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Abstract

Applications of Gröbner bases to some computationally hard problems in combinatorics using the
discreteness of toric ideals have been studied in recent years. On the other hand, the properties
of graphs may give insight into Gröbner bases. In this paper, we analyze toric ideals of acyclic
tournament graphs, which are the most fundamental directed graphs. We focus especially on
the number of elements of its reduced Gröbner bases. We show that there exist term orders for

which reduced Gröbner bases remain in polynomial order by characterizing the bases in terms
of circuits. We next analyze the number of elements of reduced Gröbner bases with respect to
various term orders. We finally discuss applications to the minimum cost flow problem.

1 Introduction rected bipartite graphs can be regarded as the
Recently, some algebraic approaches to many com‐ subgraphs of acyclic tournament graphs by direct‐

putationally hard problems in combinatorics have ing each edge from one set of vertices in bipar‐
been studied. The main tool is the G_{\Gamma\ddot{O}}bner ba‐ tite graphs to the other. By the elimination the‐

sis, which is an important tool in computational orem  (See[3]) , reduced Gröbner bases of any sub‐

algebra and algebraic geometry. Gröbner bases graphs of acyclic tournament graphs can be ob‐

have provided new insight into some combinatorial tained automatically if that of acyclic tournament

problems such as integer programming [2, 5, 6, 12] graphs can be calculated. Thus the number of ele‐

and computational statistics [6]. ments in reduced Gröbner bases of any subgraphs
are less than those of acyclic tournament graphs.Related to some combinatorial problems in
On the other hand, the number of elements in re‐graph theory, toric ideals of graphs have been stud‐

ied. De Loera, Sturmfels and Thomas [5] studied duced Gröbner bases of graphs are related to the

the toric ideals of undirected complete graphs, and complexity of integer programming problem aris‐

applied them to the triangulation of second hyper‐ ing from the graphs.

simplex and perfect  f‐matching problem. Diaco‐ In this paper, we show that the number of ele‐

nis and Sturmfels [6] studied the toric ideals of ments in reduced Gröbner bases remain in polyno‐

bipartite graphs, and applied them for sampling mial order by characterizing the bases in terms of

from conditional distributions and transportation circuits. We next analyze the number of elements

problem. From the viewpoint of in commutative of reduced Gröbner bases with respect to various

algebra, Ohsugi and Hibi [10] studied the toric ide‐ term orders using  TiGERS[8] . We finally discuss

als of general undirected graphs, and showed the applications to the minimum cost flow problem on

conditions when the toric ideals are generated by acyclic tournament graphs.

quadratic binomials. Conversely, the properties of
graphs may give insight into Gröbner bases. 2 Preliminaries

Gröbner bases of directed graphs are not well
In this section, we give basic definitions of Gröbnerunderstood. In this paper, we study the toric
bases and toric ideals. We refer to  [3, 4] for theideals of acyclic tournament graphs, which are
introductions of Gröbner bases, and [11] for thethe most fundamental directed graphs. Any ele‐
introductions of toric ideals and their applications.ments in the reduced  Gr\ddot{o}bne\Gamma bases for toric ide‐

als of these graphs correspond to the circuits in
the graphs. So we can characterize the reduced 2.1 Gröbner Bases
Gröbner bases of toric ideals in terms of circuits.

We focus especially on the number of elements in Let  k be a field and  k[x_{1}, \ldots, x_{n}] be the ring of
reduced Gröbner bases. Analysis of the Gröbner polynomials in  n variables. For a non‐negative
bases of acyclic tournament graphs are very im‐ integer vector  \alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{N}^{n} , we write
portant. Acyclic tournament graphs contains any  x^{\alpha}:=x_{1}^{\alpha_{1}\alpha\ldots\alpha}x_{2}2x_{n}n . We call  \alpha the exponent vec‐
acyclic directed graphs as subgraphs, and undi‐  tor of monomial  x^{\alpha} .

数理解析研究所講究録
第1148巻 2000年 134-139

134



Definition 2.1  Let\succ be a total order on  \mathbb{N}^{n} . We
 call\succ a term order on  \mathbb{N}^{n} if it satisfies the follow‐
ing:

1.  \forall_{\alpha,\beta,\gamma\in}\mathbb{N}^{n},  \alpha\succ\beta\Rightarrow\alpha+\gamma\succ\beta+\gamma .

