
BERNSTEIN-GELFAND-GELFAND SEQUENCES

JAN SLOV\’AK

ABSTRACT. This survey follows the lecture presented at the conference “100
years after Sophus Lie”, RIMS Kyoto, December 12, 1999. The aim is to de-
scribe the recent geometric treatment of the distinguisilcd complexes of invari-
ant differential operators between homogeneous vector bundles, known under
the name Bernstein-Gelfand-Gelfand resolutions, in the realm of the so called
parabolic geometries. The basic reference for this paper is [12], the exposition
has been influenced essentially by $[14, 10]$ .

The talk presents some results of a long time joint effort with Andreas \v{C}ap
and Vladim\’ir Sou\v{c}ek. Further essential influence comes from the recent extensive
cooperation with Michael Eastwood, Rod Gover, and Gerd Schmalz.

1. GENERAL BACKGROUND

1.1. Klein’s geometries. We shall deal with invariant operators for certain ge-
ometries. First we discuss such operators in the cases where the underlying geometry
is that of a homogeneous space $G/P$ for some Lie subgroup $P$ in a Lie group $G$ .
This leads to problems studied for several decades in representation theory in terms
of Verma module homomorphisms. Later on, we pass to the so called parabolic ge-
ometries and the homogeneous cases play then the r\^oles of the flat models. Our
considerations apply to both smooth and holomorphic categories and we shall not
distinguish these two cases explicitly. (The main difference is the local existence of
the holomorphic sections.) On the other hand, we shall deal with complex repre-
sentations only in order not to have to distinguish between many real forms of the
complex groups.

In order to enjoy the general features in terms of explicit examples, we shall pay
special attention to several flat models: four different geometries on the three-sphere
(projective, conformal Riemannian, projective contact, and $CR$-contact), accom-
plished with the conformal Riemannian four-sphere. In the two projective cases,
the sphere $i\dot{s}$ considered as the space of the rays emanating from tlle origin, but with
different group actions: $SL(4, \mathbb{R})$ and $Sp(4, \mathbb{R})$ , respectively. The conformal spheres
are regarded as projective quadrics in $\mathbb{R}^{n+2},$ $n=3,4$ , and the corresponding sym-
metry groups are $O(n+1,1)$ . The $CR$-sphere is understood as the non-degenerate
real quadric in $\mathbb{C}^{2}$ , and the symmetry group is $SU(2,1)$ . The isotropy groups of
distinguished fixed points form the subgroups $P$ in all cases.

For each Kleinian geometry $G/P$ , there are the homogeneous vector bundles
$\mathcal{E}(G/P)$ corresponding to $P$-modules E. More explicitly, we consider $Garrow G/P$

as the principal $P$-bundles and $\mathcal{E}(G/P)$ is the associated vector bundle $G\cross_{P}$ E.
This is a functorial construction and, in particular, the left action of $G$ on the
homogeneous space induces the action on the (sheaf of local) sections of $\mathcal{E}(G/P)$ .
Moreover, each (local) section $s:G/Parrow \mathcal{E}(G/P)$ is expressed (in its frame form)
as a $P$-equivariant function $Garrow E$ and, in this picture, the action of $G$ on sections
is given by the left shifts: $g\cdot s=s\circ\ell_{g^{-1}}$ . The invariant differential operators are
those operators between sections of homogeneous bundles which intertwine these
actions.
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1.2. Cartan’s geometries. The curved version of these considerations was sug-
gested by Cartan in connection with his exterior calculus. In this approach, the
main object describing all features of the Kleinian geometry is the Maurer-Cartan
form $\omega\in\Omega^{1}(G, g)$ which is right-invariant (with respect to the whole $G$), repro-
duces the fundamental vector fields (even all left invariant fields), and offers an
absolute parallelism (with vanishing curvature –the Maurer-Cartan equations).
The curved geometry of type $G/P$ (generalized space in Cartan’s terminology) is
then given by a principal fiber bundle $\mathcal{G}arrow M$ with structure group $P$ , and abso-
lute parallelism $\omega\in\Omega^{1}(\mathcal{G}, g)$ which is again right-invariant (with respect to $P$),
and reproduces the fundamental vector fields. The structure equations

