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We give non-trivial examples of compact developable sub-
manifolds in real projecitve spaces and in spheres. Also their
partial classifications are provided.

This survey article is based on the joint work with Prof. T.
Morimoto [20], and on the joint work (now in progress) with
Prof. M. Kimura and Prof. R. Miyaoka.

The detailed proofs will be given in a forthcoming paper.

A connected $C^{\infty}$ submanifold $M^{m}$ in $R^{n}$
)

$RP^{n}$ or $S^{n}(m<$

$n)$ is called developable (or, tangentially degenerate, or, in the
Riemannian geometry, strongly parabolic) if its Gauss map

$\gamma$ : $Marrow Gr(m+1, Rn+1)$

has rank $<m$ . Here the rank of $\gamma$ is, by definition, the max-
imal value over $M$ of the rank of the differential maps, or the
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linearlizations, $\gamma_{*}$ : $T_{x}Marrow T_{\gamma(x)}Gr(m+1, R^{n+1})$ at $x\in M$ of
$\gamma$ .

Remark that the developability is a notion of projective ge-
ometry; the image of a developable submanifold under a pro-
jective transformation is again developable. Also remark that
a compact connected manifold with the projective structure is
a real projective space or a sphere. (Consider the $‘(deve1_{0}Pping$

mapping”) which is a covering mapping, to the real projective
space. See, for instance, [27].)

Then our viewpoint of understanding developable subman-
ifolds is as follows: We do not need the metric structures on
them for the formulation of the results, but only their projec-
tive structures, while, for the proofs of the results, we use freely
the metric structures.

The developable hypersurfaces are regarded as global solu-
tions of Monge-Amp\‘ere equations of special type $[25][26]$ : A
developable hypersurface lifts to a Legendre submanifold in the
incident manifold of the projective duality, endowed with the
canonical contact structure, and it is projected to the degen-
erate projective dual. Also a developable submanifold has a
Legendre lifting with a degenerate projection.

As classical examples of developable surfaces in the three di-
mensional space, we have cylinders, cones and tangent devel-
opables of space curves $[11][18]$ . Among them, only the planes
have no singularities in the projective space.

Observing the singularities of developable submanifolds, we
expect, also in the general case, that non-singular and compact
developable submanifols in $RP^{n}$ or $S^{n}$ are heavily restrictive.
In fact, it is known t,hat a non-singular compact complex de-
velopable submanifold in $CP^{n}$ is necessarily a projective sub-
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space $[2][15]$ . Also in the real case, we see that, for a $C^{\infty}$ com-
pact developable submanifold $M^{m}$ in $RP^{n}$ , t,he maximal $r_{c}\gamma,n1\sigma$

$r=rank(\gamma)$ of the Gauss mapping $\gamma$ : $Marrow Gr(m+1, R^{?\iota+1})$ , is

an even integer and it satisfies the inequality $m+1< \frac{r(r+3)}{2}‘$ ,
provided $r\neq 0$ (cf. [20]).

Moreover, using [14], we see the following result: Let $M^{m}$

be compact and connected, and $f$ : $Marrow RP^{n}$ a developable
immersion. Then there eixsts a number $F(m)$ (Ferus number),
depending only on the dimension $m$ of $M$ , such that, if $r<F(m)$
then $r=0$ and so $M=RP^{m}$ and $f$ is an inclusion of an m-
dimensional projective subspace in $RP^{n}$ , or $M=S^{m}$ and $f$ is
a double covering on a projective subspace of $RP^{n}$ . The Ferus
number $F(m)$ is defined by

$F(m):= \min\{\ell|A(\ell)+P>m\}$ ,

where $A(\ell)$ is the Adams number: $A(\ell)$ is the maximal number
of linearly independent vector fields over the sphere $S^{\ell_{-}1}$

$\ln$ particular, if $r\leq 1$ , then $r=0$ . If $m$ is a power of 2,
namely if $m=2,4,8,16,32,$ $\ldots$ , then $r=0$ . If $m=3,5,6,7$,
then $r<4$ implies $r=0$ . If $m=9,10,11,12,13,14,15$ , then
$r<8$ implies $r=0$ . If $m=17,18,19,20,21,22,23,24$ , then
$r<16$ implies $r=0$ . If $m=25,26,27,28,29,30,31$ , then
$r<24$ implies $r=0$ . See [6].

The proo.$f$ of the above result is achieved by considering the
Levi-Civita connection of the ordinary metric on $RP^{n}$ or on
$S^{n}$ , the $co$-nullity operator, and a matrix Riccati-type equation
[13] [14].

Problem: Is the inequality $r<F(m)$ best possible for
the implication $r=0$ . Do there exist developable immersions
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$M^{m}arrow RP^{n}$ with $r=F(m),$ $M$ being compact? Moreover can
we classify $(lcvclol)ablCirnmCrSi_{on}\iota)C^{\backslash }II^{m}arrow RP^{n}$ $wit1_{1}$ $r=\Gamma’(n’|\text{ノ})$

and $M$ compact?

