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Abstract

In Arai (1996) [1], we introduced a new syste\ln for
propositional calculus, which gives a natural frame‐
work for combinatorial reasoning using “without
loss of generality”  a.rgunlellt and brute force induc‐
tion. Ill this paper, we  in_{\overline{1}}p^{]eI}11e11t this system, Sim‐
 ple Combinatorial Reasoning as a ground  theore\ln

 1)rover . We adopt tableau and DLL expressed as se‐
quent calculi for the base  svslenlS and  i_{1}nplement a
symmetry rule on it. We show that our prover suc‐
cessfully finds symlnetries in many elementary com‐
binatorial problems, which are known to be exponen‐
tially hard for resolution and tableau, and automat‐
ically produce polynomial‐size proofs. Furthermore,
our provel. distinguishes those formulas which con‐
tain  sy_{1}nnletries and those which do not with high
possibility without loosing much time. As a result,
the performance of our prover on randomly generated
forlllulas is as good as that of existing resolution or
tableau provers.

1 Introduction

Since Haken found the first llard example for resolu‐
tion [13], lnany others were added to the list of tau‐
tologies which require superpolynomially long proofs
for resolution and analytic tableau [8]. Actually most
of the interesting conlbinatorial problems were found
hard for these proof systems. It was a depressing
news for the society of  aut_{0}nlated theorem proving
since many of  aut_{0}nlated provers adopt either reso‐
 1\iota ltion or analytic tableau as their engines. However,
it was a quite natural consequence when we ponder
how we  h_{U1}11i1J1 being reason. We use different rea‐
 sonil for different types of problems; algebraic ap‐
proach to the problems related to counting or  1i_{1}1ear

algebra, combinatorial approach to those related to
graphs. If we always take only one approach,  w1_{1}ich

is purely logical analysis in case we adopt resolution
and analytic tableau, it is very likely that we end up
with exponentially long proofs.

What we suggest in this paper is to give‐up “only‐
one” approach and to adopt different approaches to
different types of problems in ground theorem prov‐
ing. The prover we designed in this paper features
two theorem prover. One is a DLL‐like sequent cal‐
culus and the other is Simple Combinatorial Rea‐
soning. Introduced by Arai (1996), Simple Combi‐
natorial Reasoning is a propositional proof system
designed exclusively for combinatorial problems. It

features the sylnmetry rule which allows the exploita‐
tion of symmetries present ill a problem. It poly‐
nomially  I)  roves the pigeonhole  pri11ci_{P}1e , the mod‐k
 P^{rinci}Ples_{\tau} Bondy’s  theo\Gamma enl_{\backslash }(^{\tau}1ique ‐Coloring prob‐
lem and mally other combinatorial  1)  roblems,  aJ1 of
 the\ln are  knoWll to be hald for both  reSo1_{11}\dagger i_{011} and
tableau.

 Alth_{oU}g11 quite number of researchers  sl_{1}are

Slaney’s opinioll: “I collsider  svlnlnet\iota\cdot y to be one
of the  n\overline{l}ost important topics of current research in
ground  theore\ln proving” [15], not lnuch effort was
done to design a theorem prover exploiting symme‐
tries. One reason why people were not so enthusias‐
tic in adopting symmetries in the real prover is that
finding symmetries seemed to be as time consuming
as exhaustive search anyway. When a fornlula coll‐
tains  n variables, the most naive program to search
for symnletries will check all the permutations on 7?
 variables_{\backslash }.  7?! permutations all together. The second
reason is that symmetry rule does not seem to make
any progress to shorten proofs for landolnly gener‐
ated formulas, the  i_{11)}pleme11tati_{on} of  synln1etr\}' rule
does not  see\ln to  in\tau P^{\Gamma}oVetlle average  ti_{lneCO1}nplex-
it}’. To make the situation worse, it was proved  t1_{1}at

finding a permutation of the longest orbit in a given
forlnula is  NP‐complete, and asking two given for‐
mulas are symmetric is as hard as the graph isomor‐
phism problem, which is conjectured not in the class
 P[11] . However, we should not mislead these evi‐
dences to conclude that symmetry rules is effective
only in theory, but not in practice. These  evidel3Ces

only tell us tllat we cannot always find the symme‐
tries hidden in forlnulas, and synnnetries will not give
us mnch when we focus on the randolnly generated
forlnulaS.