$d \omega=-\frac{1}{2}[\omega,\omega]+K$

define then the horizontal two-form $K\in\Omega^{2}(\mathcal{G}, g)$ , the curvature. By means of the
absolute parallelism, the curvature is given by the curvature function

$\kappa:\mathcal{G}arrow\Lambda^{2}(g/\mathfrak{h})^{*}\otimes g$ .
We talk about Cartan geometries $(\mathcal{G},\omega)$ , and Cartan connections $\omega$ . Morphisms

$\varphi$ : $(\mathcal{G},\omega)arrow(\mathcal{G}’, \omega’)$ between Cartan geometries are those principal bundle mor-
phisms (over identity on $P$) which preserve the Cartan connections, i.e. $\varphi^{*}\omega’=\omega$ . In
particular, the automorphisms of the flat model are just the left shifts by elements
of $G$ , cf. [25], Theorem 3.5.2.

Each $P$-module $E$ defines a functor on the category of Cartan geometries of type
$G/P,$ $(\mathcal{G}arrow M,\omega)\mapsto*\mathcal{G}\cross_{P}E=:\mathcal{E}(M)$ with the obvious action of morphisms. These
functors are called natural vector bundles and the invariant operators are those
systems of differential operators $Dg$ : $\Gamma(\mathcal{E}(M))$ -a $\Gamma(\mathcal{F}(M))$ which intertwine the
action of morphisms.

The Cartan geometry $(\mathcal{G}, \omega)$ is locally isomorphic to its flat model $G/P$ if and
only if the curvature $K$ vanishes. In particular, there is the full subcategory of
locally flat Cartan geometries of type $G/P$ .

A readable modern introduction to this approach to differential geometry is
offered in [25].

2. $BERNSTEIN-GELFAND$-GELFAND RESOLUTIONS

2.1. $|k|$-graded Lie algebras. In the rest of the paper, we shall assume that
$G$ is a semi-simple Lie group (real or complex) and $P$ its parabolic subgroup. In
particular this implies that the Lie algebra $g$ of $G$ comes equipped with the grading

$g=g_{-k}\oplus\cdots\oplus g_{-1}\oplus g_{0}\oplus g_{1}\oplus\cdots\oplus g_{k}$ ,

$k>0,$ $\mathfrak{p}=g_{0}\oplus\cdots\oplus g_{k}$ , the reductive part of $\mathfrak{p}$ is $g_{0}$ and the nilpotent part is
$\mathfrak{p}_{+}=g_{1}\oplus\cdots\oplus g_{k}$ . We also write $9-for$ the negative components and we identify
this space with the $P$-module $g/\mathfrak{p}$ . We say that $g$ is $|k|$ -graded.

The Killing form provides the isomorphisms $g_{i}^{*}\simeq 9-i$ for all components of the
$|k|$-graded semisimple Lie algebra $g,$ $i=-k,$ $\ldots$ , $k$ . In particular, its restrictions to
the center $\delta$ and the semisimple part $g_{0}^{ss}$ of $g_{0}$ are non-degenerate. Now, for each Lie
group $G$ with the $|k|$-graded Lie algebra $g$ , there is the closed subgroup $P\subset G$ of all
elements whose adjoint actions leave the $\mathfrak{p}$-submodules $g^{j}=g_{j}\oplus\cdots\oplus g_{k}$ invariant,
$j=-k,$ $\ldots$ , $k$ . The Lie algebra of $P$ is just $\mathfrak{p}$ and there is the subgroup $G_{0}\subset P$

of elements whose adjoint action leaves invariant the grading by $g_{0}$-modules $g_{i}$ ,
$i=-k,$ $\ldots,$

$k$ . This is the reductive part of the parabolic Lie subgroup $P$ , with Lie
algebra $g_{0}$ . We also define subgroups $P_{+}^{j}=\exp(g_{j}\oplus\cdots\oplus g_{k}),$ $j=1,$ $\ldots,$

