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1. Main results

We are reporting on joint work with Jacques Gasqui; some of these results were
announced in [10]. We are interested in determining which irreducible symmetric
spaces of compact type are infinitesimally spectrally rigid (i.e., spectrally rigid to
first order).

Let (X, $g$ ) be a Riemannian symmetric space of compact type. Consider a family
of Riemannian metrics $\{g_{t}\}$ on $X$ , with $g_{0}=g$ . We say that $\{g_{t}\}$ is an isospectral

$deformationofgifthespectrumoftheLaplacianofthemetricg_{t}isIn[l2]VGuilleminprovesthattheinfinitesima1deformattionh=\frac{pd}{dt}g_{t|t=0}ofanindeendenttoft$
.

isospectral deformation $\{g_{t}\}$ of $g$ satisfies the following integral condition: for every
maximal flat totally geodesic torus $Z$ contained in $X$ and for all parallel vector fields
$\zeta$ on $Z$ , the integral

$\int_{Z}h(\zeta, \zeta)dZ$

vanishes, where $dZ$ is the Riemannian measure of $Z$ . If all of these integrals corre-
sponding to a symmetric 2-form $h$ on $X$ vanish, we say that $h$ satisfies the Guillemin
condition.

If a deformation $\{g_{t}\}$ of $g$ is trivial, that is, if there exists a family of diffeomor-
phisms $\{\varphi_{t}\}$ of $X$ such that $\varphi_{t}^{*}g_{t}=g$ , then the infinitesimal deformation $\frac{d}{dt}g_{t|t=0}$

of $\{g_{t}\}$ is a Lie derivative of the metric. Such Lie derivatives always satisfy the
Guillemin condition. We are led to the following:

DEFINITION. We $saytha6$ the space (X, $g$ ) is rigid in the sense of $Gu$ill$em$in
if the only symme$6ric2$ -forms on $X$ sa$6isfying$ the $Gu$illemin condition are the Lie
derivatives of the me$6ricg$ .

Guillemin’s result gives us a criterion for infinitesimal spectral rigidity which
may be restated as follows:

THEOREM 1. If the symm$e6ric$ space $X$ is rigid in the sense of $Gu$ill$em$in, it is
infinitesimally spectrally rigid.

Spheres are not rigid in the sense of Guillemin. The Guillemin rigidity of the
spaces of compact type and of rank one (i.e. the projective spaces) which are not
spheres was proved by Michel [15] for the real projective space $\mathbb{R}P^{n}$ , with $n\geq 2$ , and
by Michel [15] and Tsukamoto [16] for the other projective spaces (see also [3], [6]
and [7] $)$ .
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Let $K$ be a division algebra over $\mathbb{R}$ (i.e. $K$ is equal to $\mathbb{R},$
$\mathbb{C}$ or $\mathbb{H}$) and let $m,$ $n\geq 1$

be given integers. The Grassmannian $G_{m,n}^{K}$ of all $K$-planes of dimension $m$ in $K^{m+n}$

is an irreducible symmetric space of compact type whose rank is $\min(m, n)$ , with the
exception of $G_{1,1}^{\mathbb{R}}=S^{1}$ and $G_{2,2}^{\mathbb{R}}$ ; the universal covering space of $G_{2,2}^{\mathbb{R}}$ is $S^{2}\cross S^{2}$ .

Our main result may be stated as follows:

THEOREM 2. For $m,$ $n\geq 2$ , with $m\neq n$ , the Grassmannian $G_{m,n}^{K}$ is rigid in the
sense of $G$uillemin.

This implies that the Grassmannian $G_{m,n}^{K}$ , with $m,$ $n\geq 2$ and $m\neq n$ , is in-
finitesimally spectrally rigid and provides us with the first examples of irreducible
symmetric spaces of arbitrary rank having this property. Theorem 2 together with
the results of Michel-Tsukamoto show that a Grassmannian, which is an irreducible
symmetric space of compact type and which is equal to its adjoint space, is rigid in
the sense of Guillemin and so is infinitesimally spectrally rigid.

