BRI ST R S B
#51148% 20004 11-16

A HBREPIR OFRRE L

Noriko H. Arai
Ryuji Masukawa
Hiroshima City University
4-3-1 Ozuka-higashi, Asaminami-ku, Hiroshima 731-31 JAPAN
narai@cs.hiroshima-cu.ac.jp,
masukawa@log05.logic.cs.hiroshima-cu.ac.jp

Abstract

In Arai (1996) [1], we introduced a new system for
propositional calculus, which gives a natural frame-
work for combinatorial reasoning using “without
loss of generality” argument and brute force induc-
tion. In this paper, we implement this system, Sim-
ple Combinatorial Reasoning as a ground theorem
prover. We adopt tableau and DLL expressed as se-
quent calculi for the base systems and implement a
symmetry rule on it. We show that our prover suc-
cessfully finds symmetries in many elementary com-
binatorial problems, which are known to be exponen-
tially hard for resolution and tableau, and automat-
ically produce polynomial-size proofs. Furthermore,
our prover distinguishes those formulas which con-
tain symmetries and those which do not with high
possibility without loosing much time. As a result,
the performance of our prover on randomly generated
formulas is as good as that of existing resolution or
tableau provers. ‘

1 Introduction

Since Haken found the first hard example for resolu-
tion [13], many others were added to the list of tau-
tologies which require superpolynomially long proofs
for resolution and analytic tableau [8]. Actually most
of the interesting combinatorial problems were found
hard for these proof systems. It was a depressing
news for the society of automated theorem proving
since many of automated provers adopt either reso-
lution or analytic tableau as their engines. However,
it was a quite natural consequence when we ponder
how we human being reason. We use different rea-
soning for different types of problems; algebraic ap-
proach to the problems related to counting or linear
algebra, combinatorial approach to those related to
graphs. If we always take only one approach, which
is purely logical analysis in case we adopt resolution
and analytic tableau, it is very likely that we end up
with exponentially long proofs.

What we suggest in this paper is to give-up “only-
one” approach and to adopt different approaches to
different types of problems in ground theorem prov-
ing. The prover we designed in this paper features
two theorem prover. One is a DLL-like sequent cal-
culus and the other is Simple Combinatorial Rea-
soning. Introduced by Arai (1996), Simple Combi-
natorial Reasoning is a propositional proof system
designed exclusively for combinatorial problems. It

features the symmetry rule which allows the exploita-
tion of symmetries present in a problem. It poly-
nomially proves the pigeonhole principle, the mod-k
principles, Bondy’s theorem, Clique-Coloring prob-
lem and many other combinatorial problems; all of
them are known to be hard for both resolution and
tableau.

Although quite number of researchers share
Slaney’s opinion: “I consider symmetry to be one
of the most important topics of current research in
ground theorem proving” [15], not much effort was
done to design a theorem prover exploiting symme-
tries. One reason why people were not so enthusias-
tic in adopting symmetries in the real prover is that
finding symmetries seemed to be as time consuming
as exhaustive search anyway. When a formula con-
tains n variables, the most naive program to search
for symmetries will check all the permutations on n
variables; n! permutations all together. The second
reason is that symmetry rule does not seem to make
any progress to shorten proofs for randomly gener-
ated formulas; the implernentation of symmetry rule
does not seem to improve the average time complex-
ity. To make the situation worse, it was proved that
finding a permutation of the longest orbit in a given
formula is NP-complete, and asking two given for-
mulas are symmetric is as hard as the graph isomor-
phism problem, which is conjectured not in the class
P [11]. However, we should not mislead these evi-
dences to conclude that symmetry rules is effective
only in theory, but not in practice. These evidences
only tell us that we cannot always find the symme-
tries hidden in formulas, and symmetries will not give
us much when we focus on the randomly generated
formulas.

In this paper, we set our goal to design a ground
theorem prover so that

1. it finds symmetries in a propositional formula as
long as human being can find the symmetries in
the corresponding first order formula, and

2. it can quickly decide whether symmetry rule is
worth trying; it distinguishes formulas with a lot
of symmetries from those without them.