$k$ , and
we write $P_{+}$ instead of $P_{+}^{1}$ . Obviously $P/p_{+}=G_{0}$ and $P_{+}$ is nilpotent. Thus $P$ is
the semisimple product of $G_{0}$ and the nilpotent part $P_{+}$ . More explicitly (cf. [8],
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Proposition 2.10, or $[27, 29])$ , each element $g\in P$ is expressed in the unique way
as $g=g_{0}\exp Z_{1}\exp Z_{2}\ldots\exp Z_{k}$ , with $g_{0}\in G_{0}$ and $Z_{i}\in g_{i},$ $i=1,$ $\ldots,$

$k$ .

2.2. Jet-modules. In this section, we shall deal with operators between homo-
geneous vector bundles and we shall write briefly $\mathcal{F}$ instead of $\mathcal{F}(G/P)$ , for any
$P$-module F. The next step in our exposition consists in a few standard observa-
tions.

First, each $kth$ order differential operator is given as a mapping $J^{k}\mathcal{E}arrow F$ on
the jet prolongation and the action of $G$ on sections of $\mathcal{E}$ induces an action on
$J^{k}\mathcal{E}(G/P)$ . Moreover, there is the obvious identification $J^{k}\mathcal{E}\simeq GXpJ^{k}E$ where
the $P$-module $J^{k}E$ is the fiber over the origin of $G/P$ with tbe induced action of $P$ .
$Th\dot{u}s$ , the invariant operators are given by $P$-module homomorphisms $J^{k}Earrow$ F.

Second, seeking for $P$-module homomorphisms $J^{k}Earrow F$ is equivalent to seeking
for the dual homomorphisms $\mathbb{P}arrow(J^{k}E)^{*}$ , or better $\mathbb{P}$ a $(J^{\infty}E)^{*}$ where the latter
module is the inverse limit of the $kth$ order ones. For irreducible $P$-modules, these
inverse limits are $(g, P)$-modules known (in representation theory) under the name
generalized Verma modules. These modules are highest weight modules with the
highest weights contained in F. Thus we obtain the so called Robenius reciprocity
theorem claiming the bijective correspondence

$\{P-modu1ehomomorphismsJ^{k}Earrow F\}rightarrow\{modu1ehomomorphisms(J^{\infty}F)^{*}arrow(J^{\infty}E)^{*}generalizedVerma\}$ .

2.3. Verma module homomorphisms. The homomorphisms of Verma modules
have been studied for many years. The first breakthrough was achieved in [5]. It
turned out, that for Borel subgroups $P$ all homomorphisms are grouped nicely into
equal patterns, starting by a $G$-module V and being described by suitable combina-
torial properties of the Weyl group of $g$ . In view of the Kostant’s $Bott-Borel$-Weil
theorem, we may state the final result roughly as follows: Each $P$ -module with a
regular central character ($i.e$ . sharing the central character with some G-module
$V^{*})$ appears in the Lie algebra cohomology $H^{*}(p_{+}, V^{*})$ with multiplicity one and all
Verma module homomorphisms are then included in the pattern (including non-zero
compositions)

$v*-H^{0}(\mathfrak{p}_{+}, V^{*})-\ldots-H^{\max}(\mathfrak{p}_{+}, V^{*})$ .

Moreover, the sequence always forms a complex which is called the Bemstein-
Gelfand-Gelfand resolution of $V^{*}$ (shortened to $BGG$ in whai follows).

Let us remark that the cohomologies are always completely reducible and, of
course, the non-zero compositions may appear only in the picture of the individual
components of the horizontal arrows between the irreducible components of the
cohomologies (and they have to cancel properly each other in the sum).

