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Abstract

In the theory of isometric immersions of submanifolds there are fundamental theorems
of John Nash for the C"-case and Burstin-Cartan-Janet-Schlafly for the analytic case
(also see Robert Greene (2) for the case of local isometric immersions). These theorems
require, however, a large codimension and are of practically no help in considering concrete
questions in low codimensions. An obvious way of producing large varieties of isometrically
immersed homogeneous submanifolds is to take the orbits of Lie group actions. In low
codimensions the following theorem should often be true: Let a compact, connected Lie
group G act on the connected manifold N with principal orbit type M = G/H. Then,
among all the G-homogeneous metrics on G/H the only ones which allow an isometric
immersion into N are those which are already realized as the orbit metrics of this action.
Obviously this is true for the spheres S"~!(r) of R" under the standard SO(n)-action.
With a little work it is also e'asy to prove for the larger classes of metrics invariant under

the unitary or symplectic groups. A slightly more challenging example is to prove this



result for the second Stiefel manifold of 2-frames: SO(n)/SO(n — 2) of R** under the

diagonal embedding SO(n) — SO(n) x SO(n) acting on R*™.

Such theorems follow from a careful study of the Gauss equation: (RIXAY)Z,W) =
B(X,W)B(Y, Z)-B(X, Z)B(Y,W), where R is the curvature operator of the submanifold
M and B is the second fundamental form. In the case of a non-Euclidean surrounding
space N, however, the Gauss equation reads: (RY(X AY)Z, W) = B(X,Z)B(Y,W) —
B(X,W)B(Y, Z), where R* = R* — R and R’ is the part of the curvature operator R of
N tangential to M. This varies with M’s position in NV, so the left hand side is also not
given. There has not been much study of this, but we will report on the solution of the
probably most basic question in isometric immersions into non-classical geometries.

Let N = CP(n) with metric normalized such that sectional curvatures are in [1, 4].
Each geodesic sphere S**~1(r) = U(n)/U(n — 1) determines a different homothety class,

o7, of metrics (r € (0,%),0? € (0,00)).

Theorem: These Berger metrics v,(r € (0,%)) are the only U(n)-invariant metrics on

S§2n=1 yhich allow an isometric immersion into CP(n).
Remark: This is a 1-dimensional set in the 2-dimensional variety of all U(n)-imvariant

metrics. Thus no non-trivial homothetic image oy, of v, (a? # 1) or no Berger metric

from a geodesic sphere in complex hyperbolic space allows such an isometric immersion.

We give the flavor of the argument for one of the easier cases:
Let {e;, Je;;4=0,... ,n— 1} be a adapted orthonormal basis for
T,CP(n) = C" = R*". Then
R(e;Nej) = —e;Nej— Jeg AN Jej

R(e;NJe;) = —2eg ANJeg— - —de;ANJe;— - —2en1 N Jeny



For $?"~! = U(n)/U(n—1) we choose an adapted orthonormal basis Yp, Y, J'Y3, ... , Ya_1,
JYoo1. TpJ'Yp 1Ty, S?1 2 R*" ! = RY; @ R?*"2 where the isotropy action of U(n — 1)
on R?"~? is by the standard representation and J' is the almost complex structure defined

by this action on R?"~2, Now, let a7, be the metric of $?"~1(r) multiplied by a?. Then

. t2

R(YoAY) ==Y AY,

. 14 cot?r 1

R(Y;NY)) = ————Yi AY; = YN TY,

. 2
RV ATY) = -5V ATY

4 + cot?r

2
" YiNJY,— . — — Y, 1 ANJY 1.

a4

Now, choose the basis {e;, Je;} such that Jeg is normal to M at p. Then Y = egcosp +

Jejsin @, and let Y7 = e;.

Lemma 1 R(X AY)AR (X AZ)=0.

Proof. The Gauss equation may be written: (RY(XAY )Wy, Wy) = —(BAB)(X,Y, W;, Ws)
— —BAB(X AY)(W.,W,) where B A B is defined by: (B A B)(X,Y, 2, W) = B(X, Z)
B(Y,W) — B(X,W)B(Y, Z). Let B be the shape operator, i.e. (B(X),Y) = B(X,Y).