Notice that our goal does not contradict to any of
the pessimistic evidences.

The symmetry rule can be added to resolution,
tableau or sequent calculus. Since Krishnamurthy
first pointed out that the symmetry rule is effec-
tive to shorten resolution refutations, the researchers
had focused on the symmetry rule in resolution [6][7]

11

[14]. It was Benhamou and Sais who first presented
an algorithm how to implement the symmetry rule
on resolution [6]. Their strategy was to find a per-
mutation of the largest orbit in the given formula
before the machine started resolution procedure. It
was pointed out in [11] that finding a permutation
of the longest orbit is an NP-complete problem, but
Benhamou and Sais allowed machine to backtrack
only for fixed amount of time, therefore their algo-
rithm has polynomial-time complexity. They demon-
strated their SLDI resolution prover with symmetry
rule can automatically produce polynomial-size refu-
tations for the pigeonhole principle. Unfortunately,
Benhamou-Sais algorithm did not overwhelm other
techniques without the symmetry rule mainly be-
cause of the following two reasons.

1. B-S algorithm heavily depends on the form of
the input clauses, and it does not work when
we disturb its symmetries by throwing in some
unnecessary clauses or additional variables.

2. It does not feature any subroutine whether we
should run the subroutine to find symmetries; it
tries to find symmetries always. ! Consequently,
we end up with poor average time-complexity
although it may run dramatically fast for a small
class of interesting formulas.

To overcome these deficiencies, we implemented
our prover as a sequent-calculus-type backward
search prover, called Godzilla in [4]. Godzilla does
not try to find symmetries in the input formula,
but it finds them while breaking down the formula.
Godzilla almost always finds symmetries and pro-
duces proofs of size linear to the size of inputs for
the pigeonhole principle, the mod-k principle, the
clique-coloring problem without increasing the time-
complexity much.

However, the performance of original Godzilla
turned out to be much poorer than existing DLL
provers for randomly generated formulas. One rea-
son is that DLL is theoretically faster than tableau,
and another is that Godzilla did not use any heuris-
tic favor for randomly generated 3-CNF formulas.
Another criticism against Godzilla was that the per-
formance of Godzilla on the combinatorial formulas
seemed to rely on how nicely the input formulas were
formulated. In this paper, we adopt both tableau
and DLL as the basis for new Godzilla so that we
can choose either of them according to the condi-
tions satisfied by the input formula. As a good by-
effect, new Godzilla proves some combinatorial prob-
lems which old model was not able to produce short
proofs. We discuss the detail in section 4. As a
result, the performance of Godzilla is improved con-
siderably. We experimented whether or not Godzilla
can appropriately find symmetries when we shuffle
the input clauses.

This paper is organized as follows. In section
2, we analyze proofs for elementary combinatorial
problems. In section 3, we define a determinis-
tic algorithm to simulate elementary combinatorial
proofs line by line, and implement it as a theorem
prover, Godzilla. In section 4.1, we demonstrate how
Godzilla produces proofs for the set of the clauses of

LA hard example for B-S algorithm can be found in [5]

12

size n on n variables, the pigeonhole principle and
the clique-coloring problem, which surprisingly re-
semble to human proofs. In section 4.2, we shuffle
the input clauses of the pigeonhole principle and see
whether Godzilla can still find symmetries. In sec-
tion 4.3, we examine the performance of Godzilla on
randomly generated formulas. It is a key for the suc-
cess of Godzilla not to increase time-complexity when
it is attacking an tautology having no combinatorial
model.

2 Simple Combinatorial Proofs

In this section, we informally define what elementary
combinatorial proofs are, and discuss how to find the
symmetries hidden in problems and how to exploit
them to obtain short proofs. By analyzing proofs
for simple combinatorial problems step by step, we
try to extract the reason why these problems are so
straightforward for us while they are exponentially
hard for many automatic provers.