Although there are infinite term orders, a uni‐
versal Gröbner basis is finite.

Proposition 2.10 Every ideal  I\subset k[x_{1}, \ldots, x_{n}]
has a finite universal Gröbner basis.

2  \forall_{\alpha\in N^{n}}\backslash \{0\},  \alpha\succ 0 We define “division” on multi‐variable polyno‐
For a polynomial  f and a term   order\succ , we call mial ring.

the largest term in  f with respect  to\succ initial term Theorem 2.11 Fix a monomial order  \succ and a
of  f and write  in_{\succ}(f) , or short, in  (f) .   Gr\ddot{o}bne\Gamma basis  \mathcal{G}=\{g_{1}, \ldots, g_{s}\} for I with respect

  to\succ . Then every  f\in k[x_{1}, \ldots, x_{n}] can be writtenRemark 2.2 In this paper, we line under the ini‐
as

tial term of each polynomial.

 f=a_{1}g_{1}+\cdots+a_{s}g_{s}+r,  a_{i},  r\in k[x_{1}, \ldots, x_{n}]We give some examples of term orders.

Definition 2.3 Fix a variable ordering  x_{i_{1}}  \succ
where either  r=0 or no term of  r is divisible
by any of  in_{\succ}(g_{1}),  \ldots,  in_{\succ}(g_{s}) .  r is unique, and

 x_{i_{2}}\succ\cdots\succ x_{i_{n}} . We  say\succ is  a purely lexico‐
called normal form of  f by  \mathcal{G} .

graphic order induced by this variable ordering if,
for any  \alpha and  \beta,  \alpha\succ\beta if and only if there exists
 1\leq m\leq n such that  \alpha_{i_{k}}=\beta_{i_{k}} for  k<m and 2.2 Toric Ideals

 \alpha_{i_{m}}>\beta_{i_{m}} .

In this section, we consider  A\in \mathbb{Z}^{d\cross n} as a set

Definition 2.4 Fix a variable ordering  x_{i_{1}}  \succ
of column vectors  \{a_{1}, \ldots, a_{n}\} . Each vector  a_{i} is

We  say\succ is  a degree lexico‐ identified with a monomial  t^{a_{i}} in the Laurent poly‐

 graphi_{C}orderindx_{i_{2}}\succ\cdots\succ xinuCed by this variable ordering if, nomial ring  k[t^{\pm 1}]:=k[t_{1}, \ldots , t_{d}, t_{1}^{-1}, \ldots, t_{d}^{-1}] .
for any  \alpha and  \beta,  \alpha\succ\beta if and only if   \sum_{i=1}^{n}\alpha_{i}> Definition 2.12 Consider the homomorphism
  \sum_{i=1}^{n}\beta_{i} or (   \sum_{i=1}^{n}\alpha_{i}=\sum_{i=1}^{n}\beta_{i} and  \alpha\succ_{plex}\beta).
(  \succ_{plex} is purely lexicographic order induced by  \pi:k[x_{1}, \ldots, x_{n}]arrow k[t^{\pm 1}],  x_{i}rightarrow t^{a:} .
 x_{i_{1}}\succ x_{i_{2}}\succ\cdots\succ x_{i_{n}}.)

The kernel of  \pi is denoted  I_{A} and called the toric
Definition 2.5 Let  \omega\in R_{\geq 0}^{n} be a non‐negative ideal of  A .
vector  and\succ an arbitrary term order. We define
 a refinement  \succ_{\omega} of  \omega with respect  to\succ as follows: Every vector  u\in \mathbb{Z}^{n} can be written uniquely as
for any  \alpha and  \beta ,  u=u^{+}-u^{-} where  u^{+} and  u^{-} are non‐negative

and have disjoint support.
 \alpha\succ_{\omega}\beta\Leftrightarrow\omega\cdot\alpha>\omega\cdot\beta or (  \omega\cdot\alpha=\omega\cdot\beta and  \alpha\succ\beta).