In this paper, we set our goal to  de\downarrow`,ign a ground
theorem prover so that

1. it finds  sy_{lnmet}ries in a  pro_{I^{)}}ositi_{0}nal forlnula as
long as  h_{U1}nan being can  fi_{11}d the symmetries in
the corresponding first order formula, and

2. it can quickly decide whether  sylnllletry rule is
worth trying; it distinguishes forlnulas witl] alot
of symmetries  fro\ln those without them.

Notice that our goal does not contradict to any of
the  P^{essi}1ni_{Stic} evidences.

The symmetry rule can be added to resolution,
tableau or sequent calculus. Since Krishnalnurthy
first pointed out that the symlnetry rule is effec‐
tive to shorten resolution refutations, the researchers
had focused  011 the  sy_{ln1\gamma 1}et_{1}\}^{r} rule in resolution  [6][7]
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[14]. It was Benhamou and Sais who first presented
an algorithm how to implement the symmetry rule
on resolution [6]. Their strategy was to find a per‐
mutation of the largest orbit in the given formula
before the  nlaChi_{11e} started resolution procedure. It
was pointed out in [11] that  fi_{11}ding a  perlnutati_{on}
of the longest orbit is an  NP‐complete  probleln , but
Benhanlou and Sais allowed machine to backtrack

only for fixed amount of tilne, therefore their algo‐
rithm has polynomial‐time complexity. They demon‐
strated their SLDI resolution prover with symmetry
rule can  aut_{oma}tical1_{\}} produce polynomial‐size refu‐
tations for the pigeonhole principle. Unfortunately,
Benhamou‐Sais algorithm did not  overwhelnl other
techniques without the symmetry rule mainly be‐
cause of the following two reasons.

1. B‐S algorithm heavily depends on the form of
the input clauses, and it does not work when
we disturb its  s\}^{r}nlmetrieS by throwing in some
unnecessary clauses or additional variables.

2. It does not feature any subroutine whether we
should run the subroutine to find  symnletries , it
tries to find symmetries always. 1 Consequently,
we end up with poor average time‐complexity
although it nlay run  dralnati_{Ca}11y fast for a slnall
class of interesting formulas.

To overcome these deficiencies, we implemented
our prover as a  sequent-cal\mathbb{C}uluS‐type backward
search prover, called Godzilla in [4]. Godzilla does
not try to find synmietries in the input formula,
but it finds them while breaking down the forlnula.
Godzilla almost always finds symmetries and pro‐
duces proofs of size linear to the size of inputs for
the pigeonhole principle, the mod‐k principle, the
clique‐coloring  proble\ln without increasing the time‐
complexity much.

However, the perforlnance of original Godzilla
turned out to be much poorer than existing DLL
provers for randomly generated forlnulas. One rea‐
son is that DLL is theoretically faster than tableau,
and another is that Godzilla did not use any heuris‐
tic favor for randomly generated 3‐CNF formulas.
Another criticism against Godzilla was that the per‐
formance of Godzilla on the combinatorial formulas

seemed to rely on how nicely the input formulas were
formulated. In this paper, we adopt both tableau
and DLL as the basis for new Godzilla so that we

can choose either of them according to the condi‐
tions satisfied by the input formula. As a good by‐
effect, new Godzilla proves some colnbinatorial prob‐
lems which old model was not able to produce short
proofs. We discuss the detail in section 4. As a
result, the performance of Godzilla is inlprovcd con‐
siderably. We experimented whether or not Godzilla
can appropriately find symlnetries when we shuffle
the input clauses.

This paper is organized as follows. In section
2, we analyze proofs for elementary combinatorial
problems. In section 3, we define a deterllullis‐
tic algorithm to simulate elementary  con) binatorial

proofs line by line, and implement it as a  theore\ln

prover, Godzilla. In section 4.1, we delnonstrate how
Godzilla produces proofs for the set of the clauses of

1A hard example for B‐S algorithm can be found in [5]

size  n on ,? variables, the pigeonhole principle and
the clique‐coloring  probleln , which surprisingly re‐
semble to  hun_{\overline{1}}an proofs. In section 4.2, we shuffle
the input clauses of the pigeonhole principle and see
whether Godzilla can still find  sy_{111m}etries . In sec‐

tion 4.3, we exanune the  perforn\overline{l}ance of Godzilla on
randonly generated formulas. It is a key for the  \backslash ^{\neg}uc-

cess of Godzilla not to increase tinle‐complexitv when
it is attacking an  tauto\log\backslash 1laving no colnbillatol \cdot ial
model.

