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We give non-trivial examples of compact developable sub-
manifolds in real projecitve spaces and in spheres. Also their
partial classifications are provided.

This survey article is based on the joint work with Prof. T.
Morimoto [20], and on the joint work (now in progress) with
Prof. M. Kimura and Prof. R. Miyaoka.

The detailed proofs will be given in a forthcoming paper.

A connected C*° submanifold M™ in R*, RP™ or S™ (m <
n) is called developable (or, tangentially degenerate, or, in the
Riemannian geometry, strongly parabolic) if its Gauss map

v: M — Gr(m+ 1,R"*)

has rank < m. Here the rank of v is, by definition, the max-
imal value over M of the rank of the differential maps, or the



linearlizations, v, : TzM — Ty)Gr(m + 1,R™™) at ¢ € M of
.

Remark that the developability is a notion of projective ge-
ometry; the image of a developable submanifold under a pro-
jective transformation is again developable. Also remark that
a compact connected manifold with the projective structure is
a real projective space or a sphere. (Consider the “developping
mapping”, which is a covering mapping, to the real projective
space. See, for instance, [27].)

Then our viewpoint of understanding developable subman-
ifolds is as follows: We do not need the metric structures on
them for the formulation of the results, but only their projec-
tive structures, while, for the proofs of the results, we use freely
the metric structures.

The developable hypersurfaces are regarded as global solu-
tions of Monge-Ampere equations of special type [25][26]: A
developable hypersurface lifts to a Legendre submanifold in the
incident manifold of the projective duality, endowed with the
canonical contact structure, and it is projected to the degen-
erate projective dual. Also a developable submanifold has a
Legendre lifting with a degenerate projection.

As classical examples of developable surfaces in the three di-
mensional space, we have cylinders, cones and tangent devel-
opables of space curves [11][18]. Among them, only the planes
have no singularities in the projective space.

Observing the singularities of developable submanifolds, we
expect, also in the general case, that non-singular and compact
developable submanifols in RP™ or S™ are heavily restrictive.
In fact, it is known that a non-singular compact complex de-
velopable submanifold in CP" is necessarily a projective sub-
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space [2][15]. Also in the real case, we see that, for a C*® com-
pact developable submanifold M™ in RP", the maximal rank
r = rank(7y) of the Gauss mapping v : M — Gr(m+1,R"") is

an even integer and it satisfies the inequality m + 1 < ﬂﬂ;ﬁz’
provided r # 0 (cf. [20]).

Moreover, using [14], we see the following result: Let M™
be compact and connected, and f : M — RP"™ a developable
immersion. Then there eixsts a number F'(m) (Ferus number),
depending only on the dimension m of M, such that, if r < F(m)
then » = 0 and so M = RP™ and f is an inclusion of an m-
dimensional projective subspace in RP", or M = S™ and f is
a double covering on a projective subspace of RP™. The Ferus
number F'(m) is defined by

F(m) :=min{l | A(¢) + £ > m},

where A({) is the Adams number: A(¢) is the maximal number
of linearly independent vector fields over the sphere S¢1.

In particular, if » < 1, then » = 0. If m is a power of 2,
namely if m = 2,4,8,16,32,..., then r = 0. If m = 3,5,6,7,
then r < 4 implies » = 0. If m = 9,10,11, 12,13, 14, 15, then
r < 8 implies r = 0. If m = 17,18,19, 20, 21, 22, 23, 24, then
r < 16 implies r = 0. If m = 25,26, 27,28, 29, 30, 31, then
r < 24 implies r = 0. See [6].

The proof of the above result is achieved by considering the
Levi-Civita connection of the ordinary metric on RP™ or on

S™, the co-nullity operator, and a matrix Riccati-type equation
[13][14].

Problem: Is the inequality » < F(m) best possible for
the implication 7 = 0. Do there exist developable immersions
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M™ — RP" with r = F((m), M being compact? Moreover can
we classify developable immersions M™ — RP"™ with r = F(m)
and M compact?