The pigeonhole principle is one of the most elemen-
tary combinatorial principle. The pigeonhole princi-
ple states that there is no one-one mapping from the
set of n + 1 objects into the set of n objects. This
principle is known to be hard for tableau, resolution
and even for bounded depth Frege systems, although
the truth of the principle is clear for us. The best
thing we can do to prove the principle in resolution
is to go over all the possible cases, n! cases all to-
gether, that is slightly better than the truth table.

An elementary proof of the pigeonhole principle
uses mathematical induction on the number, n, of
objects in the domain; we assume that the pigeonhole
principle holds for n, and show that it also holds for
n+ 1.

(Informal proof of the pigeonhole principle)

Let f be a mapping from {0....,n+2} to {0,...,n+1}.
Without loss of generality, we can assume that f(n +
2) = n+ 1. If there exists an ¢ # »n + 2 such that
f(i) = n + 1, we are done. Suppose otherwise. Then
the function f restricted to {0,.... n+ 1} is a mapping
to {0,...,n}. By the induction hypothesis. it is not
one-to-one, and so is not f (q.e.d.).

The novelty of the proof given above is the line,
“Without loss of generality ...”. Here, we understand
that the situation of f(n+2) = i (: = 0,...,n) is
merely a variant of the situation of f(n+2) =n+1;
we save time by representing (exponentially) many
cases by just one case.

We give another example which has slightly differ-
ent proof structure. We define I1(n) by the set of all
clauses of length n in n variables. 1[(1n) is an unsat-
isfiable set of clauses. D’Agostino proved that this
problem is hard for analytic tableau [10]: it requires
the proof of size at least n!, which is superpolynomial
of 27, II(n) is informally proved as follows.

(Informal proof of II(n))

Let p1,...,pn denote the list of variables appearing
in II(n). II(n) is true if and only if both M(n)|p, =7
and II(n)|,, =1 are true. However, both of the for-
mulas are equivalent to II(n-1). By the induction
hypothesis, II(n-1) is true. (q.e.d.)

In this proof, again, we understand that II(n) with
the assumption p; being true and that with the as-
sumption p; being false are isomorphic in structure.
Consequently, we represent exponentially many cases
by just one case.

The main structure of these proofs is summarized
as follows.

1. The statement to be proved is a big disjunction
of subcases,
Vo4

1<i<h

where A; and A4; (1 <4,j < h) are isomorphic
each other.

2. The formula A; is reducible (using pure logic)
to an induction hypothesis, or 4; has a short
proof.

We define elementary combinatorial proofs by those
having the structures satisfying the conditions (1)
and (2) given above. Many combinatorial principles
are known to have elementary combinatorial proofs;
the mod-k principle, the non-unique endnode princi-
ple and Bondy’s theorem are few examples.

Now we try to simulate elementary combinatorial
proofs in the propositional setting. We assume that
formulas are expressed as CNF; the input formula is
expressed as a set of clauses; A = C; A--- AC), and
C; =l;V-- VI, . The first task is to understand the
given formula, A, as a big disjunction of subcases.

In the case of the pigeonhole principle, there exists
a clause C; (1 < i < n) such that

A = (Cl/\“'Ci_]/\li/\C,‘.*.]/\'“/\./'n)
VooV (Cr A Cioy A ACipr A ANCy)

and each (C1 A ---Ci_1 A l;» ANCig1 A ANCyp) is
isomorphic to the induction hypothesis.

The proof structure for II(n) is different; there ex-
ists a variable p such that A with the assumption p
and that with the assumption p are both isomorphic
to the induction hypothesis.

The first kind of reasoning is most naturally ex-
pressed as tableau-like sequent calculus, on the other
hand DLL-like sequent calculus is more suitable to
express the second kind.

The old prover we designed in [4] to simulate el-
ementary combinatorial proofs was equipped only
with tableau. Hence, it failed to find second kind
of symmetries discussed above. To overcome this de-
ficiency, we design our prover so that it can choose
either tableau or DLL according to the type of the
input formula.