A

Then: RY(X AY) = B(X) A B(Y). Hence R(X AY)ARYX A Z) = B(X) AB(Y) A

~ ~

B(X)AB(Z)=0. q.e.d.
Proposition 2 We have sin ¢ = 0, hence we may assume Yy = eg.

Proof. RY Yy AY)) = cosp(—1+ C‘ﬁi’)eo A ey +sinp[(4 — C°t2’")el A Jey + 2eq A Jeg +

ot
et 2en_1 AJen_q). Forn > 4it is easy: R(YoAY) AR (YoAY)) = ---8sin® ey A Jeg A
es A Jes+--- =0, i.e. sin? ¢ =0. For n = 3 it follows by more delicate choices.  q.e.d.

Proposition 3 We have o* =1, i.e. S~ = §2~1(r).



Proof. We have Yy = ey, Y1 = e, J'Y] = cospJe; + sinpe;. Now choose Yz = e3
perpendicular to e, e, Jey, €2, Jey (and hence to Yy, Y1, J'Y;). Then RY(Y1AY3) = Ri(e1 A
e3) —R(YiAYs) = (=148 Ye Aoy — Jes AJeg+ L J'er Ad'es. R(YVIAY;)ARYYIAY;) =
2(—1+ e, Neg A (—Jey A Jes + 2 J'er AJ'es) = 0. R(Yo AY)) AR (Y1 AYs) =
2(—1+ %f:—’)eo Aei A (—Jer Aes+ 7 J'er A J'es). Hence Jey A Jez = L J'e1 A J'es, and

ot =1. g.e.d.

We now deal with the more complicated cases n = 3 and (especially) n = 2, and give
a couple of typical arguments. Assume first n = 3. Then R{(Yo AVI) AR (Yo A YY) =
2sm<,0cosgo(c°t L —1)eg b/\ er Aeg A Jeg + 2sin’ p(4 — cot? wi)er A Jey A ey A Jep+ terms
of other type = 0. Hence, either sinp = 0 or —c%:j—’ = 4. In the latter case we have
the term 6sin ¢ cospey A e; A ez A Jeg, hence cosp = 0; i.e. we let Yo = Jey, Y1 = er.

Choose Y, = e, orthonormal to eg, e1, Jer, J'Y; (and hence to Y3,Y;). Then RY(YpAYs) =

Rt(Jel/\eg)—Rt(Yo/\Yz) = —J61A62+61/\J62+COt TYoAYs = (C°t2 )Jel/\eg—i-el/\Jez
Hence R{(YoAY2) ARN Yo AY,) = Z(C—‘ﬁj—r—l)Jel/\eg ANeiAJey =6Je; NeaAetAJeg # 0,
which is a contradition. Hence sin ¢ = 0.

This proves the following:

Proposition 4 For n =3 we have sinyp =0, i.e. Yy = eq.

We also need:

Proposition 5 For n = 3 we have o = 1.

Proof. Yy =e, Y1 = e, J'Y; = costpJe; +sintpe;. We define: Yo = —sinypJe; +cos Yes,
then Y, is orthonormal to Yy, Y;, J'Y). By dimension J'Y, = £Je;. Y2 A J'Y1 = —Jer A
ey, hence: RY(Y; A J'Ys) = Ri(ey A (£Jeg)) — R( TN JY,) = Fey A Jeg £ Jeg Aeg +

Lelry A JY; - LTV A Yy = (B2 - )Y AJ'Y, + (£1 - &) JYi AYs. By setting



RY(YL AJ'Ys) A R(Yy AJ'Y,) = 0 we get: a) 1+ cot?r = a* or b) o? = 1. We also
have R{ (Yo A Y}) = (“2# —1)Y, AY:. In case a) we have R'(Yy A Y;) A RN(YL A J'Y;) =
(=) (11— %)YoAYIAJ'Y1 AY; #0, which is a contradition. Hence o* = 1.

q.e.d.