There are several papers on the general theory of developable
submanifolds ([6][7][28][29]). However, few results are known
about examples of compact developable submanifolds, so far.

Then we have non-trivial examples of developable subman-
ifolds: For n = 4,7,13, 25, there exists a real algebraic cubic
non-singular developable hypersurface in RP™. These devel-
opable hypersurfaces have the structure of homogeneous spaces
of groups SO(3), SU(3), Sp(3), Fy, respectively. Their projective
duals are linear projections of Veronese embeddings of projective
planes KP?, for K = R, C,H, O (the Cayley’s octonians).

A C* hypersurface M C RP" is called a Cartan hypersurface
if, n =4,7,13 or 25, and M is projectively equivalent to one of
above examples. Cartan hypersurfaces appears in the theory of
isoparametric hypersurfaces [10]. Also they are obtained from
real forms of Severi varieties classified by Zak [30] in the context
of algebraic geometry.

Each Cartan hypersurface admits C*° deformations among
developable hypersurfaces with 2, 3,5,9 functional parameters,
via C* deformations of its projective dual. Remark that the
family of deformations contain finite-dimensional subfamily con-
sisting of hypersurfaces projectively equivalent to the original
hypersurface. Also compare with the following fact: Any projec-
tive subspace is rigid among developable submanifolds. Namely
any developable immersion sufficiently near to the inclusion of
a projective subspace in RP", relatively to the C'° topology, is
projectively equivalent to the inclusion.

137



Remark that a Cartan hypersurface in RP™ is a G-orbit for
a compact Lie subgroup G C GL(n + 1,R). In general, we
call a (projectively) homogeneous submanifold M C RP" of
compact type if M is a G-orbit for a compact Lie subgroup G of
GL(n + 1,R), under the action on RP" induced by the natural
linear action on R™!. If M is of compact type, then M is
compact.

Theorem([19]): Let M be a homogeneous C* developable hy-
persurface of compact type. Then M is a projective hyperplane
or a Cartan hypersurface.

Recently, R. Miyaoka has observed that focal submanifolds
of isoparametric hypersurfaces with even number of principal
curvatures (4 and 6) provide other examples of developable im-
mersions. (cf. [12], page 248, Cor. 2.2. ) For example, we have
a developable immersion f : M'® — RP' r =8, M being com-
pact, from the adjoint action of Go: (m,r) = (10, 8), F(10) = 8.

Also we have examples of compact developable submanifolds
as the pull-backs by the Hopf fibration 7 : S?**1(C C"*!) —
CP"™ of compact complex manifolds in CP". In some cases
also this construction provides examples of compact developable
submanifolds satisfying the equality 7 = F(m):

(m,7) = (3,2),(5,4),(9,8), (17,16), (25, 24).

We have also a result, in the simplest case n =4,m = 3,r =
2, on the classification of developable immersions M 3 » RP%
Any developable immersion M*® — RP* from a compact con-
nected manifold M? of dimension 3, with constant rank 2 of
Gauss mapping, are re-parametrized by a developable immer-
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sion from the “doubled Cartan hypersurface”. So, for this sub-
class, the classification problem is reduced, in some sense, to the
study on the space of developable immersions from the doubled
Cartan hypersurface to RP*.

Moreover we construct an example of developable immersions
from a compact submanifold M of dimension 3 to RP*, the
rank of whose Gauss mapping is not constant: r = 2, but there
exists a point where the rank is less than 2. For this we use
the result of Kimura [22], and the results on first-order isotropic
holomorphic mappings from S? to the complex quadric @® in
CP* due to Bryant and Peng [9]. This type of construction can
be generalised into the higher dimensional cases [24].

The classification problem of developable submanifolds is far
from being solved: It seems fruitful to study the relation between
developable submanifolds, isoparametric submanifolds, minimal
submanifolds, hyperbolic immersions (in the sense of Gromov)
[16], and so on, in metric geometry, and, besides, to establish
the projective differential geometry of developable submanifolds

(cf. [4]).
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