3 Theorem prover: Godzilla

3.1 Algorithm

In this subsection, we implement a ground theorem
prover, Godzilla, to simulate elementary combinato-
rial proofs discussed in the previous section. The al-
gorithm of Godzilla consists of three parts. The first
part is a tableau-like sequent calculus, the second is
a DLL-like sequent calculus, and the third part takes
care of the restricted permutation rule.

Each of the first and the second part consists of
two subparts: Simplification and Branching. Simpli-
fication consists of three subroutines. The first sub-
routine checks whether or not a given set of clauses
contains an axiom. We delete unnecessary clauses
as much as possible in the second subroutine. The
third subroutine is the unit propagation (unit resolu-
tion). During unit propagation, the set of clauses is
reordered. Branching divides the given set of clauses
to several subsets. Obviously, Branching is the main
cause to blow-up the size of proofs.

The third part of the algorithm checks whether or
not given two formulas are isomorphic. This proce-
dure is called Musical-Chair. It is quite important
not to play Musical-Chair when it is hopeless that
two given formulas are isomorphic, otherwise the av-
erage performance of our prover will be quite poor
comparing to the existing Davis-Putnam based the-
orem prover. For this purpose, we inserted a proce-
dure called Checker to examine whether we should
try musical-chair or not.

Now we explain the flow of the algorithm. For
a technical reason, we describe the algorithm so
that the machine produces proofs for several sets of
clauses stored in a database. Each set of clauses is
expressed as a sequence of clauses. called a sequent.
Each sequent S is labeled with the number of clauses
in S, denoted by len(S), and a sequence of integers
seq(S) of length len(S) such that the ith element
in seq(S) is the size of the ith clause in S. We call
seq(S) the characteristic sequence of S. Suppose that
a sequent S is of the form

P1P2P3, P4P5, P1P4, P3Ps-

Then, len(S) = 4 and seq(.5) is 3,2,2,2.

We first run the subroutine Simplification for all
the sequents in the database in pararell. Next, we
send the database to Musical-Chair. In Musical-
Chair new databases are formed. At last, we send
the new databases to Branching, and back to Sim-
plification.

1. First, check if all the elements in the database
are proper sets of clauses.

2. (Simplification) Simplification consists of three
subroutines.

(a) (Subroutine 1) For each sequent S in the
database, check whether or not S contains
an axiom: for some literal {, both {/} and
{I}. If S contains an axiom, write “S is
unsatisfiable”. If S is an empty sequent,
stop the whole procedure immediately and
output “(The input is) satisfiable”. If not,
go to next subroutine

<

(Subroutine 2) For each S in the database,
find a literal / such that there exists a clause
containing ! but there is none containing [.
Delete all the clauses containing . If there
is no such [/, go to the next subroutine.

(c)

~—

(Unit Propagation) For each sequent S in
the database, find a unit clause {/}. Delete
the clauses containing [. Move all the
clauses containing [to the head of S, delete

13

the occurrences of [, and go back to Subrou-
tine 1. Otherwise, this is the end of Sim-
plification, and go to Checker.

3. In Checker, we divide the given database into

disjoint subdatabases.

(a) (Checker 1) First, partition the given
database into databases consisting of the
same length of sequents. When a database
consists of a single sequent, send it to
Branching.

(b) (Checker 2) Next, partition the given
database into databases consisting of se-
quents so that S and S’ are in the same
database iff seq(S) = seq(S’). When a
database consists of a single sequent, send
it to Branching.

4. (Musical Chair) Now we are looking at a

database consisting of sequents having the same
characteristic sequences. Pick two sequents S
and S, in the database. (Note that the num-
ber of combination is O(n?).) S; and S are
expressed as follows.