2 Simple Combinatorial Proofs
Ill this section, we informally define what   el\epsilon m\epsilon niary
combinatorial proofs are, and discuss how to find the
symmetries hiddell in problenms and how to exploit
 the\ln to obtain short proofs.  I3y analyzing proofs
for simple colnbinatorial problenrs step by step, we
try to extract the reason  w1_{1}y these problems are so
straightforward for us while they are  \exp_{0}nential1y
hard for many automatic  pro\backslash e\Gamma s .

The pigeonhole principle is one of the lnost elemen‐
tary combinatorial  princil\supset le . The pigeollhole princi‐
ple states that there is no  one- 01le mapping fron]  t1_{1}e

set of ,?  +1 objects into the set ot ’? objects.  T1_{11^{\nwarrow}}

principle  i_{b} known to be hard for tableau, resolution
and even for bounded depth Frege  s\backslash l stelns v ’ although
the truth of the principle is clear for  \iota 1S . The best
thing we can do to prove tlle  1)  rinCiP^{le}111 resolution
is to go over all the  1)  oSSible cases, ’  l ! cases all to‐
gether, that is sliglltly better thall tlte iruth table.

An  elelnentar_{\mathcal{Y}} proof of the  pigeo1lh_{0}1e principle
uses mathelnatical induction on the  nulnber_{1}'? , of
objects in the dolnain, we assume that the pigeonhole
principle holds for  n . and show  t1_{1}at it also holds for
 7z+1 .

(Informal proof of the pigeonhole principle)
Let  f be a mapping from  \{r). 7l+\underline{)}\} to  \{\{), , n+1\} .
 With_{0}\iota 1t loss of  g_{C^{1}ne1}aJit.v , we can  assllnlet1\iota at.t'(1?+

2)  =n+1 . If theie  exi_{3}ts an   i\neq n+\sim) snch that
 f(i)=n+1 . we are  don\epsilon .  S_{tt}1)  pobeot1_{1e}1WiSe . Then

the function  f lestricted to  \{(), . n\perp 1|\} is a  \ln apP^{i_{1}l}g
to  \{0, n\} . By the induction  11vpo\{hesi_{S} . it is not
 one- t_{0}-one , and so is not  f(c_{1}et\iota.) .

The novelty of the proof  g,i\iota en\backslash \cdot above is the line,
“Without loss of generalit}  \ldots Here, we ullderstand
that the situation of  f(n+2)=i(i=0, , n) is

merely a variant of the sit uation of  f(n+2)=n\perp 1| ’
we save  till\overline{l}e by  represenli_{1}(ex_{1)}onential1\}^{r})1\overline{1}1a11Y
cases by just one case.

We give another  exan1p1_{GW}1_{1}ic1111aS slightly differ‐
ent  I) roof structure. We  dc\cdot fi_{11}en(11) by the set of all
clauses of length  n in  n\iota arial)  leb .  11(1\perp) is  d11 tlllsat‐
isfiable set of clauses.  DAgoStill0 proved  t1_{1}a'. this
problem is hard for analytic tableau [10]: it requires
the proof of size at least  l? !.  w1_{1}ich is superpolynomial
of  2^{n}  \square (n) is informally proved as follows.

(Informal proof of  \Pi(n) )

  muandinLet\prod_{1as}^{p}(\Pi(7\iota ln').\cdot\prod_{ear}).|_{l^{1}}1^{-}-
\perp aretr\iota\iota_{O}e.Ho_{1}w\cdot e1,bothofthe)e(p_{n}deno_{1}tethe]i_{St}
t)f_{V}ariab]epn)istr1eifan([on\iota_{Y.e}yi.f|)of1qui_{V}a1entt1I(1-l)
BVt1einduCpeari_{1\tau g}v1\prod_{1}^{sa}(n)|p_{1}fo_{Ol1}=Ttir-| hyp_{oth}esls , II(n‐1) is true.  (qed.)
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In this proof, again, we understand that  \Pi(n) with
the assulnption  p1 being true and that with the as‐
sulllption  p1 being false are isomorphic in structure.
Consequently, we represent exponentially many cases
by just one case.

The main structure of these proofs is summarized
as follows.

1. The statement to be proved is a big disjunction
of subcases,

 1\leq i\leq hAi
 w1_{1er}eA_{i} and  A_{j}(1\leq i, j\leq h) a.re isomorphic
each other.