2. The maximal flat Radon transform

Let (X, $g$ ) be a symmetric space of compact type, whose tangent and cotangent
bundles we denote $T$ and $T^{*}$ , respectively. We consider the p-th symmetric product
$S^{p}T^{*}$ and the j-th exterior product $\wedge^{j}T^{*}$ of $T^{*}$ . If $E$ is a vector bundle over $X$ ,
we denote by $E_{\mathbb{C}}$ its complexification and by $C^{\infty}(E)$ the space of global sections
of $E$ over $X$ . We may write $X$ as a homogeneous space $G/K$ , where $G$ is a com-
pact connected semi-simple Lie group, which acts on $X$ by isometries, and $K$ is the
isotropy subgroup of $G$ at a point of $X$ ; we may suppose that $(G, K)$ is a Riemannian
symmetric pair.

The $space^{-}--of$ all maximal flat totally geodesic tori of $X$ is a homogeneous space
of $G$ . The space $C^{\infty}(X)$ (resp. $C^{\infty}(_{-}^{-}-)$ ) of all real-valued functions on $X$ (resp. $on—$)
is a $G$-module. The maximal flat Radon transform of $X$ studied by Grinberg [11] is
the $G$-equivariant linear mapping

$I$ : $C^{\infty}(X)arrow C^{\infty}(_{-}^{-}-)$ ,

which assigns to a function $f$ on $X$ the function $\hat{f}on---$ , whose value at a torus $Z\in---$

is the integral of $f$ over $Z$ .
In [10], we define a maximal flat Radon transform $I_{p}$ for symmetric p-forms

which assigns to a symmetric $p$-form on $X$ a section of a vector bundle $over—(which$

depends only on $p$). On functions, $I_{0}$ coincides with the mapping $I$ considered by
Grinberg. The space $N$ of all symmetric 2-forms on $X$ satisfying the Guillemin
condition is the $G$-submodule of $C^{\infty}(S^{2}T^{*})$ equal to the kernel of the maximal flat
Radon transform $I_{2}$ . The space $X$ is rigid in the sense of Guillemin if and only if

$\{c_{\xi g}|\xi\in C^{\infty}(T)\}=N$.

The space (X, $g$ ) is an Einstein manifold; in fact, the metric $g$ satisfies

$Ric(g)=\lambda g$ ,
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where $\lambda>0$ . Using the thcorems of Lichnerowicz and Obata concerning the first
non-zero eigenvalue of the Laplacian of a compact Einstein manifold with positive
Ricci curvature (see [2]), we prove:

PROPOSITION 1. Let $X$ be an irreduci$ble$ symmetric space of compact type,
which is not isometric to a sphere. If $X$ is rigid in the sense of $Gu$illemin, then the
maximal flat Radon 6ransform (for $fu$nctions) $or1X$ is injective.

We recall that the adjoint space of $X$ is the symmetric space which admits $X$ as
a Riemannian cover and which is itself not a Riemannian cover of another symmetric
space.

EXAMPLES:
1) The adjoint space of the $n$-sphere $S^{n}$ is the projective space $\mathbb{R}P^{n}$ . For these

spaces of rank one, the maximal flat tori are the closed geodesics (i.e. the great circles).
A function on $\mathbb{R}P^{n}$ lifts to an even function on $S^{n}$ , and all the even functions on $S^{n}$

arise in this manner. The kernel of the maximal flat Radon transform for functions on
$S^{n}$ is the space of all odd functions on $S^{n}$ . In fact, this Radon transform is injective
when restricted to the even functions on $S^{n}$ ; this is equivalent to the classic fact that
the Radon transform for functions on $\mathbb{R}P^{n}$ is injective.

2) The adjoint space of the Grassmannian of oriented $m$-planes in $\mathbb{R}^{m+n}$ is
equal to $G_{m,n}^{\mathbb{R}}$ , when $m\neq n$ .

3) When $m,$ $n\geq 2$ and $m\neq n$ , the Grassmannian $G_{m,n}^{K}$ is equal to its adjoint
space. The Grassmannian $G_{1,n}^{K}$ is the projective space $KP^{n}$ and, when $n\geq 2$ , it is
equal to its adjoint space.

In [11], Grinberg generalizes the results concerning the maximal flat Radon trans-
form for functions on $S^{n}$ and $\mathbb{R}P^{n}$ and proves:

THEOREM 3. The maximal flat Radon transform for functions on $X$ is injec $tir^{\gamma}e$

if and only if the space $X$ is equal to its adjoint space.

Since the sphere $S^{n}$ is not rigid in the sense of Guillemin, Proposition 1 and
Theorem 3 gives the following necessary condition for Guillemin rigidity:

THEOREM 4. Let $X$ be an irreducible symme$6ric$ space of compact type. If $X$

is rigid in the $sen$se of Guillemin, then $X$ is $equal$ to its adjoin6 space.

