
Deduction and Abduction with Ordered Binary Decision Diagrams

Takashi HORIYAMA† Toshihide IBARAKI‡

Abstract. We consider problems of reasoning with a knowledge‐base, which is represented by an
ordered binary decision diagram (OBDD), for two special cases of general and Horn knowledge‐
bases. Our main results say that both finding a model of a knowledge‐base and deducing from a
knowledge‐base can be done in linear time for general case, but that abduction is NP‐complete even
if the knowledge‐base is restricted to be Horn. Then, we consider the abduction when its assumption
set consists of all propositional literals (i.e., an answer for a given query is allowed to include any
positive literals), and show that it can be done in polynomial time if the knowledge‐base is Horn.
Some other solvable cases are also discussed.

1 Introduction

Logical formulae are one of the traditional means of representing knowledge‐bases in AI . However, it
is known that deduction from a knowledge‐base that consists of a set of propositional clauses is co‐NP‐
complete and abduction is \sum_{2}^{P} ‐complete [2]. Recently, an alternative way of representing a knowledge‐base
has been proposed; i.e. it uses a subset of its models called characteristic models (see e.g., [4, 5]). Deduction
from a Horn knowledge‐base in this model‐based approach can be performed in linear time, and abduction
is also performed in polynomial time [4].

In this paper, we consider yet another method of knowledge representation, i.e., the use of ordered
binary decision diagrams (OBDDs) [1, 7] . An OBDD is a directed acyclic graph representing a Boolean
function. By restricting the order of variable appearances and by sharing isomorphic subgraphs, OBDDs
have the following useful properties: 1) When an ordering of variables is specified, an OBDD has the unique
reduced canonical form for each Boolean function. 2) Many Boolean functions appearing in practice can
be compactly represented. 3) There are efficient algorithms for many Boolean operations on OBDDs.
As a result of these properties, OBDDs are widely used for various practical applications, especially in
computer‐aided design and verification of digital systems.

The manipulation of knowledge‐bases by OBDDs (e.g. deduction and abduction) was first discussed
by Madre and Coudert [6], and then basic theoretical questions were examined by the authors [3]. For
example, it was shown that, in some cases, an OBDD‐based representation requires exponentially smaller
space than the other two, i.e., formula‐based and model‐based representations, while there are also cases
in which each of the other two requires exponentially smaller space than that of an OBDD. However, the
computational complexity of the operations for reasoning, such as deduction and abduction, was still open.

In this paper, we consider the complexity of reasoning with general and Horn knowledge‐bases of
OBDDs. We first consider the problem of finding a model of a given OBDD. Although it is obvious
that the problem can be solved in polynomial time for any OBDD, we show that the least model can be
output in polynomial time if the given OBDD represents a Horn knowledge‐base. As to the deduction
with OBDDs, Madre and Coudert discussed the case in which both knowledge and query are given in
OBDD‐based representations [6]. It is also natural to assume that the query is given in CNF, because
formula‐based queries are easier to understand. We show that deduction in this case can be done in
polynomial time, though a naive algorithm may require exponential time with respect to the input size.

We also discuss abduction with OBDDs. Although enumerating all possible outputs (i.e., explanations
for a given query) may require exponential time [6], it was unknown whether or not generating only one

†Graduate School of Information Science, Nara Institute of Science and Technology, Nara, 630‐0101 Japan. E‐mail:
horiyama@is. aist‐nara. ac . jp

‡Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606‐8501, Japan. E‐mail:
 ibaraki\emptyset i . kyoto‐u. ac . jp

数理解析研究所講究録
第1148巻 2000年 175-180

175

explanation can be done in polynomial time. Unfortunately, this problem is shown to be NP‐complete even
if knowledge‐bases are restricted to be Horn. However, by introducing some constraints on assumption
set, we show that abduction from Horn OBDDs can be done in polynomial time.

The rest of this paper is organized as follows. The next section gives definitions and basic concepts.
The problems of reasoning with general and Horn OBDDs are discussed in Sections 3 and 4, respectively.

2 Preliminaries

2.1 Notations and Basic Concepts

We consider a Boolean function f : \{0,1\}^{n}arrow\{0,1\} . An assignment is a vector a\in\{0,1\}^{n} , whose
i‐th coordinate is denoted by a_{i} . A model of f is a satisfying assignment a of f , and the theory \Sigma(f)
representing f is the set of all models of f . Given a, b\in\{0,1\}^{n} , we denote by a\leq b the usual bitwise (i.e.,
componentwise) ordering of assignments; a_{i}\leq b_{i} for all i=1,2, \ldots, n , where 0<1 . A model a is minimal
in \Sigma if no b\in\Sigma satisfies b<a .