Ch,...,Ca (= 51)
Dl,‘..,])n (: S‘_))

size(Cy) = size(Dy) for every 1 < k < n. Sup-
pose that C is a clause of the form Iy - - -, and
D, is of the form ty - - - t,,. Without loss of gen-
erality, we can assume that C; and D; are dis-
joint sets of literals. Define a permutation 7 by
a product of transpositions as follows.

7":(L)(b tm)

Extend 7 so that n() = ¢ if n(l) =
Rename literals in S; according to w. If
{m(Cy),...,m(Cn)} = {D3,...,Dp} as sets
of clauses, then delete Cj,...,Cp from the
database because it is reducible to Ds,..., D,
by using a symmetry rule. Otherwise, move all
the clauses containing a literal in (Cy—m(C1)) or
its negation to the end of the sequent in S;. On
the other hand, move the clauses which contains
a literal in (7(D;) — D1) or its negation to the
end of the sequent in S,. Send the obtained two
sequents back to Musical-Chair. If we are still
playing on the same two sequents after running
this procedure n times, pick different combina-
tion of sequents. When we finish checking all
the combinations, it is the end of Musical-Chair.
For each sequent left in the database, form a new
database consists of the sequent, and send them
to Branching.

5. When we receive a database from Musical-Chazr,

it always consists of a single sequent S. Branch-
ing has two subroutines called Tableauand DLL.
In this paper, we adopt the following condition
as our heuristic to decide which we should apply
Tableau or DLL. If there exists a clause C' such
that no literals in C' appears in other clauses in
S, go to Tableau. Otherwise go to DLL.

14

(a) (Tableau) Without loss og generality, we as-
sume that S is of the form

CpCa, Oy

where no literals in ('} appears in other
clauses. Delete S from the database, and
add new sequents

{1}, Co o Oy

for each [€ ;. Send the new database
back to Simplification.

(b) (DLL) Pick a variable p of most occur-
rences in S. Delete S from the database,
and add two new sequents {p} U S and
{p} U S, to the database. Send the new
database back to Simplification.

6. If every sequent in cvery database is unsatisfi-
able, output “(The input is) unsatisfiable”.

When we input a set of unsatisfiable clauses,
{C1,...,Cy}, Godzilla produces a elementary com-
binatorial proof expressed as a directed acyclic graph
so that every leaf of P is labeled by an axiom. When
we input a set of satisfiable clauses, {C,...,Cy},
Godzilla stops immediately when it finds a satisfy-
ing valuation.

Time-Complexity All of the subroutines are ac-
complished in time O(n*) where n is the size of the
input. Hence, if the size of tiie obtained proofis poly-
nomially bounded, the time complexity to obtain the
proof is also polynomially bounded. Hence, we can
assess the efficiency of Godzilla by the size of proofs
generated by Godzilla. The obvious upper bound for
the size of proof is k - 2", where n is the number of
variables contained in a given formula, and k the size
of the formula.

Memory The number of sets of clauses stored in the
memory is bounded by (max clause length) x (number
of variables). The size of each sets of clauses is
bounded by that of the input set.

4 Experimental results

4.1 How Godzilla simulates human
reasoning

We first demonstrate how Ciodzilla acts on combina-
torial problems; II(n), the pigeonhole principle, and
the clique-coloring problem.

The clique-coloring problem, denoted by k-Test(n),
states that if a graph contains a k-clique, the graph
cannot be properly colored by (k-1) different colors.
To express the clique-coloring problem in the propo-
sitional calculus, we introduce three types of vari-
ables; one to express the clique function, one to ex-
press whether there exists a edge between given two
vertices, and another to express the coloring func-
tion. In this model, how we should permute “col-
oring variables” is determined by the permutation
of “edge variables”, which is determined by that of
“clique variables”; finding an appropriate permuta-
tion for the clique-coloring problem is a lot harder
than that for the pigeonhole principle.