There are several papers on the general theory of developable
submanifolds $([6][7][28][29])$ . However, few results are known
about examples of compact developable submanifolds, so far.

Then we have non-trivial examples of developable subman-
ifolds: For $n=4,7,13,25$ , there exists a real algebraic cubic
non-singular developable hypersurface in $RP^{n}$ . These devel-
opable hypersurfaces have the structure of homogeneous spaces
of groups $SO(3))sU(3),$ $Sp(3),$ $F4$ , respectively. Their projective
duals are linear projections of Veronese embeddings of projective
planes $KP^{2}$ , for $K=R,$ $C,$ $H,$ $O$ (the Cayley’s octonians).

A $C^{\infty}$ hypersurface $M\subset RP^{n}$ is called a Cartan hypersurface
if, $n=4,7,13$ or 25, and $M$ is projectively equivalent to one of
above examples. Cartan hypersurfaces appears in the theory of
isoparametric hypersurfaces [10]. Also they are obtained from
real forms of Severi varieties classified by Zak [30] in the context
of algebraic geometry.

Each Cartan hypersurface admits $C^{\infty}$ deformations among
developable hypersurfaces with 2, 3, 5, 9 functional parameters,
via $C^{\infty}$ deformations of its projective dual. Remark that the
family of deformations contain finite-dimensional subfamily con-
sisting of hypersurfaces projectively equivalent to the original
hypersurface. Also compare with the following fact: Any projec-
tive subspace is rigid among developable submanifolds. Namely
any developable immersion sufficiently near to the inclusion of
a projective subspace in $RP^{n}$ , relatively to the $C^{\infty}$ topology, is
projectively equivalent to the inclusion.
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Remark that a Cartan hypersurface in $RP^{n}$ is a $G$-orbit for
a compact Lie subgroup $G\subset GL(n+1, R)$ . In general, we
call a (projectively) homogeneous submanifold $M\subset RP^{n}$ of
compact type if $M$ is a $G$-orbit for a compact Lie subgroup $G$ of
$GL(n+1, R)$ , under the action on $RP^{n}$ induced by the natural
linear action on $R^{n+1}$ If $M$ is of compact type, then $M$ is
compact.

Theorem$([19])$ : Let $M$ be a homogeneous $C^{\infty}$ developable hy-
persurface of compact type. Then $M$ is a projective hyperplane
or a Cartan hypersurface.

Recently, R. Miyaoka has observed that focal submanifolds
of isoparametric hypersurfaces with even number of principal
curvatures (4 and 6) provide other examples of developable im-
mersions. (cf. [12], page 248, Cor. 2.2. ) For example, we have
a developable immersion $f$ : $M^{10}arrow RP^{13},$ $r=8,$ $M$ being com-
pact, from the adjoint action of $G_{2}$ : $(m, r)=(10,8),$ $F(10)=8$ .

Also we have examples of compact developable submanifolds
as the pull-backs by the Hopf fibration $\pi$ : $S^{2n+1}(\subset C^{n+1})arrow$

$CP^{n}$ of compact complex manifolds in $CP^{n}$ . In some cases
also this construction provides examples of compact developable
submanifolds satisfying the equality $r=F(m)$ :
$(m, r)=(3,2),$ $(5,4),$ $(9,8),$ $(17,16),$ $(25,24)$ .

We have also a result, in the simplest case $n=4,$ $m=3,$ $r=$

$2$ , on the classification of developable immersions $M^{3}arrow RP^{4}$ :
Any developable immersion $M^{3}arrow RP^{4}$ from a compact con-
nected manifold $M^{3}$ of dimension 3, with constant rank 2 of
Gauss mapping, are $re$-parametrized by a developable immer-
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sion from the “doubled Cartan hypersurface” So, for this sub-
class, the classification problem is reduced, in some sense, to the
study on the space of developable immersions from the doubled
Cartan hypersurface to $RP^{4}$ .

Moreover we construct an example of developable immersions
from a compact submanifold $M$ of dimension 3 to $RP^{4}$ , the
rank of whose Gauss mapping is not constant: $r=2$ , but there
exists a point where the rank is less than 2. For this we use
the result of Kimura [22], and the results on first-order isotropic
holomorphic mappings from $S^{2}$ to the complex quadric $Q^{3}$ in
$CP^{4}$ due to Bryant and Peng [9]. This type of construction can
be generalised into the higher dimensional cases [24].

The classification problem of developable submanifolds is far
from being solved: It seems fruitful to study the relation between
developable submanifolds, isoparametric submanifolds, minimal
submanifolds, hyperbolic immersions (in the sense of Gromov)
[16], and so on, in metric geometry, and, besides, to establish
the projective differential geometry of developable submanifolds
(cf. [4]).
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