Let x_{1}, x_{2}, \ldots, x_{n} be the n variables of f , where each x_{i} corresponds to the i‐th coordinate of as‐
signments. Negation of a variable x_{i} is denoted by \overline{x}_{i} . Any Boolean function can be represented by
some CNF, which may not be unique. We sometimes do not make a distinction among a function f , its
theory \Sigma(f) , and a CNF \varphi that represents f , unless confusion arises. We define a resmction of f by
replacing a variable x_{i} by a constant a_{i}\in\{0,1\} , and denote it by f|_{x_{i}=a_{i}} . Namely, f|_{x_{i}=a_{t}}(x_{1}, \ldots , x_{n})
 =f(x_{1}, \ldots, x_{i-1}, a_{i}, x_{i+1}, \ldots, x_{n}) holds. A smoothing of f , denoted by \exists_{x_{i}}f , is defined as f|_{x_{i}=0}\vee f|_{x_{i}=1} .
Restriction and smoothing may be applied to many variables. We also define f\leq g (resp., f<g) by
 \Sigma(f)\subseteq\Sigma(g) (resp., \Sigma(f)\subset\Sigma(g)).

A theory \Sigma is Horn if \Sigma is closed under operation \bigwedge_{bit} , where a \bigwedge_{bit}b is bitwise AND of models a and b .
For example, if a= (0011) and b= (0101), then a \bigwedge_{bit}b= (0001). Any Horn theory \Sigma has the least (i.e.,
unique minimal) model a= \bigwedge_{bit_{b\in\Sigma}}b . We also use the operation \bigwedge_{bit} as a set operation; \Sigma(f)\bigwedge_{bit}\Sigma(g)
 = { a|a=b \bigwedge_{bit}C holds for some b\in\Sigma(f) and c\in\Sigma(g) }. We often denotes \Sigma(f)\bigwedge_{bit}\Sigma(g) by f \bigwedge_{bit}g , for
convenience. Note that the two functions f\wedge g and f \bigwedge_{bit}g are different.

A Boolean function f is Horn if \Sigma(f) is Horn; equivalently if f \bigwedge_{bit}f=f holds (as sets of models). A
clause is Horn if the number of positive literals in it is at most one, and a CNF is Horn if it contains only
Horn clauses. It is known that a theory \Sigma is Horn if and only if \Sigma can be represented by some Horn CNF.

Given Boolean functions f (called a background theory) and \alpha (called a query), deduction is the
problem of deciding whether f\models\alpha holds or not. Abduction is the problem of generating an explanation
for a given query. Given a Boolean functions f on n variables X=\{x_{1}, x_{2}, \ldots, x_{n}\} , a set A\subseteq X (called
an assumption set) and a positive literal x_{q}\in X (called a query letter), an explanation for (f, A, x_{q}) is a
set E\subseteq A satisfying (i) f\wedge E\vdash-x_{q} (i.e., f\wedge E\wedge\overline{x}_{q}\equiv 0) and (ii) f\wedge E is consistent (i.e., f\wedge E\not\equiv O), where
 f\wedge E denotes f \wedge(\bigwedge_{x_{i}\in E^{X_{i}}}) . Some elements of the triple (f, A, x_{q}) may be omitted unless confusion arises.
Since the set \{x_{q}\} always satisfies both of the restrictions, it is called a tnvial explanation. Our interest is
computing non‐trivial explanation efficiently. An explanation is minimal if none of whose subsets do not
satisfy the constraints.

2.2 Ordered Binary Decision Diagrams

An ordered binary decision diagram (OBDD) is a directed acyclic graph that represents a Boolean function.
It has two sink nodes 0 and 1, called the 0‐node and the 1‐node, respectively (which are together called
the constant nodes). Other nodes are called variable nodes, and each variable node v is labeled by one
of the variables x_{1}, x_{2}, \ldots, x_{n} . Let var(v) denote the label of node v . Each variable node has exactly

two outgoing edges, called a 0‐edge and a 1‐edge, respectively. One of the variable nodes becomes the
unique source node, which is called the root node. Let X=\{x_{1}, x_{2}, \ldots, x_{n}\} denote the set of n variables.
A variable ordering is a total ordering (x_{\pi(1)}, x_{\pi(2),)}\ldots x_{\pi(n)}) , associated with each OBDD, where \pi is a
permutation \{1, 2, \ldots, n\}arrow\{1,2, \ldots, n\} . The levelof a node v , denoted by level (v)) is defined by its label;

176

if node v has label x_{\pi(i)}, level\langle v) is defined to be n-i+1 . The level of the constant nodes is defined to
be 0 . On every path from the root node to a constant node in an OBDD, each variable appears at most
once in the decreasing order of their levels.

