(T)

Since the minimization of a reconstruction  \lambda :   Varrow\Omega on an  e1‐tree  T=(V, E, \sigma) is our center

of interest, it is sufficient for us to consider the range of  \lambda as the closed interval  [ \min\sigma, \max\sigma]
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(written as  \triangle ) of  \Omega . Therefore, we may think of the set  \{\lambda : Varrow\triangle\} of reconstructions on  T

as the general framework of our subject. Let  Rec(T) denote the set  \{\lambda : Varrow\Delta\} . Then the
usual ordering  \lambda\leq\mu on  Rec(\tau) is defined by  \lambda(u)\leq\mu(u) for all  u in  V . We call  (ReC(\tau), \leq) a
REC‐poset.

On the other hand, from a phylogenetic point of view, Minaka  [4, 5] has introduced the two
partial orderings on  Rmp(T) to investigate the relationships among MPRs. One is the usual
ordering and the other is a partial ordering that depends on a state of a specified root of a given
el‐tree.

We now give a mathematically explicit formulation for those partial orderings. Let  T be an
 e1‐tree. The usual ordering  \lambda\leq\mu on  Rmp(T) is defined by  \lambda(u)\leq\mu(u) for all  u in  V . Let
 T be a rooted  e1‐tree  (T_{s}, r) . A binary relation  a\leq_{\sigma(r)}b on  \Omega is defined by  \sigma(r)\leq a\leq b or
 \sigma(r)\geq a\geq b . Then a binary relation  \lambda\leq_{\sigma(r)\mu} on  Rmp(T) is defined by  \lambda(u)\leq_{\sigma(r)\mu}(u) for all  u

in  V . It is easily shown that those relations are partial orderings.  (Rmp(\tau), \leq) is called a usual
MPR‐po8et which is really an induced subposet of  (ReC(\tau), \leq) , and  (Rmp(\tau), \leq_{\sigma(r)}) is called a
 \sigma(r) ‐version  MPR‐poset. Note that the usual MPR‐poset is uniquely defined for an  e1‐tree, but
the  \sigma(r) ‐version MPR‐poset, depending on the character‐state of a specified root, is defined for
each rooted el‐tree.

We here illustrate some  \sigma(r)‐version MPR‐posets in Fig.3 for the  e1‐tree  T in Fig.1. From
 \sigma(l)=\sigma(n)=1\leq\lambda(u)(\lambda\in Rmp(T), u\in V) in Table 1 and the definition of  \sigma(r) ‐version

MPR‐poset, we see that each  \sigma(r) ‐version MPR‐poset of (c) and (d) in Fig.3 is order‐isomorphic
to the usual MPR‐poset.

 ((1\prime(\iota tmp(^{1}\prime,\underline{\backslash }\sigma(n))  (^{c}\prime(^{\iota LII1}p(1\prime,\underline{\backslash }\sigma(_{0))}

Fig. 3: Examples of  \sigma(r)‐version MPR‐posets

It is easily shown that the REC‐poset  (Rec(\tau), \leq) is a complete distributive lattice. At the
start of investigating the completeness of MPR‐posets and the distributivity, that is, whether  `(an

MPR‐poset is a complete sublattice of the lattice  (ReC(\tau), \leq) or not”, in the main section, we
first restate the the following which is Proposition 5 in [9].

Proposition  D Let  T be an  el‐tree. Let  \lambda_{\max}(\lambda_{\min}) denote a reconstruction  \lambda on  T such that
  \lambda(u)=\max S_{u}(\min S_{u}) for any internal node  u . Then the reconstruction  \lambda_{\max}(\lambda_{\min}) on  T is
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the greatest (least) element of the  MPR‐poset  (Rmp(\tau), \leq) .

It is well‐known theorem in lattice theory that a lower‐complete poset with the greatest
element is a complete lattice. Hence, from Proposition  D we see that the lower‐completeness
(upper‐completeness) of  (Rmp(\tau), \leq) is sufficent to show the following, the first main theorem
in this paper.

Theorem 1. Let  T be an  el‐tree. Then the usual  MPR‐poset  (Rmp(\tau), \leq) is a complete dis‐
tributive lattice.

We next investigate lattice‐theoretic properties of  \sigma(r) ‐version MPR‐posets. First of all, recall
that the usual MPR‐poset is uniquely defined for an  e1‐tree, but the  \sigma(r) ‐version MPR‐poset.
depending on the character‐state of a specified root, is defined for each rooted  e1‐tree. The same
framework as usual MPR‐posets applies to  \sigma(r) ‐version MPR‐posets. The  \sigma(r) ‐version ordering
 \lambda\leq_{\sigma(r)}\mu on  Rec(\tau) is defined by  \lambda(u)\leq_{\sigma(r)}\mu(u) for all  u in  V . We call  (Rec(\tau), \leq_{\sigma(r)}) a
 \sigma(r) ‐version  REC‐poset. Then we easily see that there exists the infimum of any nonempty subset
of  Rec(T) on a  \sigma(r) ‐version REC‐poset, that is, a  \sigma(r) ‐version REC‐poset is a lower‐complete
semilattice.