For n = 2 this argument breaks down, since dim M, = 3 and any wedge product of

4 vectors is zero. Indeed, the Gauss equations do have other solutions. Most of those
are eliminated by the Codazzi equations: (R(X AY)Z,N)=YB(X,Z) - B(X,VyZ) —
XB(Y,Z)+ B(Y,VxZ) + B([X,Y],Z). We note that this is a considerably more com-
plicated case and only outline a few highlights of the constructions.

Let n = 2 and let SU(2) = S*(r) C CP(2) be the geodesic sphere of radius 7, 7 €
(0,Z). An orthogonal basis for SU(2) at a point p is given by: Ey = (§ %), E1 = (% 5),
E, = J'E, = (%§). An orthonormal basis is given by —~—FEj, smrEl’ sullrE% and a

sinrcosr

homothetic image of this by: ¥, = Ey, Y; = E;, 1 = 1,2. We again need

1
a?sinrcosT aZsinr

to prove that if S3, with Y; as an orthonormal basis, admits an isometric immersion into
CP(2), it follows that a? = 1.

Extend Y; to left-invariant vector fields on S®. Then, in the Koszul formula: (VxY, Z) =
X{Y,Z)+Y(X,Z) - Z(X,Y)+([X,Y], Z) - ([Y, Z], X) +([Z, X],Y) the three first terms
of the right hand side vanish.

We compute:

2 2 2cotr

1) [Yo,Yi]= Ve, [Yo,Yo]=-— Y., [Vi,Y]=

a?sinrcosr a?sinTcosr

and by repeated use of the Koszul formula we find:



1+sin’r
(2) VYO}/I === "‘"‘“"Yz, VYI)/O = —
asinrcosr
' 1 +sin?r
VY = ——go——Y), VY=
a?sinrTcosr
cotr cotr
Uty =Y, Vyp¥i=-—
a? 1o’
VYo = Vy Y1 =V, Y, =0.

a?

cotr

—-Y,
a? 7

cotr

5 Y1,

a?sinrcosr o?

R(YoAY))Y, = Vo Vi Yo—Vy Vi Yo= VYo = =V, (“’“Y) 052 LY Y, =

cotr 1+sin?r Y cotr
“a? aZsinrcosr a? a?sinrcosr

cot?r
Y =-S5

Similarly: R(YpAY1)Y: = 7Y and R(YoAY1)Ys = 0. Hence R(YoAY:) =

Y;. By similar computations R(YoAY;) =

Now, let —Jeg be normal to S at p, then J(—Jeg) = e is in T,5°.

Jejsin . Choose Y] = ey, then Y] is normal to ey and Y. Y2 =

say Yy = —sin peg + cos pJe;. Now R(eg Ae;) =
R(el A 62) = —461 Ney — 260 A JCO .
R(Yo AY;) = R(YoAY)) — RV, A YY) = R((eg cos ¢ + Jeysinp) Aey) +

—UIYAY, and R(YiAY;) =

cot?r:
— S Yo
2
—4+Z?1t r)/l/\}/z
Yo = egcosp +

F(sin peg — cos pJey),

—egNe;—JegANJe;, 1 =1,2.

cot?
T YA Y

—_-(9“2 —1—3sin? go)Yo/\Yl—i—Bsm<pcosc,oY1/\Y2+[3smapcos<pY0 (3sin® p—1)Y3]AJeq

By similar computations R(Yy AYs) =

(2~ 1)%on Y -

YiAJey, and R(Y1 A\ Y3) =

3sin g cos Yo AY; + (21 1 — 3 cos? o) Vi AYa+[3sin ¢ cos pYa+ (1 —3 cos® ) Yo] A Jeo.

Now, consider Gauss’ equations:

Gl. (R(¥o AY1)Yo,Yr) = 5r
G2. (R(Yo AY1)Y5,Y2) = 0 = bogb1a — bo1bo2
G3. (R(Yo AY1)Y1,Ys) = 3singpcos p = borbia — bo2bu

G4. (R(YoAYa)Ys,Ya) = 2t

i ]. -_ b00b22 - b02
G5. (R(Y1 AYa)Y,, Ys) = 0 = borbag — bogbio

G6. (R(Y; A Y)Y, Yp) = Lheotr

-1- 38111 Y = boobu - bOl

1 — 3cos? ¢ = by1byy — b2, where b;; = B(Y;,Y;)



boobo1bo2
boobo1bo2

For example, by expanding the determinant
bo2b12b22

= 0 after the first line, I obtain:

t2
0-boo — (- = 1)bor +0-bop = 0.