Every node v of an OBDD also represents a Boolean function f_{v} , defined by the subgraph consisting
of those edges and nodes reachable from v . If node v is a constant node, f_{v} equals to its label. If node
 v is a variable node, f_{v} is defined as \overline{var(v)}f_{0-succ(v)}\vee var(v)f_{1-succ(v)} by Shannon’s expansion, where
O‐succ (v) and l‐succ (v) , respectively, denote the nodes pointed by the 0‐edge and the 1‐edge of node v .
The function f represented by an OBDD is the one represented by the root node. Given an assignment
 a , the value of f(a) is determined by following the corresponding path from the root node to a constant
node in the following manner: at each variable node v , one of the outgoing edges is selected according to
the assignment a_{var(v)} . The value of the function is the label of the final constant node.

When two nodes u and v in an OBDD represent the same function, and their levels are the same, they
are called equivalent. A node whose 0‐edge and 1‐edge both point to the same node is called redundant.
An OBDD is called reduced if it has no equivalent nodes and no redundant nodes. In the following, we
assume that all OBDDs are reduced, unless otherwise stated. The size of an OBDD is the number of
nodes in the OBDD. Given a function f and a variable ordering, its reduced OBDD is unique and has
the minimum size among all OBDDs with the same variable ordering. The minimum sizes of OBDDs
representing a given Boolean function depends on the variable orderings [1].

3 Reasoning with General OBDDs

3.1 Finding a Model and Deduction with OBDDs

In this section, we consider the complexity of reasoning with general knowledge‐bases, which are repre‐
sented by OBDDs. In particular, we first consider the problems of finding a model of a knowledge‐base
and deducing from a knowledge‐base. We assume, without loss of generality, that the variable ordering of
a given OBDD is always (x_{n}, x_{n-1}, \ldots, x_{1}) .

We first consider finding a model of a knowledge‐base. By definition, paths from the root node to the
1‐node of a given OBDD correspond to the models of the theory represented by the OBDD. Algorithm
FIND‐MODEL in Fig. 1 outputs one of the models by finding a path to the 1‐node. It follows a path by
assigning 0 or 1 to variable x_{\ell} in level \ell . In Step 3, if level (v)<\ell (i.e., f_{v} does not depend on x_{t}), both 0

and 1 can be assigned. Otherwise, node v exists in level \ell . Since node v has the 0‐edge and the 1‐edge, at
least one of them consists a path to the 1‐node. If the 0‐edge points to the 0‐node, the 1‐edge is selected
as a component of the path to the 1‐node. Otherwise, the 0‐edge is selected. Since FIND‐MODEL takes
as many O' s as possible at all levels, the output is obviously one of the minimal models. Moreover, it is
the least model if a given theory is Horn. (Recall that any Horn theory has the unique least model.) Since
each step can be done in constant time, the computation time of Algorithm FIND‐MODEL is O(n) .

Theorem 3.1 Given an OBDD of a theory \Sigma(f) , its minimal model can be generated in O(n) time.
Moreover, the output is the least model if \Sigma(f) is Horn.

Now, we discuss deduction with OBDDs. Madre and Coudert gave the following appealing result on
the case when both background theory \Sigma(f) and query \alpha are given as OBDDs.

Lemma 3.1 [6] Given OBDDs of a theory \Sigma(f) and query \alpha , deciding whether \Sigma(f)\vdash-\alpha holds can be
done in O(|OBDD(f)|\cdot|OBDD(\alpha)|) time.

Let us consider the case when a query \alpha is given as a CNF formula. We may apply Lemma 3.1
by constructing the OBDD of \alpha from its CNF formula. However, the naive algorithm is intractable even
when knowledge‐bases are restricted to be Horn. This is because there exists a Horn theory for which CNF
requires linear size with respect to the number of variables, while the smallest OBDD requires exponential
size [3]. We however show that deduction can be done in linear time without explicitly constructing the
OBDD of \alpha .