Figurel, 2 and 3 shows comparison of performance
of Godzilla with and without permutation rule for
I(n), PHP(n) and (n-1)-Test(n) in CPU time. 2

160 T T

“with_symmetry.pi’ —
'no_symmetry.pi’ ----

140

120 -

100

80

60 |-

40

20 b

0 - 4 Pt /

3 4 5 6 7 8 9 10 1

Figure 1: Godzilla w/ vs. w/o symmetries on II(n)

120

T
“with_symmetry.php! ~—
“no_symmetry.php’ -+~

80
60
40 |

20 F

Figure 2: Godzilla w/ vs. w/o symmetries on
PHP(n)
80 T
"with_symmetry test’ ~o—
"no_symmetry.test’ ----
70
ol

50 +
40 +

30

/
r" 1
) j’///
L
7 8 9 1

4 5 6 0

20

Figure 3: Godzilla w/ vs. w/o symmetries on (n-1)-
Test(n)

As mentioned in the previous section, the cost of
musical-chair has time complexity O(rn*).

2Run times are in seconds and are for C version of Godzilla
running on a AMD-K6-2 300MHz processor with 128 MB ram.

Table 1 shows the number of leaves of the proofs
generated by Godzilla for these problems.

Table 1: Number of leaves in proofs; Godzilla
[[n:S[n:4|n=5[n=6|n=7|n=8|n=9]

Ti(n) 3 7 3 7 3 3 2
PHP(n) 2 2 2 2 2 2 2
Test(n) 2 2 4 2 4 4 4

Godzilla almost always finds necessary permuta-
tions for these elementary combinatorial problems.
Furthermore, Godzilla applied DLL for II(n) and
Tableau for PHP(n) and (n-1)-Test(n), which were
appropriate decisions. The number of nodes in proofs
for TI(n) produced by Godzilla is about square root
of that produced by its old model.

4.2 Can Godzilla find symmetries
when input clauses are shuffled?

One of the main criticism against Godzilla in [4] was
that Godzilla seemed to find symmetries only when
the input were formulated nicely. Table 2 shows how
the size of proofs increases when we shuffle the order
of clauses in the pigeonhole principle. We varied the
number of pigeons from 5 to 13. For each n, we ran
Godzilla on 20 shuffled PHP(n) and take the average
number of leaves in the proofs generated by Godzilla.
The result shows that the chance for Godzilla to find
symmetries is much worse than the results in the pre-
vious subsection. It should be worth noting that even
if a prover fails to recognize two formulas are isomor-
phic only 1 out of 100 cases, the size of proofs may
still blow-up exponentially. We need more techniques
to improve the ability to find symmetries when the
input formula is not formulated nicely. Analyzing
the proof produced by Godzilla on a shuffled pigeon-
hole principle with 7 pigeons, we observed that when
the sequents become longer, it is hard for Godzilla
to recognize two given sequents are isomorphic after
shuffling; it is hard to find symmetries in the begin-
ning of the proof. However, reordering process in the
unit propagation helped Godzilla to find the symme-
tries, and the possibility to find symmetries increases
towards the end of the proof.

Table 2: Number of leaves for shuffled PHP(n);
Godzilla with vs. without symmetry rule

[n [4T 5T 61 71 8] 9]
DLL 6 | 24 | 120 | 720 | 5040 [40320
Godzilla 2 4 14 62 353 2278
course-of-values ind. 2 3 4 4 7 9

When we extend Godzilla so that it can simulate
course-of-values induction, we obtain better perfor-
mance in finding symmetries for shuffled formulas or
more complicated problems. However, in return, the
performance for randomly generated 3-CNF drops
severely because of the search-space blow-up.

4.3 How Godzilla acts on randomly
generated formulas

It is important for Godzilla being successful as a the-
orem prover that it does not loose much time when

15

it is attacking a problem which has little hope to
contain any symmetries, such as randomly generated
formulas. As described in section 3, Godzilla is en-
dowed with a subroutine called Checker so that it
stops immediately when the given sequent seems to
be asymmetric. Our preliminary experiments showed
that when randomly generated 3-CNF formulas are
broken into several sequents by Branching, only 3
cases out of 1000 passed Checker; Checker seems to
be quite effective to detect which sequents contain
symmetries and which do not.

