Recent Development in Geometry of Parahermitian

Symmetric Spaces

Soji Kaneyuki

§1. Parahermitian symmetric spaces

Parahermitian symmetric spaces (PHSS's for short) are a class of (affine) symmetric spaces which are interesting from the view point of geometry and harmonic analysis. A one-sheeted hyperboloid in \mathbb{R}^3 is the simplest example of parahermitian symmetric spaces. By a PHSS (M, ω, F^{\pm}) we mean a symplectic symmetric space (M, ω) with a double Lagrangian foliation F^{\pm} ([2]). For a PHSS (M, ω, F^{\pm}) one has two kinds of automorphism groups:

Aut(M,F[±]) = {
$$\varphi \in \text{Diffeo}(M)$$
: $\varphi_* F^{\pm} = F^{\pm}$ },
Aut(M, ω ,F[±]) = { $\varphi \in \text{Aut}(M,F^{\pm})$: $\varphi^* \omega = \omega$ }.

The latter one is always a finite-dimensional Lie group, but the former one is not in general.

Let us start with a real simple (-1,1)-GLA $g = g_{-1} + g_0 + g_1$, and let $Z \in g_0$ be the element such that ad Z = k1 on g_k . Let $G = Ad \exp \pi i Z$. Then (g,g_0,σ) is a symmetric triple. Let G_0 be the centralizer of Z in the automorphism group Aut g. Let G be the open subgroup of Aut g generated by G_0 and Ad g. Then the coset space $M = G/G_0$ is a symmetric space corresponding to (g,g_0,σ) . M has a natural parahermitian structure (ω,F^{\pm}) . (M,ω,F^{\pm}) is called the PHSS associated to the GLA g. There exists a one-to-one correspondence between the set of local isomorphism classes of PHSS's of simple Lie groups and the isomorphism classes of simple (-1,1)-GLA's ([3]).

§2. Automorphism groups

Consider the parabolic subgroups $U^{\pm} = G_0 \exp g_{\pm 1}$ of G. The flag manifolds $M^{\pm} = G/U^{\pm}$ are called symmetric R-spaces. The product manifold $\tilde{M} = M^{-} \times M^{+}$ has the natural double foliation \mathcal{M}^{\pm} whose leaves are G-translates of M^{\pm} . The group G acts on \tilde{M} diagonally. Let r be the split rank of the symmetric pair (g,g_0) . Then there are exactly r+1 G-orbits $M_r, M_{r-1}, \cdots, M_0$ with dim $M_k > \dim M_{k-1}$. M_r is open dense and M_0 is closed in \tilde{M} . The PHSS (M, F^{\pm}) is imbedded in \tilde{M} as M_r in such a way that F^{\pm} are the restrictions of \mathcal{M}^{\mp} . G-orbits M_r, \cdots, M_0 give a stratification on \tilde{M} . It is proved that the action of Aut(M,F[±]) extends to \tilde{M} as automorphisms of the stratification. The restriction of the extended action to M₀ is the symmetry group of a certain geometric structure on M₀. When the split root system of M is of BC_r-type, the restriction of $\mathcal{M}^{\mathcal{T}}$ to M₀ gives a double fibration F_0^{\pm} . Let Aut(M₀, F_0^{\pm}) be the automorphism group of F_0^{\pm} . When the split root system is of C_r-type, M₀ coincides with M⁻. Let \mathcal{K} be the generalized conformal structure on M⁻ obtained from the cone of singular G₀-orbits in g₁ (= the tangent space at the origin of M⁻). The automorphism group Aut(M⁻, \mathcal{K}) was determined by Gindikin-Kaneyuki[1].

<u>Theorem 1</u> ([6]). Let $(M = G/G_0, \omega, F^{\pm})$ be the PHSS associated to a simple (-1,1)-GLA g. Let $\tilde{\Delta}$ be the split root system of (g,g_0,σ) . Suppose $\tilde{\Delta}$ is of BC_r-type. Then Aut(M,F[±]) = Aut(M₀,F₀[±]) = G. Suppose $\tilde{\Delta}$ is of C_r-type, r>2. Then Aut(M,F[±]) = Aut(M⁻, \mathcal{K}) = G. In the case where $\tilde{\Delta}$ is of C₁-type, Aut(M,F[±]) = Diffeo(M⁻).

Under the assumption that G is classical, the above theo- . rem has been obtained by Tanaka [7].

§3. Parahermitian symmetric spaces with causal structures

In this paragraph we assume that a simple (-1,1)-GLA g is of Hermitian type. The corresponding PHSS M is called a symmetric space of Cayley type. $\widetilde{\Delta}$ is of C_r-type in this case. Harmonic analysis on this type of symmetric spaces have been extensively studied. There exists an irreducible bounded symmetric domain D of tube type such that g is the Lie algebra of of the holomorphic automorphism group G(D) of D. M^{-} can be identified with the Shilov boundary of D. G(D) acts on M effectively and transitively, and hence it is a subgroup of G. Let V be the homogeneous open convex cone of positive definite (in Jordan terminology) elements in g_{-1} . The automorphism group G(V) of V is considered to be an open subgroup of G_0 . Let ${\mathcal T}$ be a grade-reversing Cartan involution on g, and let ${\tt V}^+$ = $(-\tau)V \subset g_{+1}$. G(V) acting on g_1 is the automorphism group of V⁺. The closures C⁻, C⁺ of V, V^+ respectively are causal cones in $g_{\pm 1}$. By using the action of G(D) on M^{\pm} , we extend C^{\pm} to

the cone fields C^{\pm} on M^{\mp} . Consider the product cone field $\widetilde{C} = C^+ \times C^-$ on $\widetilde{M} = M^- \times M^+$. By restricting \widetilde{C} to $M (= M_r)$, we have a G(D)-invariant causal structure C on M. Note that if the split rank r of M is equal to 1, then M is a one-sheeted hyperboloid in R^3 . By using Theorem 1, we have

<u>Theorem 2([6])</u>. Let (M,C) be a symmetric space of Cayley type with split rank r, and let Aut(M,C) be the causal automorphism group. Then Aut(M,C) = G(D) · Z₂ for $r \ge 2$ and Aut(M,C) = Diffeo⁺(S¹) · Z₂ for r = 1. Here Z₂ is generated by the restriction $\theta|_{M}$, and θ is an involutive transformation of \tilde{M} which interchanges C⁺ to C⁻. Diffeo⁺(S¹) denotes the group of orientation-preserving diffeomorphisms of the circle S¹.

References

- [1] S. Gindikin and S. Kaneyuki, On the automorphism group of the generalized conformal structure of a symmetric R-space, Differential Geom. Appl.,8(1998),21-33.
- [2] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8(1985), 81-98.
- [3] S. Kaneyuki, On classification of parahermitian symmetric spaces, Tokyo J. Math. 8(1985), 473-482.
- [4] S. Kaneyuki, On orbit structure of compactifications of parahermitian symmetric spaces, Japan. J. Math. 13(1987), 333-370.
- [5] S. Kaneyuki, On the causal structures of the Šilov boundaries of symmetric bounded domains, Lect. Notes in Math. 1468(1991), Springer, 127-159.
- [6] S. Kaneyuki, On the automorphism groups of parahermitian symmetric spaces, I, II, in preparation.
- [7] N. Tanaka, On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J. 14(1985), 277-351.

Soji Kaneyuki Dept. of Math. Sophia University Tokyo 102-8554

kaneyuki@mm.sophia.ac.jp