177

Algorithm FIND‐MODEL

Input: An OBDD of theory \Sigma(f) with a variable ordering (x_{n}, x_{n-1}\ldots, x_{1}) .
Output: A model a\in\{0,1\}^{n} of \Sigma(f) if \Sigma(f)\neq 0 ; otherwise, “empty”.

Step 1 (check emptiness). If v_{root} is the 0‐node, where v_{root} is the root node of the
given OBDD, then output “empty” and halt.

Step 2 (initialize). Set v:=v_{root} and \ell:=n .

Step 3 (assign a_{l} in level \ell). If (level (v)<\ell) then set a_{f}:=0 ; else if O‐succ (v) is
the 0‐node then set a_{l}:=1 and v:=1- succ(v) ; else set a_{\ell}:=0 and v:=0- succ(v) .

Step 4 (iterate). If \ell=1 then output a and halt. Otherwise set \ell:=\ell-1 and
return to Step 3.

Figure 1: Algorithm FIND‐MODEL to find a model of an OBDD.

Theorem 3.2 Given an OBDD of a theory \Sigma(f) and a CNF formula \alpha , deciding whether \Sigma(f)\vdash-\alpha holds
can be done in O(|OBDD(f)|\cdot|CNF(\alpha)|) time.

The above result says that OBDD‐based representation can replace traditional knowledge‐base systems,
in which queries are given in CNF formulae. A strong point of our approach is that once knowledge is
represented by an OBDD, any deductive query can be answered in linear time, even if the knowledge is
not Horn.

3.2 Abduction with General OBDDs

We consider the computational cost of abduction from general theories. It is known that enumerating
all possible explanations may require exponential time. The following theorem says that finding only one
explanation is intractable.

Theorem 3.3 Given an OBDD of a theory \Sigma(f) on n variables X=\{x_{1}, x_{2}, \ldots, x_{n}\} , an assumption set
 A\subseteq X and a query letter x_{q}\in X_{f} deciding whether x_{q} has a non‐trvvial explanation is NP‐complete.

Proof: The problem is NP , since we can guess a set E\subseteq A and check whether E is an explanation
for x_{q} in polynomial time. The proof of the NP‐hardness is based on a reduction from the problem of
testing the non‐tautology of DNF formulae (NON‐TAUTOLOGY). Given a DNF formula \varphi=T_{i} on
 n variables x_{1}, x_{2}, \ldots, x_{n} , where T_{i}=(\bigwedge_{j\in P(i)}x_{j})\wedge(\bigwedge_{k\in N(i)}\overline{x}_{k}
) and P(i)\cap N(i)=\emptyset for i=1,2, \ldots , m ,

we construct an OBDD of theory \Sigma(f_{A}) on 2n+m+1 variables y_{1}, y_{2}, \ldots, y_{2n+m+1} with variable ordering
 (y_{2n+m+1}, y_{2n+m}, \ldots , y_{1});f_{A} is defined as

 f_{A}=\overline{y}_{2n+m+1}g_{A}\vee y_{2n+m+1}h_{A} ,

where h_{A}=(\bigwedge_{i=1}^{n}(\overline{y}_{2i-1}y_{2i}\vee y_{2i-1}\overline{y}_
{2i}))\wedge(\bigwedge_{j=1}^{m}\overline{y}_{2n+j}), g_{A}=((\bigwedge_{j=i+1}^{m}y_{2n+j})\wedge\overline{y}_{2n+i}\wedge g_{i}) and

 g_{i}=(\bigwedge_{j\in P(i)}\overline{y}_{2j-1}y_{2j})\wedge(\bigwedge_{j\in N
(i)}y_{2j-1}\overline{y}_{2j})\wedge(\bigwedge_{j\in\{1,2,\ldots,n\}-P(i)-N(i)}
y_{2j-1}y_{2j}) . We can prove that

 f_{A} is represented by an OBDD of polynomial size, and that there exists a non‐trivial explanation for
 (f_{A}, \{y_{1}, y_{2}, \ldots, y_{2n}\}, y_{2n+m+1}) if and only if \varphi\equiv 1 does not hold. \square

In many cases, polynomial time algorithms can be obtained by considering some specific but proper
constraints. We consider the case when the assumption set is fixed to be the set of all propositional literals.
The following corollary, however, gives a negative result under such condition.

Corollary 3.1 Given an OBDD of a theory \Sigma(f) on n variables X=\{x_{1}, x_{2}, \ldots, x_{n}\} , an assumption set
 A=X and a query letter x_{q}\in X , deciding whether x_{q} has a non- tr\iota vial explanation is NP‐complete.