05 T
"with_symmetry' —o—
ao_symmetry’ ----

0.45 |

04

035

03

0.25

0.05 & L L L 1 L ‘
160 180 200 220 240 260 280 300

Figure 4: Godzilla w/ vs. w/o symmetries on ran-
dom 3-CNF

Figure 4 shows a comparison of Godzilla with and
without symmetry rule on 50 variable randomly gen-
erated 3-CNF in CPU time. We varied the number
of clauses from 170 to 300. Godzilla only lost 16% of
time by having the symmetry rule. 3

5 Conclusion

Our theoretical results show that permutation rule
(or symmetry rule) has dramatic impact on reducing
the lengths of proofs for many combinatorial prob-
lems, which are hard for both resolution and tableau.
Moreover, our experimental results show that finding
symmetries in a given formula is not as hard as it was
believed when we adopt the sequent calculus for the
base system.

It is a key for the intellectual theorem proving how
accurately and how easily the machine can recognize
which field of mathematics a given problem falls in.
Then, we can apply algebraic technique, for example
the cutting planes, for algebraic problems, symme-
try rules for elementary combinatorial problems, and
common resolution for randomly generated 3CNF’s.
In this paper, we used naive heuristics to distinguish
whether we should apply the symmetry rule or not,
that worked quite successfully in the restricted set-
ting. We will need more delicate heuristic functions
when we extend our technique to prove problems
which have various types of mathematical models.

3Godezilla is about 60 times faster than its old model [4] on
randomly generated 3CNF'’s.

16

References

[1] N.H. Arai, “Tractability of cut-free Gentzen
type propositional calculus with permutation
inference”, Theoretical Computer Science, Vol.
170 (1996) 129-144.

[2] N.H. Arai, “Tractability of cut-free Gentzen
type propositional calculus with permutation in-
ference II”, to appear in Theoretical Computer
Science.

[3] N.H. Arai, “No feasible monotone interpolation
for simple combinatorial reasoning”, to appear
in Theoretical Computer Science.

[4] N.H. Arai and R. Masukawa, “How to find sym-
metries hidden in combinatorial problems”, sub-
mitted.

[5] N.H. Arai and A. Urquhart, “Local symmetries
in propositional logic”, manuscript.

[6] B. Benhamou and L. Sais, “Tractability through
symmetries in propositional calculus”, Journal
of Automated Reasoning, Vol. 12 (1994) 89-102.

[7] W.Bibel, “Short proofs of the pigeonhole formu-
las based on the connection method”, Journal of
Automated Reasoning, Vol. 6 (1990) 287-297.

[8] V. Chvatal and E. Szemerédi, “Many Hard Ex-
amples for Resolution”,Journal of the Associa-
tion for Computing Machinery, Vol. 35 (1988)
759-768.

J. Crawford, L. Auton, “Experimental results on
the crossover point in satisfiability problems”,

Proc. of the 11th AAAT (1993) 21-27.

9

—

[10] M. D’Agostino, “Are tableaux an improvement
on truth-tables?”, Journal of Logic, Language
and Information, Vol.1 (1992) 235-252.

[11] T. De la Tour and S. Demni, “On the complexity
or extending ground resolution with syminetry
rules”, Proc. of the 14th [JCAT (1995) 289-295.

[12] J. H. Gallier, Logic for Computer Science, John
Wiley & Sons, New York (1987).

[13] A. Haken, “The intractability of resolution”,
Theoretical Computer Science. 39 (1985) 297-
308.

[14] B. Krishnamurthy, “Short proofs for tricky for-
mulas, Acta Informatica, Vol. 22 (1985) 253-275.

[15] J. Slaney, “The crisis in finite mathematics:
automated reasoning as cause and cure”, in
CADE-12, Nancy. ed. A Bundy, Springer Ver-
lag, LNAI 814 (1994) 1-13.