2. The formula  A_{1} is reducible (using pure logic)
to an induction hypothesis, or  \lrcorner 4_{1} has a short
proof.

We define elementary combinatorial proofs by those
having the structures satisfying the conditions (1)
and (2) given above. Many combinatorial principles
are known to have elelnentary combinatorial proofs;
the  nlod-k principle, the non‐unique endnode princi‐
ple and Bondy’s theorenl are few examples.

Now we try to simulate elementary combinatorial
proo& in the propositional setting. We assume that
formulas are expressed as CNF; the  i_{11}p_{U}t fornlula is
expressed as a set of clauses,   A=C_{1}ノ\wedge\cdots A  C_{-n}ノ’ and
  C_{i}=l_{1}^{i}\vee\cdots\vee l_{m}^{i}.\cdot The first task is to understand the

given formula,  A , as a big disjunction of subcases.
In the case of the pigeonhole principle, there exists

a clause  C_{i}(1\leq i\leq n) such that

 A  =  (C_{ノ}1\wedge\cdots ci-1\wedge l^{i}\wedge C_{i+1}1\wedge\cdots\wedge cn)
 \vee\cdots V  (C_{arrow 1^{\wedge\cdots c_{i-1}}}"\wedge l_{m}^{i}, \wedge C_{i+1}
'\wedge\cdots\wedge C_{n}')

and each (  C_{1} A . .  C_{i-1}'\wedge l_{j}^{i}\wedge C_{i+1}\wedge\cdots\wedge C_{n} ) is
 i_{SOlnor}Phic to the induction hypothesis.

The proof structure for  \Pi(n) i,s different; there ex‐
ists a variable  p such that  A with the assumption  p

and that with the assumption  \overline{p} are both  isomorp1_{1}ic
to the induction hypothesis.

The first kind of reasoning is most naturally ex‐
pressed as tableau‐like sequent calculus, on  tlle other
hand DLL‐like sequent calculus is more suitable to
express the second kind.

The old prover we designed in [4] to simulate  e1\cdot-

ementary combinatorial proofs was equipped only
with tableau.  He11Ce_{I} it failed to find second kind

of symmetries discussed above. To overcome this de‐
ficiency, we design our prover so that it can choose
either tableau or DLL according to the type of the
input formula.

3 Theorem prover: Godzilla

3.1 Algorithm
In this subsection, we implement a ground theorem
prover, Godzilla, to simulate elementary combinato‐
rial proofs discussed in the previous section. The al‐
gorithm of Godzilla consists of three parts. The first
part is a tableau‐like sequent calculus, the second is
a DLL‐like sequent calculus, and the  t1_{1}ird part takes
care of the restricted permutation rule.

 F_{\lrcorner}ach of the first and the second  I) art consists of

two subparts: Simplification and Branching. Silnpli‐
fication consists of three subroutines.  \prime rhe first sub‐
routine checks whether or not a  gil\cdot en set of clauses
contains an axiom. We delete  un13e\langle eS_{\backslash }Qary clauses

as much as possible in the second subroutine. The
third subroutine is the unit propagation (unit resolu‐
tion). During unit propagation, the set of clauses is
reordered. Branching divides the given set of clauses
to several subsets. Obviously, Branching is the main
cause to blow‐up the size of proofs.

The third part of the algorithm checks whether or
not gi.ven two  form.\iota 11_{\partial S} are  .i\nwarrow omQfphi(^{\backslash }-. T.hi.s proce‐
dure  1S called Musical‐  c_{・}/| air. It is quite lmpoftallt
not to play Musical‐Chair when it is hopeless that
two given formulas are isomorphic, otherwise the av‐
erage performance of our prover will be quite poor
comparing to the existing Davis‐Putnam based the‐
 ore\ln prover. For this purpose, we inserted a proce‐
dure called Checker to examine whether we  S' llotlld

try lnusical‐chair or not.
Now we explain the flow of the algoritllm. For

a technical reason, we describe the algorithm so
that the machine produces proofs for several sets of
clauses stored in a database. Each set of  clau8\rho s is

expressed as a sequence of clauses. called a sequent.
Each sequent  S is labeled  wit1_{1} the number of clauses
in  S , denoted by  len(S) , and a sequence of integers
seq  (s) of length  l_{Cn(}6' ) such  t_{c}1\iota at the ith elenlell  l

in seq  (s) is the size of the  ith clause in  S . We call
seq  (s) the characteristic sequence of  S . Suppose that
a sequent  S’ is of the form

 p_{1}p_{2}p_{3},  p4p5,\overline{p}_{1}\overline{p}4_{)}\overline{p}s\overline{p}5 .