Lemma 2.13

Definition 2.6 Let I be an ideal in  k[x_{1}, \ldots, k_{n}]
and  \succ a term order.  A finite subset  \mathcal{G}  =   I_{A}=\langle x^{u^{+}}\cdot-x^{u_{i}^{-}} : u:\in ker(A)\cap \mathbb{Z}^{n}, 
i=1, \ldots, s\rangle
 \{g_{1}, \ldots, g_{s}\}\subset I is  a reduced Gröbner basis for Furthermore, toric ideal is generated by finite bino‐
I with respect  to\succ if  \mathcal{G} satisfies the following: mials. (A binomial is a polynomial which consists

1. For any  f\in I , there exists some  g_{i}\in \mathcal{G} such of two monomials.)
that  in_{\succ}(f) is divisible by  in_{\succ}(g_{i}) .

Definition 2.14 A binomial  x^{u^{+}}-x^{u^{-}}\in I_{A} is

2. For any  i , the coefficient of  g_{i} is 1. called circuit if the support of  u is minimal with
respect to inclusion in  ker(A) and the coordinates

3. For any  i , any term of  g_{i} is not dinisible by of  u are relatively prime. We denote the set of all
 in_{\succ}(_{9j})(i\neq j) .

circuits in  I_{A} by  C_{A} .

We give some properties of Gröbner basis. Definition 2.15 A binomial  x^{u^{+}}-x^{u^{-}}\in I_{A} is

Proposition 2.7 The reduced Gröbner basis is called primitive if there exists no other binomial
unique for an ideal and a term order.  x^{v^{+}}-x^{v^{-}}  \in I_{A} such that both  u^{+}-v^{+} and

 u^{-}-v^{-} are non‐negative. The set of all prim‐
Proposition 2.8 For any term order  \succ ,  a itive binomials in  I_{A} is called the Graver basis of
Gröbner basis for I with respect   to\succ is a basis  A and written by  Gr_{A} .
for  I .

Let  \mathcal{U}_{A} be the universal Gröbner basis of  I_{A} .
Definition 2.9 We call a union of reduced
Gröbner basis of I with respect to any term orders Proposition 2.16  C_{A}\subseteq \mathcal{U}_{A}\subseteq Gr_{A} . If  A is a
 a universal Gröbner basis for I. unimodular matrix, then  C_{A}=Gr_{A} .

135



2.3 Toric Ideals of Acyclic Tourna‐
ment Graphs

Theorem 3.1  Let\succ_{1} be a purely lexicographic or‐
der induced by the following variable ordering:

Let  D_{n} be an acyclic tournament graph with  n ver‐  x_{ij}\succ x_{kl}\Leftrightarrow i<k or ( i=k and  j<l).
tices which have labels 1, 2, . . . ,  n such that each
edge  (i,j)(i<j) is directed from  i to  j . Let Let
 m=(\begin{array}{l}
n
2
\end{array}) be the number of edges in  D_{n} . We asso‐

gijk  :=\underline{x_{i}jX_{jk}}-xik(1\leq i<j<k\leq n)
 C\circ nSiderthciateeacheedgepo1yn(i,Oj)w_{1rik[\cdot i}ithavariab1exij, andwemiangXij\cdot 1\leq<j\leq n].  g_{ijkl}:=\underline{x_{ik}xjl}-XilX_{jk}(1\leq i<j<k<l\leq n) .

We analyze the toric ideal  I_{A_{n}} of incidence ma‐
Then reduced Gröbner  ba8i8\mathcal{G}1 of  I_{A_{n}} with respect

trix  A_{n} of  D_{n} . This ideal is not homogeneous
 to\succ_{1}i_{8}

with respect to the standard grading  \deg(X_{ij})=1 ,
but is homogeneous with respect to the grading  \mathcal{G}_{1}  =  \{g_{ijk} : 1\leq i<j<k\leq n\}
 \deg(x_{ij})=j-i .

 \cup  \{g_{ijk\iota:}1\leq i<j<k<l\leq n\}

Remark 2.17 In this paper, we define  a circuit In particular, the number of elements in  \mathcal{G}_{1} equals
of  D_{n} as a simple cycle.  (\begin{array}{l}
n
3
\end{array})+(\begin{array}{l}
n
4
\end{array}) .