3. First method: harmonic analysis

We consider the isotypic component $C_{\gamma}^{\infty}(F)$ of a complex homogeneous vector
bundle $F$ over the homogeneous space $X$ corresponding to an element $\gamma$ of the dual
$\hat{G}$ of the group $G$ .

The Killing operator $D_{0}$ : $C^{\infty}(T)arrow C^{\infty}(S^{2}T^{*})$ , sending $\xi\in C^{\infty}(T)$ into $\mathcal{L}_{\xi g}$ ,
is homogeneous, and so

$D_{0}C_{\gamma}^{\infty}(T_{\mathbb{C}})\subset C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ .

We view the complexification $N_{\mathbb{C}}$ of the space $N$ as a $G$-submodule of $C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ ;
it consists of all complex symmetric 2-forms on $X$ satisfying the Guillemin condition.
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From the fact that the direct sum

$\bigoplus_{\gamma\in\Gamma}C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$

is a dense subspace of $C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ , we infer that

PROPOSITION 2. The space (X, $g$ ) is rigid in the sense of Guillemin if and only
if

(1) $N_{\mathbb{C}}\cap C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})=D_{0}C_{\gamma}^{\infty}(T_{\mathbb{C}})$,

for all $\gamma\in\hat{G}$ .

To prove the Guillemin rigidity of $X$ , it is sufficient to:
(i) For all $\gamma\in\hat{G}$ , determine the multiplicities of the $G$-modules $C_{\gamma}^{\infty}(T_{\mathbb{C}})$ and

$C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ .
(ii) Describe an explicit basis for the space of highest weight vectors of the

$G$-module $C_{\gamma}^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ , for $\gamma\in\hat{G}$ .
(iii) Consider the action of the Radon transform on these basis vectors to prove

the equality (1) for all $\gamma\in\hat{G}$ .
In [9], we used these methods to prove:

THEOREM 5. The real Grassmannian $G_{2,3}^{\mathbb{R}}$ is rigid in the sense of Guillemin.

Because all the Grassmannians $G_{2,n}^{\mathbb{R}}$ , with $n\geq 3$ , are of rank 2, this theorem
implies the real Grassmannian $G_{2,n}^{\mathbb{R}}$ is rigid in the sense of Guillemin, for all $n\geq 3$ .

4. Differential operators and Einstein deformations

Let $B$ be the sub-bundle $of\wedge^{2}T^{*}\otimes\wedge^{2}T^{*}$ of all curvature-like tensors on $X$ . We
consider the natural trace mappings

$Tr=S^{2}T^{*}arrow \mathbb{R}$ , Tr $:\wedge^{2}T^{*}\otimes\wedge^{2}T^{*}arrow S^{2}T^{*}$ .

Let $S_{0}^{2}T^{*}$ be the sub-bundle of $S^{2}T^{*}$ equal to the kernel of Tr : $S^{2}T^{*}arrow \mathbb{R}$. It is
easily seen that

Tr $B\subset S^{2}T^{*}$ .

The infinitesimal orbit of the curvature

$\tilde{B}=\{\rho(u)|u\in T^{*}\otimes T, \rho(u)g=0\}$

is a sub-bundle of $B$ . In [5]
$)$ we constructed an explicit second-order differential

operator
$D_{1}$ : $C^{\infty}(S^{2}T^{*})arrow C^{\infty}(B/\tilde{B})$ ,
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which is part of the compatibility condition of the Killing operator $D_{0}$ . Thus we
obtain a complex

(2) $C^{\infty}(T)-C^{\infty}(S^{2}T^{*})D_{0}-C^{\infty}(B/\tilde{B})D_{1}$ .

Since the operator $D_{0}$ is elliptic, the cohomology of this complex is isomorphic to the
space

$H(X)=\{h\in C^{\infty}(S^{2}T^{*})|divh=0, D_{1}h=0\}$ .

If the space $X$ has constant curvature, then we have $\tilde{B}=\{0\}$ , and the se-
quence (2) is the one introduced by Calabi [4] and is exact (see also [5]).

Since (X, $g$ ) is an Einstein manifold and $Ric=\lambda g$ , we know that Tr $\tilde{B}=\{0\}$ .
Thus the mapping Tr induces is a well-defincd $tr_{\dot{\epsilon}}\iota cc$ mapping

Tr : $B/\tilde{B}arrow S^{2}T^{*}$ .