Then,  len(S)=4a11d.s\epsilon q('S) is 3, 2, 2, 2.
We first run the subroutine Simplification for all

the sequents in the database in pararell. Next, we
send the database to Musical‐Chair. In Musical‐

Chair new databases are  f_{or1}ned . At last, we send
the new databases to Branching, and back to Sim‐
plification.

1.  FirSt_{1} check if all the  e\downarrow e } nell.tSiI1 the database
are  pro_{I})  er sets of clauses.

2. (Simplification)  Si_{1}np^{]i}ficati_{0}n consists of  t hree
 subro\iota ltilles .

(a)  (Subro?\iota tine1) For each sequent  S in the
database, check whether or not  S contains
an axiorn: for  son)  e literal  t , both  \{l\} and
 \{\overline{l}\} . If  S contains an axiom, write “  S is
unsatisfiable. If  S is an empty sequeut,
stop the whole procedure immediately and
output “(The input is) satisfiable”. lf  nof_{7}

go to next subroutine

(b)  (_{L^{\backslash _{t}}}' lb_{\Gamma}outi,?e2) For  eac1_{1}S ill the database,
find a literai  l_{S\iota 1},C\grave{\iota}_{1} that tlleYe exists a clause

containing  l but there is  lloriecQntaini_{1l}giarrow.
Delete all the clauses containing  i . If there
is  11O such  l , go to the next subroutine.

(c) (Unit Propagatio   7\downarrow )  E^{\urcorner}o1^{\cdot} each sequent  S in
tlle database,  fi_{11}d a unit clause {1}. Delete
the clauses containing 1 Move all the
clauses containing  \overline{l} to  t1_{1}e head of  S , delete
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the occurrences  .of\overline{l}, and  .go back to Subrou‐
tine 1. Otherwlse, this  1S the end of  Si111^{-}

plification, and go to Checker.

3. In Checker, we divide the given database into
disjoint subdatabases.

(a) (Checker 1) First, partition the given
database into databases consisting of the
 sanle length of sequents. When a database
consists of a single sequent, send it to
Branching.

(b) (Checker 2) Next, partition the givell
database into databases consisting of se‐
quents so that  S and  S' are in the sanle
database iff  scq(s_{)}=seq(S') . When a

database consists of a single sequent, send
it to Branching.

4. (Musical Chair) Now we are looking at a
database consisting of sequents having the same
characteristic sequences. Pick two sequents  S_{1}
and  S_{2} in the database. (Note that the  nu\ln-

ber of combination is  O(n^{2}).)  S_{1} and  S_{2} are

expressed as follows.

 c_{1},  \ldots,  c_{n}(=^{s_{1}})
 D_{1)}\ldots,  D_{n}(=S_{\sim},)

(a) (Tableau) Without loss og generality, we as‐
sume  t1_{1}atS is of the  f_{or}111

 (_{ノ}^{v_{i}},  (_{\circ,\sim}^{t}, . . . ,  (',1

where no literals ill  (_{1}^{t} appears  \ln other
clauses. Delete   Sf\cdot ro\ln the database, and
add new sequellts

 \{l\},  (_{2}'.  C_{n}

for each  l\in C_{\rfloor} . Selld the new database

back to Simplification.

(b)  (DLL) Pick a variable 1) of lnost occur‐
rences in  S . Delete  ` S frol)]  tlle database,
and add two new  \backslash equellt\backslash \neg\{p\}\cup S and

 I_{p^{1J\}}}\cup S , to  tl\iota e database. Send the new
database back to  `\searrow_{ll\gamma\}}p^{[_{l}}fi\Gamma at\dot{l}0\gamma\prime .