Definition 2.18 Let  C be a circuit of  D_{n} . If we The set  \{g_{ijk} : 1 \leq i<j<k\leq n\} corresponds
fix a direction of  C , we can partition the  edge8 of to all of the circuits of length three, and  \{g_{ijk}\iota:1\leq
 C into two sets  C^{+} and  C^{-} such that  C^{+} is the  i<j<k<l} corresponds to some of the circuits
 8et of forward edges and  C^{-} is the set of backward of length  f_{0}ur(Figure1) .
edges. Then the vector  x=(x_{ij})_{1}\leq i<j\leq n\in \mathbb{R}^{m}
defined by

 /j.X_{k}' x_{ij}=(-101if(i,,j)if(iif(i' j)j)\in c+\in C\not\in C^{-}  (i,j)\in E

Figure 1: The circuit corresponding to  g_{ijk} and

is called the incidence vector of  C . the circuit corresponding to  g_{ijkl} .

(Proof) For any circuit of length three defined by
Lemma 2.19 ([1]) A binomial  x^{u^{+}}-x^{u^{-}}\in I_{A_{n}} three vertices  i,  j,  k(i<j<k) , the associated
is a circuit if and only if  u is the incidence vector binomial equals  x_{ij}x_{jk}-x_{i}k , which is  g_{ijk} .
of a circuit of  D_{n} . The circuits  \overline{defined} by four vertices  i<j<

 k<l are  C_{1}  :=i,j,  k,  l,  i,  C_{2}  :=i,j,  l,  k,  i ,

By Proposition 2.16,  C_{A_{n}}=\mathcal{U}_{A_{n}}=Gr_{A_{n}} since  C_{3}:=i,  k,  j,  l,  i and their opposites. The bino‐
the incidence matrix  A_{n} is unimodular. mial which corresponds to  C_{1} or its opposite is

 \underline{x_{ij}x_{j}k^{X}kl}-x_{il} , whose initial term is divisible by
Corollary 2.20 The universal Gröbner basis  \mathcal{U}_{A_{n}} in  (g_{ijk}) . Similarly, the initial term of binomial
is the set of binomials which correspond to the cir‐ which corresponds to  C_{2} or its opposite is divisi‐
cuits of  D_{n} . ble by in  (g_{ij}\iota) . The  binon1\dot{\ovalbox{\tt\small REJECT}}^{1} which corresponds

to  C_{3} or its opposite is  g_{ijkl} .
Corollary 2.21 The number of elements in  \mathcal{U}_{A_{n}}
is of exponential order with respect to  n .

3 Some Gröbner bases of  I_{A_{n}}

In this section, we show that the elements in re‐

duced Gröbner bases with respect to some specific Figure 2: The circuits  C_{1},  C_{2},  C_{3} .
term orders can be given in terms of graphs. As
a corollary, we can show that there exist term or‐ Let  C be a circuit of length more than 5. Let  i_{1}
ders for which reduced Gröbner bases remain in be the vertex whose label is minimum in  C , and
polynomial order.  C:=i_{1},  i_{2},  \ldots ,  i_{s},  i_{1} . Without loss of generality,

We first show the term order for which the ele‐ we set  i_{2}<i_{s} . Let  f_{C} be the binomial correspond‐
ments in reduced Gröbner basis correspond to the ing to  C , then in  (f_{c}) is product of all variables
circuits of length three and some circuits of length whose associated edges have same direction with
four of  D_{n} .  (i_{1}, i_{2}) on  C . We show that in  (f_{C}) is divisible by
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initial term of a binomial in  \mathcal{G}_{1} , which implies that
 \mathcal{G}_{1} is Gröbner basis of  I_{A_{n}} with respect  to\succ_{1} .

If  i_{2}<i_{3} , then  (i_{1}, i_{2}) and  (i_{2}, i_{3}) have same
direction on  C . Thus the variables  x_{i_{1}i_{2}} and

 x_{i_{2}i_{3}} appear in in  (f_{C}) , and in  (f_{C}) is divisible by
in  (g_{i_{1}}i_{2}i_{3}) (Figure 3 left).

If  i_{2}>i_{3} , then since  i_{3}<i_{2}<i_{s} , there exists  k

 (3\leq k<s) such that  i_{1}<i_{k}<i_{2}<i_{k+1} . Then

the variables  x_{i_{1}i_{2}} and  x_{i_{k}i\iota+1} appear in in  (fc) ,
and in  (f_{C}) is divisible by in  (gi_{1}i_{k}i_{2}ik+1) (Figure 3
right).

term of other binomial in  \mathcal{G}_{2} , which implies that
 \mathcal{G}_{2} is reduced. 1

We  1ast show that there exist two term orders

for which reduced Gröbner bases are same as  \mathcal{G}_{1} .