The divergence $divh$ of a symmetric 2-form $h$ on $X$ is a section of $T^{*}$ . If $f$ is a
real-valued function on $X$ , we denote by $Hessf$ the Hessian of $f$ . On the Einstein
manifold $X$ , the differential operator $D_{1}$ is related to the Lichnerowicz Laplacian

$\triangle$ : $C^{\infty}(S^{2}T^{*})arrow C^{\infty}(S^{2}T^{*})$

acting on symmetric 2-forms; in fact, if $h$ is an element of $C^{\infty}(S^{2}T^{*})$ satisfying
$divh=0$ , we have

(3) Tr $D_{1}h=- \frac{1}{2}(\triangle h-HessRh)$

(see [8]). By means of Lichnerowicz’s Theorem concerning the first non-zero eigen-
value of the Laplacian (acting on complex-valued functions) of a compact Einstein
manifolds with positive Ricci curvature (see [2]), from the relation (3) we deduce the
following:

LEMMA 1. Let $N$ be a $sub$-bundle of $B$ containing $\tilde{B}$ and $E$ be a $sub$-bundle of
$S_{0}^{2}T^{*}$ satisfying Tr $N\subset E.$ Let $h$ be an element of $C^{\infty}(S^{2}T^{*})$ satisfying

$divh=0$ , $D_{1}h\in C^{\infty}(N/\tilde{B})$ .

Then we $har^{\gamma}e$

Tr $h=0$ , $\triangle h-2\lambda h\in C^{\infty}(E)$ .

In [1], Berger and Ebin introduced the (finite-dimensional) space of infinitesimal
Einstein deformations

$E(X)=\{h\in C^{\infty}(S^{2}T^{*})|divh=0, Rh=0, \triangle h=2\lambda h\}$

of the metric $g$ (see also [13]).
If we take $N=\tilde{B}$ and $E=\{0\}$ in Lemma 1, we obtain the following:
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LEMMA 2. The space $H(X)$ is finite-dimensional and is a subspace of $E(X)$ .

THEOREM 6. Let $X$ be an irreducible symmetric space of compac6 type. If
$E(X)=\{0\}$ , then the sequence (2) is $exa$ci.

Let $g$ be complexification of the Lie algebra of $G$ . If $X$ is not equal to a simple Lie
group, then $g$ is an irreducible $G$-modulc. According to Koiso [13], the Lichnerowicz
Laplacian $\triangle$ is equal to the Casimir operator of the $G$-module $C^{\infty}(S^{2}T_{\mathbb{C}}^{*})$ . From this
fact, we obtain:

PROPOSITION 3. Suppose that $X$ is not equal to a simple Lie group. Let $\gamma_{0}$ be
the element of $\hat{G}$ which is the equi $t^{\gamma}alence$ class of the irreducible $G$-module $g$ . Then
we have

$C_{\gamma_{0}}^{\infty}(S^{2}T_{\mathbb{C}}^{*})=\{h\in C^{\infty}(S^{2}T_{\mathbb{C}}^{*})|\triangle h=2\lambda h\}$ ,

$E(X)=\{h\in C_{\gamma_{0}}^{\infty}(S_{0}^{2}T_{\mathbb{C}}^{*})|h=\overline{h}, divh=0\}$ .

Using this proposition, in [13] and [14] Koiso determines all the irreducible sym-
metric spaces of compact type whose infinitesimal Einstein deformations vanish. In
particular, the space $E(X)$ vanishes when $X=G_{m,n}^{\mathbb{R}}$ , with $(m, n)\neq(3,3)$ , or when
$X=G_{1,n}^{\mathbb{C}}$ , with $n\geq 2$ . On the other hand, thc space $E(X)$ is non-zero when
$X=G_{3,3}^{\mathbb{R}}$ , or when $X=G_{m,n}^{\mathbb{C}}$ , with $m,$ $n\geq 2$ .

5. A criterion for Guillemin rigidity

We shall now give a criterion for the Guillemin rigidity of $X$ which exploits
(i) the fact that $X$ is an Einstein manifold;
(ii) the hereditary properties of the operator $D_{1}$ with respect to totally geodesic

submanifolds;
(iii) the previously known results about Guillemin rigidity.
We choose a family $F’$ of closed connected totally geodesic submanifolds of $X$

which are known to be rigid in the sense of Guillemin and a family $F$ of closed
connected totally geodesic surfaces of $X$ each of which is contained in a submanifold
belonging to $F’$ . Assume that the family $\mathcal{F}$ is invariant under the group $G$ .