6. If every sequent in  c\backslash !er} database is unsatisfi‐
able, output “(The input is) unsatisfiable”.

When we input a sset of unsatisfiable  cla\iota lses_{t}

 \{(_{-}^{v}1, \ldots, c_{n}\} , Godzilla produces a elementary  co\ln-

binatorial proof expressed as a directed acyclic graph
so that every leaf of  P is labeled  bv an axiom. When
we input a set of satisfiable clanses,  \{C_{1}', . \tau , (_{\eta}'\} ,
Godzilla stops  in\overline{l}11lediatelyw1_{1}en it finds a satisfy‐
ing valuation.

size  (C_{k})=size(D_{k}) for every  1\leq k\leq 7l . Sup‐
pose that  C_{1} is a clause of the form  l_{1}\cdots l_{m} and
 D_{1} is of the form  t_{i} . .  t_{m} . Without loss of gen‐
erality, we can assume that  C_{1} and  D_{1} are dis‐
joint sets of literals. Define a permutation  \tau, by
a product of transpositions as follows.

 \pi=  (l_{1} t_{1})\cdots(l_{m} t_{m})

Extend  \pi so that  \pi(l)  =  t if  \pi(\overline{l})  =  t .
Rename literals in  S_{1} according to  \pi . If
 \{\pi(C_{2}), . . , \pi(C_{n}^{t})\}  =  \{D_{2)}\ldots, D_{n}\} as sets

of clauses, then delete  C_{1\cdot\cdot n},,., C from the
database because it is reducible to  D_{2} , .. ,  D_{n}

by using a symmetry rule. Otherwise, move all
the clauses containing a literal in  (C_{1}-7r(C1)) or
its negation to the end of the sequent  i_{11}S_{1} . On
the other hand, move the clauses  w1_{1}ich contains
a literal in  (\pi(D_{1})-D_{1}) or its negation to the
end of the sequent in  S_{2} . Send the obtained two
sequents back to Musical‐ Chair. If we are still
playing on the same two sequents after running
this procedure  n times, pick different conlbina‐
tion of sequents. When we finish checking all
the combinations, it is the end of Musical‐Chair.
For each sequent left in the database, form a new
database consists of the sequent, and send them
to Branching.

5. When we receive a database from Musical‐ Chair,
it always consists of a single sequent S. Branch‐
ing has two subroutines called Tableau and  DLL .
In this paper. we adopt the following condition
as our heuristic to decide which we should apply
Tableau or  DLL . If there exists a clause  C such
that no literals in C’ appears in other clauses in
 S , go to Tableau. Otherwise go to  DLL .

Time‐Complexity All of the subroutines are ac‐
colnplished in time  O(n^{4}) where  n is tlle size of  t1_{1}e

input. Hence, if the size of tîlc obtained proof is poly‐
nonlially bounded, the tinle (  0\neg 1111^{)}1eXic\iota to obtaill  \dagger 11e

proof is also polynolnially  \dagger Jo tlllded.  \dot{H}ence , we call
assess the eificiency of (lodzilla by the size of proofs
generated by Godzilla. The  ob\iota^{r}i_{0}u^{q} upper bound for
the size of proof is  k  2^{n}, wllere ’ is the nulnber of
variables contained in a given  f_{ormt1}]_{\dot{\mathfrak{c}}}1 , and  k the  \iota\backslash ize

of the forlnula.

Memory The nunlber of sets of clauses stored in the
lnemory is bounded by (nla.x clause  length )  \cross(llunll)er
of variables). The size of each sets of clauses is
bounded by that of the input set

4 Experimental results
4.1 How Godzilla simulates human

reasoning
We first demonstrate how Godzilla acts on colllbina‐
torial problems;  \Pi(n) , the pigeonhole principle, čmd
the clique‐coloring problem.

The clique‐colorin  g problem, denoted by k‐Test(n),
states that if a graph contaills a  k‐clique, the graph
cannot be properly colored by (k‐1) different colors.
To express the clique‐coloring problem in the propo‐
sitional calculus, we introduce three types of vari‐
ables; one to express the clique function, one to ex‐
press whether there exists a edge between given two
vertices, and another to express the coloring func‐
tion. In this  m,odel\backslash \cdot ’ how we sllould permute “col‐

oring variables  1S,) deterlmned by the permntation
of “edge  vaI^{\cdot}iables , which is determined by that of
“clique variables ; finding an appropriate permuta‐
tion for the clique‐coloring problenl is a lot  1_{1}arder

than that for the pigeonhole principle.
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Figurel, 2 and 3 shows comparison of performance
of Godzilla with and without  perlnutati_{on}rule2 for

 \Pi(n) , PHP(n) and (11‐1)‐Test(n) in CPU time.