Theorem 3.3  Let\prec_{3} be a purely lexicographic or‐
der induced by the following variable ordering:

 x_{ij}\succ x_{kl}\Leftrightarrow j<l or ( j=l and  i<k).

Then reduced Gröbner  baSi8 of  I_{A_{n}} with respect to
 \prec_{3} is  8ame as  \mathcal{G}_{1} in Theorem 3.1.

(Proof) For the circuits of length less than four,
we can show similarly as the proof of Theorem 3.1.

Let  C be a circuit of length more than five. Let
 i_{1} be the vertex whose label is minimum in  C , and
 C:=i_{1},  i_{2},  \ldots,  i_{s},  i_{1} . Without loss of generality,

Figure 3:  x_{i_{1}i_{2}} and  x_{i_{2}i_{3}} (left) or  x_{i_{1}i_{2}} and  x_{i\iota^{i}\iota}+1 we set  i_{2}<i_{s} . Let  f_{C} be the associated binomial.
(right) appear in in  (f_{C}) . Let  T_{C}:=\{i_{S}\in C:i_{s-1}<i_{s}\}\cup\{i_{s}\in C:i_{s+1}<

 i_{s}\} . (We set  i_{s+1}=i_{1} ) This is the set of vertices
Any term of  g_{ijk} is not divisible by the initial which are the terminal points of edges in  C . Let

term of any other binomials in  \mathcal{G}_{1} , and so as  g_{ijkl} .  i_{k} be the vertex whose label is minimum in  T_{C} .
This implies that  \mathcal{G}_{1} is reduced. 1 If  k=2 , then the variable  x_{i_{1}i_{2}} is the maximum

Next we show the term order for which the ele‐ variable in  fc with respect to  \prec_{3} . Then in  (fc)
ments in reduced Gröbner basis correspond to the is product of all variables whose associated edges
fundamental circuits for a certain spanning tree of have same direction with  (i_{1}, i_{2}) on  C . In this case,
 D_{n} . we can show that  \mathcal{G}_{1} is the reduced Gröbner basis

with respect  to\prec_{3} by similar way as Theorem 3.1.
Theorem 3.2  Let\succ_{2} be a purely lexicographic or‐ Let  k\neq 2 . If  i_{k-1}<i_{k}<i_{k+1} (Figure 4 left),
der induced by the following variable ordering: the variable  x_{i_{k-1}i_{k}} is the maximum variable in  fc

by the choice of  k . Then the variables  x_{i_{k-1}}i_{k} and
 x_{ij}\succ x_{kl}\Leftrightarrow i<k or ( i=k and  j>l ).

 x_{i_{k}i_{k}}.+1 appear in in  (f_{C}) , and in  (f_{C}) is divisible

For  1\leq i<j-1<n, let by in  (g_{i_{k-1}}i_{k}i_{k}+1) . Similarly we can show for the
case of  i_{k-1}>i_{k}>i_{k+1} .

 g_{ij}:=\underline{x_{i}j}-x_{i},i+1xi+1,i+2\ldots X_{j-1},j

Then reduced Gröbner basis  \mathcal{G}_{2} of  I_{A_{n}} with respect
 to\succ_{2} is

 \mathcal{G}_{2}=\{gij:1\leq i<j-1<n\} .

In particular, the number of  element_{8} in  \mathcal{G}_{2} equals Figure 4: The cases  i_{k-1}<i_{k}<i_{k+1} (left) and
 (\begin{array}{l}
n
2
\end{array})-(n-1) .  i_{k-1}<i_{k+1}<i_{k} (right).