The set $N$ consisting of those elements of $B$ , which vanish when restricted to
the closed totally geodesic submanifolds of $F$, is a sub-bundle of $B$ . In fact, the
infinitesimal orbit of the curvature $\tilde{B}$ is a sub-bundle of $N$ , and we identify $N/\tilde{B}$

with a sub-bundle of $B/\tilde{B}$ .
We denote by $\mathcal{L}(\mathcal{F}’)$ the subspace of $C^{\infty}(S^{2}T^{*})$ consisting of all symmetric 2-

forms $h$ satisfying the following condition: for all submanifolds $Z\in F’$ , the restriction
of $h$ to $Z$ is a Lie derivative of the metric of $Z$ induced by $g$ .

Using the vanishing of the infinitesimal orbits of the submanifolds belonging to
the family $F$ , we obtain:
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PROPOSITION 4. A symmetric 2-form $h$ on $X$ belonging $\mathfrak{t}0\mathcal{L}(F’)$ satisfies the
relation $D_{1}h\in C^{\infty}(N/\tilde{B})$ .

By means of Lemma 1 and Proposition 4, we obtain a criterion for the Guillemin
rigidity of the irreducible symmetric space $X$ of compact type, which may be formu-
lated as follows:

THEOREM 7. Let $E$ be a G-s $ub$-bundle of $S_{0}^{2}T^{*}$ . Assume $\mathfrak{t}hat$ the $rel$ations

Tr $N\subset E$ , $C^{\infty}(E)\cap \mathcal{L}(\mathcal{F}’)=\{0\}$ ,
(4)

$N\cap E(X)=\{0\}$

hold. Suppose tbat, whenever a section of $S^{2}T^{*}$ over $X$ sa 6isfies the Guillemin
condition, $i6s$ restriction $60$ an arbitrary $su$ bmanifold of $X$ belonging to the family $\mathcal{F}’$

satisfies the Guillemin conditioxl. Then the symmetric space $X$ is rigid in the sense
of Guillemin.

6. Rigidity of the real and complex Grassmannians

Let $X$ be the real Grassmannian $G_{m,n}^{\mathbb{R}}$ , with $m,$ $n\geq 3$ and $m\neq n$ , which is
an irreducible symmetric space. Let $V$ be the canonical vector bundle (of rank $m$)
whose fiber at $x\in X$ is the subspace of $\mathbb{R}^{m+n}$ determined by the $m$-plane $x$ and let
$W$ be the vector bundle of rank $n$ over $X$ whose fiber at $x\in X$ is the orthogonal
complement $W_{x}$ of $V_{x}$ in $\mathbb{R}^{m+n}$ . In this case, the group $G$ is equal to $SO(m+n)$ .

The tangent bundle $T$ of $X$ is canonically isomorphic to the vector bundle
$Hom(V, W)$ and so we may identify it with $V\otimes W$ . We have the equality

$S^{2}T^{*}=(S^{2}V^{*}\otimes S^{2}W^{*})\oplus(\wedge^{2}V^{*}\otimes\wedge^{2}W^{*})$ .

The $sub- bundle\wedge^{2}V^{*}\otimes\wedge^{2}W^{*}$ of $S^{2}T^{*}$ can be identified with the $G$-invariant sub-
bundle $E$ consisting of all elements $h$ of $S^{2}T^{*}$ satisfying

$h(\xi, \xi)=0$ ,

for all elements $\xi$ of $V\otimes W$ of rank one.
Let $F’$ be the family consisting of totally geodesic submanifolds of $X$ isometric to

the Grassmannian $G_{2,n}^{\mathbb{R}}$ . Let $\mathcal{F}$ be the family consisting of totally geodesic surfaces
of $X$ which are contained in some member of the family $F’$ and which are either
isometric to a flat 2-torus or to a 2-sphere of constant curvature 1. According to
Koiso [13] and [14], the space $E(X)$ vanishes. To prove the rigidity of the Grassman-
nian $X$ , we shall apply Theorem 7 to $X$ , the families $F$ and $\mathcal{F}’$ and this sub-bundle
$E$ of $S^{2}T^{*}$ .