178

4 Reasoning with Horn OBDDs
4.1 Abduction with Horn OBDDs

In this section, we consider the complexity of reasoning with Horn knowledge‐bases. Since the previous
section tells that the problems of finding a model of any OBDD and deducing from any OBDD can be
done in linear time, we only consider the problem of finding an abductive explanation from Horn OBDDs.

By restricting a given knowledge‐base to be Horn, the computational cost for abduction may be reduced.
For example, in the case of CNFs, it becomes NP‐complete from \sum_{2}^{P} ‐complete. In the model‐based case,
the linear time adbuction is accomplished by making use of the properties of Horness. However, the
following theorem says that abduction is intractable even for Horn OBDDs.

Theorem 4.1 Given an OBDD of a Horn theory \Sigma(f) on n variables X=\{x_{1}, x_{2}, \ldots, x_{n}\} , an assumption
set A\subseteq X and a query letter x_{q}\in X , deciding whether x_{q} has a non‐trivial explanation is NP‐complete.

Proof: This theorem is proved in a similar way to Theorem 3.3. The problem is obviously NP . NP‐
hardness is proved by a reduction from NON‐TAUTOLOGY. The difference is that we have to construct
an Horn OBDD. \square

Now, we consider the case when the assumption set is fixed to be the set of all propositional literals.
Although abduction under such condition is NP‐complete for the general case, it can be done in quadratic
time for the Horn case. We may find an explanation in the following manner; For each model a\in\Sigma(f) ,
check whether both (I) a\models x_{q} (i.e., a_{q}=1) and (II) f\wedge E(a)\models x_{q} hold or not, where E(a) denotes the
set \chi^{-1}(a)-\{x_{q}\} . If there exists a model a which passes both checks successfully, E(a) is an explanation.
Otherwise, there are no non‐trivial explanations. Note that the checks (I) and (II) correspond to the
constraints (ii) and (i) in the definition of abduction, respectively. Although this naive algorithm may
require exponential computation time, it tells a key of our algorithm.

Theorem 4.2 Given an OBDD of a Horn theory \Sigma(f) on n variables X=\{x_{1}, x_{2}, \ldots x_{n}\} , an assumption
set A=X and a query letter x_{q} , a non‐trivial explanation for \Sigma(f) can be obtained in O(|OBDD(f)|^{2})
time.

Proof: We first show that f|_{x_{q}=1}\wedge\overline{f|_{x_{q}=0}} is the characteristic function of E satisfying constraints (I)
and (II) in the naive algorithm. The set satisfying constraint (I) has the characteristic function f|_{x_{q}=1} .
Since the property f\Lambda(\chi^{-1}(a)-\{x_{q}\})\vdash-x_{q} is equivalent to f\wedge(\chi^{-1}(a)-\{x_{q}\})\wedge\overline{x}_{q}\not\equiv 0 , constraint
(II) says that there exists no model b satisfying both b_{q}=0 and (\chi^{-1}(a)-\{x_{q}\})\subseteq(\chi^{-1}(b)-\{x_{q}\}) , i.e.
 a_{A}\leq b_{A} , where a_{A} denotes the vector composed by all the components of a but a_{q} . Assume that there
exists a model b satisfying a_{A}\leq b_{A} . Since a=(a_{A}, 1) and b=(b_{A}, 0) are the models of a Horn theory
 \Sigma(f), a \bigwedge_{bit}b=(a_{A}, 0) is also a model, i.e., a_{A} is a model of f|_{x_{q}=0} . Conversely, if a_{A} is a model of
 f|_{x_{q}=0} , there exists a model b=(a_{A}, 0) satisfying a_{A}=b_{A} . Thus, the set satisfying constraint (II) has
the characteristic function \overline{f|_{x_{q}=0}} , and hence we have f|_{x_{q}=1}\wedge\overline{f|_{x_{q}=0}} .

As noted in subsection 2.2, an OBDD representing f|_{x_{i}=0} (resp., f|_{x_{i}=1}) can be obtained in O(|f|)
time from the OBDD representing f , where |f| denotes its size. The size does not increase by a restriction
 f|_{x_{i}=0} or f|_{x_{i}=1} . Negation can be done in constant time. Since the OBDD of g\Lambda h can be obtained in
 O(|g|\cdot|h|) time, the OBDD of the characteristic function can be obtained in O(|f|^{2}) time. If it represents
 0 , there are no non‐trivial explanations. Otherwise, we obtain the characteristic vector of an explanation
by applying Algorithm FIND‐MODEL to the OBDD. \square

Once a non‐trivial explanation is obtained, a minimal non‐trivial explanation can be found by elimi‐
nating unnecessary assumptions.