The following is the second main theorem in this paper, which is proved by using Theorem A.

Theorem 2. Let  T be a rooted  el‐tree  (T_{s}, r) . Then the  \sigma(r) ‐version  MPR‐poset is a lower‐
complete semilattice.

We see from Theorem 2 that there exists the least element   \inf_{\sigma(r)}(RmP(T)) in any  \sigma(r)-
version MPR‐poset. Let’s here show a more concrete characterization for the least element.

Proposition 1. Let  T be a rooted  el‐tree  (T_{S}, r) . Let’s define a reconstruction  \lambda on  T as   follows\rangle
for each  u in  V_{H} ,

 \lambda(u)=\{
  \min(S_{u})  ( \sigma(r)\leq\min S_{u})
 \sigma(r)  ( \min S_{u}<\sigma(r)<\max S_{u})
  \max(S_{u})  ( \sigma(r)\geq\max S_{u}) .

Then the reconstruction  \lambda is the least element of the  \sigma(r) ‐version MPR‐poset.

The reconstruction  \lambda defined in Proposition 1 is particularly written as  \lambda_{\min}^{<\sigma(r)>} . We here

show some examples for the least element  \lambda_{\min}^{<\sigma(r)}> . Let the  e1‐tree  T in Fig.1 be rooted at  p .
Then from the MPR‐sets in Fig.  Fig:MPR_{S}ets and Proposition 1, we obtain the least element

 \lambda_{\min}^{<\sigma(p)}> is shown in Fig.4, with the rooted  e1‐tree  T=(T_{a}, p) . We also see that  \lambda_{\min}^{<\sigma(p)}> is really
equal to  \lambda_{7} in  Rmp(T) shown in Table 1,  i.e , the least element of the  \sigma(r) ‐version MPR‐poset
 (Rmp(\tau), \leq_{\sigma(p)}) shown in Fig.5.

We see from Fig.5 that there is not necessarily the greatest element in a  \sigma(r) ‐version MPR‐
poset, that is, a  \sigma(r) ‐version MPR‐poset is not necessarily a complete distributive lattice, and so
we here examine the lattice‐theoretic properties on intervals of any  \sigma(r) ‐version MPR‐poset.

For any  \lambda,  \mu which are comparable elements in a REC‐poset, it is easily shown that the
interval subposet  ([\lambda, \mu], \leq_{\sigma(r)}) of the REC‐poset has the greatest element  \mu and the infimum of
any nonempty subset of  [\lambda, \mu] . Furthermore, when  \Lambda is of any two elements in  [\lambda, \mu],   \inf_{\sigma(r)}\Lambda is
to be the meet  (\wedge) of the two elements, which is really the minimum of the two elements on  \leq_{\sigma(r)} ,
and   \sup_{\sigma(r)}\Lambda is the join  () of the two elements, which is really the maximum of the two elements
on  \leq_{\sigma(r)} . Then we see easily that the distributive laws on the lattice‐theoretic operations hold
in  ([\lambda, \mu], \leq_{\sigma(r)}) . Thus we have that any interval poset  ([\lambda, \mu], \leq_{\sigma(r)}) in  (ReC(\tau), \leq_{\sigma(r)}) is a
complete distributive lattice.

By the similar way stated above, we obtain the following which is the third main theorem in
this paper.
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Fig. 4:  \lambda_{\min}^{<\sigma(r)}> on  (T_{a},p) Fig. 5:  (Rmp(\tau), \leq_{\sigma(p)})

Theorem 3. Let  T be a rooted  el‐tree  (T_{s}, r) . Then any interval poset  ([\lambda, \mu], \leq_{\sigma(r)}) in

 (Rmp(\tau), \leq_{\sigma(r)}) is a complete  di_{S}t\dot{n}butive lattice.

We finally give some remarks. It is easily shown that the results in this paper are naturally
generalized to the multi‐character case for an  e1‐tree. One also see easily that an MPR‐lattice is
not always a complemented lattice. In a later paper, we investigate in detail the order‐theoretic
structures of a  \sigma(r) ‐version MPR‐poset. We particularly give some characterizations of maximal
elements in that poset and then a necessary and sufficient condition for that poset to have the
greatest element, i.e., to be a complete distributive lattice.
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