Assume a? # cot?r, then by; = 0. Similarly, under this assumption, we get:

(3) b12 =0.

, : t?
—3sin ¢ cos pbyy + (1 + 3sinp — coa4r)b02 =0

4 + cot?r ,
(_&Z— -1 —3cos2<p)b02+3smgocoscpb22 =0

boobo1bo2
bo1b11b12
bo2bi2b22

Furthermore: det B =

4 + cot?
(4) (_+§i_)___t —1 — 3cos? (p) boo + 3 sin  cos by
ot? £
= (C 4T - 1)b11 = 3 sin ¢ cos pbys + (CO 4T — 1 — 3sin® <p)b22 .
a o

(3) and (4) give 4 equations for the 4 unknowns bgg, b11, b2z, boz (in terms of ¢). But we also
have the Codazzi equaions: (R(X AY)Z,N) =YB(X,Z) - B(X,VyZ) - XB(Y,Z) +

B(Y,VxZ)+ B([X,Y], Z), where N is a normal vector of T,,S°.
Cl. (R(Yo AY1)Y,, —Jeg) = —3singpcosp

= Y1(boo) + S bo2 + zrgmeeerboz = Yi(boo) + Bty

a?sinrcosr a?sinrcosr

Similarly:
C5. (R(YoAY2)Yi,—Jeg) =1 = BLby — 1+ —sin®r

2
asinrcosr a2shxrcosrb22

C9. (R(Y1AY2)Y,, —Jeg) = —3sinpcosp = —Y1(ba2) + 3<% boy

a
(There are 9 such equations altogether.)

Now, from the 4 equations from (3) and (4) we may solve bgp, bi1, baz (in terms of @)
and substitute into C5. Although this is quite laborious, it works, and we get a non-trivial

expression in sin ¢ equal to 1. Hence sin ¢ must be constant, and the terms Y3(boo), Y1 (b22)

2+4cos? T _ 3cos?T
a?sinrcosr 02 a?sinrcosr

must vanish. C1 and C9 gives by, since 7 € (0,%) this implies

bo = 0. But then, by C1 again, sin pcos¢ = 0. One can show that cos = 0 leads to a



contradiction. Consider sin ¢ = 0. Then byby;; = °°(::’" — 1 = bgobge. Since ot # cot?r,

b11 = bgg 7é 0. b11b22 = b%l = é%‘ir- — 4. C5 now says: -‘%‘(boo - bu) = 1. By SOlViIlg

by = :I:\/ﬁ%‘%z—’" —4 and by = :t(g%:f:—C —1) (4—"'%21 — 4)_1/2 and substituting this into

C5 we now get an equation for a:
a'? + (2cot?’r —1)a® — 6cot’ra* + 4cot?r = 0.

Obviously a* = 1 is a solution, and by dividing by o* — 1 we get: o + 2cot?ra? —

dcot’r = 0. a* = Veotir +4cot?r — cot?r as a possible second solution. To eliminate
this we consider Maeda’s condition for the principal curvatures of a hypersurface. by

is the principal curvature along the principal direction, b;; along the direction e;. Then

622 = ’g-%%?_'_lb—_z% = bn, l.e. b00b11+2 = 2b%1—b00b11. 2b%1—2b00b11 = 8_*-2:_;“27‘—8—2%:,—1‘*“2 =2

% =8 ie a'=1 q.e.d.

Remark. Alternatively, we could require that the curvature tensor of the total curvature

constructed from the metric of S® and B be parallell.

Remark. This is of course only a small part of the work. One needs to check cos ¢ = 0,
a* = cot? r, and then one must check that none of the U(n)-invariant metrics of the spheres
in complex hyperbolic or Euclidean space admit an isometric immersion into CP(n). All
these results are true for local isometric immersions, obviously. Corresponding results also
hold for complex hyperbolic space and quaternionic projective and hyperbolic spaces, and

will be published shortly.
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