4.2 Polynomial Time Abduction with Horn OBDDs

Theorem 4.2 gives a non‐trivial explanation in polynomial time. In this subsection, we relax the constraints
of the theorem. First, we show that a given assumption set may not be fixed to the set of all propositional

179

literals, even though abduction for an arbitrary assumption set is proved to be intractable by Theorem 4.1.
The following lemmas gives a key for this goal.

Lemma 4.1 Given a Horn theory \Sigma(f) on n variables X=\{x_{1}, x_{2}, \ldots , x_{n}\} , an assumption set A\subseteq X
and a positive literal x_{q} , an explanation E\subseteq A for f is also an explanation for \Sigma(\exists_{X-A-\{x_{q}\}}f) .

Lemma 4.2 Let \Sigma(f) be a Horn theory on n variables X=\{x_{1}, x_{2}, \ldots , x_{n}\} . Given a set S(\subseteq X) ,
 \Sigma(\exists sf) is also Horn.

By combining Theorem 4.2 and Lemmas 4.1 and 4.2, we obtain the following theorem which improves
our algorithm.

Theorem 4.3 Given an OBDD of a Horn theory \Sigma(f) on n variables X=\{x_{1}, x_{2}, \ldots x_{n}\} , an assumption
set A\subseteq X and a querry letter x_{q} , a non‐irivial explanation for \Sigma(f) can be obtained in O(|f|^{2^{k+1}}) time,
where |f| is the size of the given OBDD, and k is the size of the set { x_{i}|x_{i}\in(X-A-\{x_{q}\}) and \exists x_{j}\in
A s.\theta . \pi(x_{i})<\pi(x_{j})\} .

Now, we consider another approach for abduction; we specify a set of variables which must be included
in the obtained explanations. This operation is NP‐conmplete for the CNF‐based case, while it can be
done in polynomial time for the model‐based case. When a theory is given as a Horn

Theorem 4.4 Given a Horn theory \Sigma(f) on n variables X=\{x_{1}, x_{2}, \ldots x_{n}\} , an assumption set A=X ,
a query letter x_{q} and a set S\subseteq A , a non‐trivial explanation can be obtained in O(|OBDD(f)|^{2}) time.

5 Conclusion

In this paper, we have considered the problems of reasoning with general and Horn knowledge‐bases, which
are represented by OBDDs. We have shown that both finding a model of a knowledge‐base and deducing
from a knowledge‐base can be done in linear time for general case, but that abduction is NP‐complete even
if the knowledge‐base is restricted to be Horn. However, by introducing some constraints on a assumption
set, abduction from Horn OBDDs can be done in polynomial time. The first case was that the assumption
set contains all propositional literals. Moreover, the constraint on the variable ordering was relaxed to the
case that there exist constant number of variables which are not in the assumption set, and which appear
in higher levels than some variables in the assumption set. The second case was that a set of variables is
given as a constraint that they should be included in the explanation.

References

[1] R.E. Bryant, “Graph‐Based Algorithms for Boolean Function Manipulation,” IEEE Trans. Comput., C‐35,
no.8, pp.677‐691, 1986.

[2] T. Eiter and G. Gottlob, `(The Complexity of Logic‐Based Abduction,” J. ACM, 42(1) , pp.3‐42, 1995.

[3] T. Horiyama and T. Ibaraki, (‘Ordered Binary Decision Diagrams as Knowledge‐Bases,” Proc. of 10th ISAA C,
eds. A. Aggarwal et al., LNCS 1741, Springer, pp.83‐92, 1999.

[4] H.A. Kautz, M.J. Kearns, and B. Selman, `(Reasoning with Characteristic Models,” Proc. of AAAI‐93, pp.34‐
39, 1993.

[5] R. Khardon and D. Roth, `(Reasoning with Models,” Artificial Intelligence, 87, pp.187‐213, 1996.

[6] J.C. Madre and O. Coudert, “A Logically Complete Reasoning Maintenance System Based on a Logical
Constraint Solver,” Proc. of IJCAI‐91, pp.294‐299, 1991.

[7] S. Minato, N. Ishiura and S. Yajima, “Shared Binary Decision Diagram with Attributed Edges for Efficient
Boolean Function Manipulation,” Proc. of 27th A CM/IEEE DA C, pp.52‐57, 1990.

180