The elements of reduced Gröbner basis  \mathcal{G}_{2} cor‐ Let  i_{k-1}<i_{k} and  i_{k+1}<i_{k} (Figure 4 right).
respond to the fundamental circuits of  D_{n} for the If  i_{k-1}<i_{k+1} , then the variable  x_{i_{k-1}i_{k}} is the
spanning tree  T:=\{(i, i+1):1\leq i<n\} . maximum variable in  f_{C} . Thus the variable  x_{i_{k-1}}i_{k}

(Proof) Let  C be a circuit which is not the fun‐ appears in in  (f_{C}) . By the choice of  k , it can be
damental circuit of  T . Let  i_{1} be the vertex whose shown that  i_{k-1}<i_{k+1}<i_{k}<i_{k+2} . (We set
label is minimum in  C , and  C:=i_{1},  i_{2},  \ldots,  i_{s},  i_{1} .  i_{m+2}=i_{2}. ) In fact, if  i_{k+2}<i_{k+1} (Figure 5 left),
Without loss of generality, we set  i_{2}<i_{s} . Then then  i_{k+2}<i_{k+1}<i_{k} . Thus  i_{k+1} is the vertex
the variable  x_{i_{1}i_{s}} appears in the initial term of as‐ whose label is minimum in  T_{C} , which implies  i_{k+1}
sociated binomial  f_{C} . Thus in  (fc) is divisible by contradicts the choice of  k . If  i_{k+1}<i_{k+2}<i_{k}
 in(g_{i_{1}i_{S}}) . (Figure 5 right), then  i_{k+2} contradicts the choice

The initial term of  g_{ij} corresponds to an edge of  k .
which is not contained in  T , and other term corre‐ Since  i_{k-1}  <i_{k+1}  <i_{k}  <i_{k+2} , the vari‐
sponds to several edges which are contained in T. ables  x_{i_{k-1}i_{k}} and  x_{i_{\iota+1}}i_{k+2} appear in in  (f_{C}) . Thus
Thus any term of  g_{ij} is not divisible by the initial in  (f_{C}) is divisible by in  (gi\iota-1i\iota+1i\iota i\iota+2) . If  i_{k-1}>
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various term orders. The number of elements for

general toric ideals are not well understood. For
the case of the toric ideals of acyclic tournament
graphs, since those vertex‐edge incidence matrices
are unimodular, the size of reduced Gröbner bases

Figure 5:  i_{k+1} (left) or  i_{k+2} (right) contradict the may be bounded.
choice of  k . For the number of elements in reduced Gröbner

bases, we can get lower bound by Proposition 2.8.

 i_{k+1} , similarly we can show that in  (f_{C}) is divisi‐ Theorem 4.1 The minimum number of elements
ble by in  (gi_{k+-lkk}1ikii-2) . Thus  \mathcal{G}_{1} is the Gröbner in reduced Gröbner bases for  I_{A_{n}} is  (\begin{array}{l}
n
2
\end{array})-(n-1) .
basis of  I_{A_{n}} with respect to  \prec_{3} . The basis we have shown in Theorem 3.2 is the

The proof that  \mathcal{G}_{1} is reduced is same as the proof example achieving this bound.of Theorem 3.1. 1

Theorem 3.4  Let\prec_{4} be a degree lexicographic or‐ (Proof) Because of Proposition 2.8, the number
der induced by the following variable ordering: of elements in reduced Gröbner basis is more than

the number of elements in the basis for  I_{A_{n}} . Since
 x_{ij}\succ x_{kl}\Leftrightarrow i<k or (  i=k and  j<l).

 I_{A_{n}} corresponds to the cycle space of  D_{n} , the num‐
Then reduced Gröbner basis of  I_{A_{n}} with respect to ber of elements in the basis for  I_{A_{n}} equals the di‐

 \prec_{4} is  8ame as  \mathcal{G}_{1} in Theorem 3.1. mension of the cycle space, which is  (\begin{array}{l}
n
2
\end{array})-(n-1) .
1

(Proof) For the circuits of length less than four, To analyze the upper bound for the number
we can show similarly as the proof of Theorem 3.1. of elements in reduced Gröbner bases, we calcu‐

Let  C be a circuit of length more than five. Let late all reduced Gröbner bases for small  n using
 i_{1} be the vertex whose label is minimum in  C , and  TiGERS[8] .  TiGERS is a software system imple‐
 i_{2} be the vertex adjacent to  i_{1} in  C satisfying the mented in  C which computes the state polytope of
following: let  C_{1} be the set of edges in  C whose di‐ a homogeneous toric ideal [9]. Table 1 is the result
rection in  C are same as  (i_{1}, i_{2}) and  C_{2} be the set

for  n=4,5,6,7 .
of edges in  C which do not contained in  C_{1} , then
the cardinality of  C_{1} is more than that of  C_{2} , or if
the cardinality equals, then  i_{2} is the vertex adja‐
cent to  i_{1} in  C whose label is minimum. We write

 C:=i_{1},  i_{2},  \cdots,  i_{s},  i_{1} . Let  f_{C} be the associated

binomial. Then in  (f_{C}) is product of all variables
whose associated edges are contained in  C_{1} .