Table 1 shows the number of leaves of the proofs
generated by Godzilla for these problerns.
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Figure 1: Godzilla  w/vs .  w/0 symlnetries on  \Pi(n)
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Figure 2: Godzilla  w/vs .  w/0 symmetries on
PHP(n)

Figure 3: Godzilla  w/vs .  w/0 symmetries on  (n- 1)-
Test (n)

As  n) entioned in the previous section, the cost of
musical‐chair has time complexity  O(n^{4}) .

2Run times are in seconds and are for  C version of Godzilla
 -ng on a AMD‐K6‐2  300MH_{Z} processor with 128 MB ram.

Godzilla almost always finds necessary permuta‐
tions for these elementary combinatorial problems.
Furthermore, Godzilla applied DLL for II(n) and
Tableau for PHP(n) and  (n- 1)- Test(11) , which were
appropriate decisions. The number of nodes in proofs
for  \square (n) produced by Godzilla is about square root
of that produced by its old model.

4.2 Can Godzilla find symmetries
when input clauses are shuffled?

One of the main criticism against Godzilla in [4] was
that Godzilla seemed to find symmetries only when
the input were formulated nicely. Table 2 shows how
the size of proofs increases when we shuffle the order
of clauses in the pigeonhole principle. We varied the
number of pigeons from 5 to 13. For each  n , we ran
Godzilla on 20 shuffled PHP(n) and take the average
number of leaves in the proofs generated by Godzilla.
The result shows that the chance for Godzilla to find
symmetries is much worse than the results in the pre‐
vious subsection. It should be worth noting that cven
if a prover fails to recognize two formulas are isomor‐
phic only 1 out of 100 cases, the size of proofs may
still blow‐up exponentially. We need more techniques
to improve the ability to find symnletries when the
input formula is not formulated nicely. Analyzing
the proof produced by Godzilla on a shuffled pigeon‐
hole principle with 7 pigeons, we observed that when
the sequents become longer, it is hard for Godzilla
to recognize two given sequents are isomorphic after
shuffling; it is hard to find symmetries in the begin‐
ning of the proof. However, reordering process in the
unit propagation helped Godzilla to find the symme‐
tries, and the possibility to find symmetries increases
towards the end of the proof.

When we extend Godzilla so that it can simulate
course‐of‐values induction, we obtain better perfor‐
mance in finding symmetries for shuffled formulas or
more complicated problems. However, in return, the
performance for randomly generated 3‐CNF drops
severely because of the search‐space blow‐up.

4.3 How Godzilla acts on randomly
generated formulas

It is important for Godzilla  bei_{1l}g succes,sful as a the‐
orem prover that it does not loose much time when
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it is attacking a problem which has little hope to
contain any symmetries, such as randomly generated
formulas. As described in section 3, Godzilla is en‐
dowed with a subroutine called Checker so that it

stops immediately when the given sequent seems to
be asymmetric. Our preliminary experimellts showed
that when randomly generated 3‐CNF formulas are
broken into several sequents by Branching, only 3
cases out of 1000 passed Checker; Checker seems to
be quite effective to detect which sequents contain
symmetries and which do not.

Figure 4: Godzilla  w/vs .  w/0 symmetries on ran‐
dom 3‐CNF

Figure 4 shows a comparison of Godzilla with and
without symmetry rule on 50 variable randomly gen‐
erated 3‐CNF in CPU time. We varied the number

of clauses from 170 to 300. Godzilla only lost  16\Psi e) of
time by having the symmetry rule. 3

5 Conclusion

Our theoretical results show that permutation rule
(or symmetry rule) has dramatic impact on reducing
the lengths of proofs for many combinatorial prob‐
lems, which are hard for both resolution and tableau.
Moreover, our experimental results show that finding
symmetries in a given formula is not as hard as it was
believed when we adopt the sequent calculus for the
base system.

It is a key for the intellectual theorem proving how
accurately and how easily the machine can recognize
which field of mathematics a given problem falls in.
Then, we can apply algebraic technique, for  exanlple
the cutting planes, for algebraic problems, symme‐
try rules for elementary combinatorial problems, and
common resolution for randomly generated  3CNF' s .
In this paper, we used naive heuristics to distinguish
whether we should apply the symmetry rule or not,
that worked quite successfully in the restricted set‐
ting. We will need more delicate heuristic functions
when we extend our technique to prove problems
which have various types of lnathematical models.

3Godzilla is about 60 times faster than its old model [4] on
randomly generated  3CNF_{S}' .
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