Using the injectivity the Radon transform on the real projective plane $\mathbb{R}P^{2}$ ,
we show that condition (i) of Theorem 7 holds. The second equality of (4) is a
consequence of the following theorem which is proved by the same methods used to
demonstrate Theorem 5.
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THEOREM 8. A section of the vector $b$ undle $E$ over the Grassmannian $X=G_{2,3}^{\mathbb{R}}$

sa6isfying the Guillemin condition vanishes.

Finally, we consider the complex Grassmannian $X=G_{m,n}^{\mathbb{C}}$ , with $m,$ $n\geq 2$ and
$m\neq n$ . In this case, the group $G$ is equal to $SU(m+n)$ and $X$ is not equal to a
simple Lie group. Here we encounter an additional difficulty arising from the fact
that $E(X)$ is non-zero. By Proposition 3, we know that $E(X)$ is a subspace of the
$G$-module $C_{\gamma 0}^{\infty}(S_{0}^{2}T_{\mathbb{C}}^{*})$ . To show that the last equality of (4) holds, we find explicit
formulas for the highest weight vectors of the $G$-module $C_{\gamma_{0}}^{\infty}(S_{0}^{2}T_{\mathbb{C}}^{*})$ , and then carry
out integrations of these tensors over certain closed geodesics in order to prove the
following stronger result:

PROPOSITION 5. Let $X$ be the complex Grassmannian $X=G_{m,n}^{\mathbb{C}}$ , with $m,$ $n\geq 2$

and $m\neq n$ , and let $h$ be an $el$ement of $C_{\gamma_{0}}^{\infty}(S_{0}^{2}T_{\mathbb{C}}^{*})$ . If $h$ satisfies the Guillemin
condition, then $h$ vanishes.

References

[1] M. BERGER and D. EBIN, Some decompositions of the space of symmetric tensors on a Riemannian

manifold, J. Differential Geom., 3 (1969), 379-392.

[2] M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d’une vari\’et\’e riemannienne, Lect. Notes

in Math., Vol. 194, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

[3] A. BESSE, “Manifolds all of whose geodesics are closed,” Ergeb. Math. Grenzgeb., Bd. 93, Springer-

Verlag, Berlin, Heidelberg, New York, 1978.

[4] E. CALABI, On compact, Riemannian manifolds with constant curvature. I, Proc. Sympos. Pure

Math., Vol. 3, Amer Math. Soc., Providence, RI, 1961, 155-180.

[5] J. GASQUI and H. GOLDSCHMIDT, D\’eformations infinit\’esimales des espaces riemanniens localement

sym\’etriques. I, Adv. in Math., 48 (1983), 205-285.

[6] –, D\’eformations infinit\’esimales des espaces riemanniens localement sym\’etriques. II. La

conjecture infinit\’esimale de Blaschke pour les espaces projectifs complexes, Ann. Inst. Fourier

(Grenoble), 34, 2 (1984), 191-226.

[7] , Rigidit\’e infinit\’esimale des espaces projectifs et des quadriques complexes, J. Reine

Angew. Math., 396 (1989), 87-121.

[8] , The infinitesimal rigidity of the complex quadric of dimension four, Amer. Math. J.,

116 (1994), 501-539.

[9] , Radon transforms and spectral rigidity on the complex quadrics and the real Grass-

mannians of rank two, J. Reine Angew. Math., 480 (1996), 1-69.

[10] , The Radon transform and spectral rigidity of the Grassmannians, Contemp. Math.,

(to appear).

[11] E. GRINBERG, Flat Radon transforms on compact symmetric spaces with application to isospectral

deformations (to appear).

[12] V. GUILLEMIN, On micro-local aspects of analysis on compact symmetric spaces, in $‘(Seminar$ on

micro-local analysis,” by V. Guillemin, M. Kashiwara and T. Kawai, Ann. of Math. Studies, No. 93,

Princeton University Press, University of Tokyo Press, Princeton, 1979, 79-111.

103



[13] N. KOISO, Rigidity and stability of Einstein metrics–The case of compact symmetric spaces, Osaka

J. Math., 17 (1980) ) 51-73.

[14] , Rigidity and infinitesimal deformability of Einstein metrics, Osaka J. Math., 19

(1982), 643-668.
[15] R. MICHEL, Probl\‘emes d’analyse g\’eom\’etrique li\’es \‘a la conjecture de Blaschke, Bull. Soc. Math.

France, 101 (1973) ) 17-69.

[16] C. TSUKAMOTO, Infinitesimal Blaschke conjectures on projective spaces, Ann. Sci. \’Ecole Norm.

Sup., (4) 14 (1981), 339-356.

104