If there exists  k which satisfies  i_{k-1}<i_{k}<i_{k+1}
(we set  i_{s+1}=i_{1} ), then the variables  x_{i_{k-1}}i_{k} and
 x_{i_{k}i_{k+1}} appears in in  (fc) . Thus in  (fc) is divisible Table 1: The number of reduced Gröbner basis,
by in  (g_{i_{k}i_{k}}-1ik+1) . maximum of the number of elements and minimum

If there does not exist such  k , then between any of the number of elements.
two edges which are contained in  C_{1} , there exists
at least one edge which are contained in  C_{2} . Then For  n\leq 5 , the reduced Gröbner basis in The‐
by the choice of  i_{2} , the cardinality of  C_{1} equals orem 3.1 is the example achieving maximum ele‐
that of  C_{2} . Thus  i_{3}<i_{2}<i_{s} by hypothesis, and ments, but it is not for  n\geq 6 . For  n=6 , the
there exists  k(3\leq k<s) such that  i_{1}<i_{k}<i_{2}< Gröbner bases of size 37 are not the bases with
 i_{k+1} . Then the variables  x_{i_{1}i_{2}} and  x_{i_{k}i_{k+1}} appear respect to purely lexicographic orders. Thus the
in in  (f_{C}) , and in  (fc) is divisible by in  (g_{ii_{k}i}12i_{k}+1) . reduced Gröbner bases which achieve the maxi‐

The proof that  \mathcal{G}_{1} is reduced is same as the proof mum number of elements seem to be complicated
of Theorem 3.1. 1 and difficult to characterize.

4 Bounds for Size of Gröbner

Bases for Various Term Or‐ 5 Application to Integer Pro‐
ders gramming

In this section, we deal with the number of ele‐ In this section, we apply the toric ideals  I_{A_{n}} to the
ments of reduced Gröbner bases with respect to minimum cost flow problem.
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5.1  C_{0n}ti-rbaVerso Algorithm result for the size of reduced Gröbner bases. But
the upper bound for the number of elements is not

Conti and Traverso [2] introduced an algorithm known. Analyzing the upper bound for the num‐
based on Gröbner basis to solve integer pro‐ ber of elements should be a future work.
grams. We describe the condensed version of We also showed the  appli_{C}.ation to minimum cost
Conti‐Traverso Algorithm  (See[11]) . This version flow problems. We can apply the reduced Gröbner
is useful for highlighting the main computational bases of acyclic tournament graphs to the mini‐
step involved. For the original version of Conti‐ mum cost flow problems using Conti‐Traverso Al‐
Traverso Algorithm, see [2]. gorithm. This algorithm is similar to the minimum

Let  A\in \mathbb{Z}^{d\cross n},  b\in \mathbb{Z}^{d},  c\in R_{\geq 0}^{n} . We consider mean cycle‐canceling algorithm. But the complex‐
the integer program ity of canceling cycles are not known. Analyzing

the complexity of this algorithm should be also a
 IP_{A,c}(b):=minimize\{c\cdot x:Ax=b, x\in N^{n}\} .

future work.

Conti‐Traverso Algorithm is the algorithm which

solves  IP_{A,c}(b) using the toric ideal  I_{A} . Acknowledgement
Algorithm 5.1 (Conti‐Traverso Algorithm) The authors thank Mr. Fumihiko Takeuchi for use‐
Input:  A\in \mathbb{Z}^{d\cross n},  b\in \mathbb{Z}^{d},  c\in \mathbb{R}_{\geq 0}^{n} ful comments.
Output: An optimal solution  u' for  IP_{A,c}(b)
1. Compute the redu  ced Gröbner basis  \mathcal{G}_{\succ_{c}} of  I_{A} .
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