In terms of the homogeneous vector bundles and invariant operators, we obtain
the resolution of the constant sheaf corresponding to V:

(1) $Varrow\Gamma(\mathcal{H}_{V}^{0})arrow\ldotsarrow\Gamma(\mathcal{H}_{V}^{\max})$

where $\mathcal{H}_{V}^{j}$ are the homogeneous bundles corresponding to the $P$-modules $\dot{\mathbb{R}}=$

$H^{j}(g/\mathfrak{p}, V)$ . This resolution is called again the $BGG$ resolution of V.
Similar problems for arbitrary $G$-modules and parabolic subgroups $P$ have been

studied carefully in representation theory for many years, cf. [23] and the references
therein. There are two types of homomorphisms in general, those coming as direct
images of the Borel case, which create again resolutions of the constant sheaves,
but also new ones appearing on places where the direct images vanish but non-zero
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homomorphisms still exist. The former ones are called standard homomorphisms,
the latter ones non-standard.

The general theorem due to [23] claims that all standard operators appear again
in patterns (1), while the non-standard ones appear as additional arrows in the same
patterns. The explicit form of these resolutions can be expressed nicely in terms
of highest weights of the modules and Dynkin diagrams. For the relevant recipes,
including the computation of the irreducible components in the cohomologies, see
[3]. An algorithm for the determination of all non-zero homomorphisms is available
in [6] (and the Brian Boe’s computer implementation of this algorithm is very
useful).

The highest weights of all complex irreducible representations of $\mathfrak{p}\subset g$ are de-
scribed as integral linear combinations of the fundamental weights for 1 and their
coefficients can be depicted as labels associated to the corresponding nodes in the
Dynkin diagrams. The choice of the parabolic subalgebra is described by crossing
out those nodes, which correspond to simple negative roots which are not in $\mathfrak{p}$ . Fi-
nally, $\mathfrak{p}$-dominant weights are given by those labeled diagrams with non-negative
coefficients over the uncrossed nodes.

2.4. Examples. Let us illustrate this notation on the adjoint representations of
the symmetry groups of the five geometries mentioned in the introductory part
(projective 3-sphere, conformal 3-sphere, projective contact 3-sphere, CR-contact
3-sphere, and conformal 4-sphere). The adjoint representations $g$ , viewed as $P-$

modules, are never irreducible, and their highest weights generate the only irre-
ducible components $g_{k}$ (in the same order as above):

$\underline{101}$ ,$02\approx$ $\rangle\subset 20$ $\cross-\cross 11$ $\underline{1}01rightarrow$

For the sake of simplicity, the standard notational convention for the homo-
geneous bundles in the BGG-resolutions uses the dual modules (i.e. the high-
est weights for the corresponding Verma modules). A straightforward computa-
tion yields for all general complex $g$-modules V (i.e. arbitrary integral coefficients
$a,$ $b,$ $c\geq 0)$ thefollowing sequences of invariant operators which are indicated by $\nabla^{j}$ ,
where $j$ refers to the order.
3-dimensional projective:

(2) $\frac{ac}{b}$

$\nabla^{\langle a+1)}$

$-a-2c\sim a+b+1$

$\nabla^{\{b+1)}$

$-a-+1 \cross\frac{b-3b+c}{b}$

$\nabla^{(e+1)}$

$a-b_{\frac{-c-4b}{a}}$

$S$-dimensional conformal Riemannian:

(3) $)\supset_{b}a$

$\nabla^{\langle a+1)}$

$-a-2)\supset 2a+b+2$

$\nabla^{(b+1)}$

$-a-b-3)\supset 2a+b+2$

$\nabla^{(a+1)}$

$-a-b-3)\Leftrightarrow_{b}$

$S$-dimensional projective contact:

(4) $x\in_{b}a$. $\nabla^{(a+1)}$

$-a-2\rangle\Leftrightarrow a+b+1\underline{\nabla^{(2b+2)}}-a-2b-4\rangle\subset a+b+1$

$\nabla^{(a+1)}$

$-a-2b-4\rangle\subset_{b}$

3-dimensional CR-contact:

(5) $-a_{X\frac{-2}{a+}\cross,b+1}\underline{\nabla^{\langle\circ+b+2)}}b\crossarrow$

$\nabla^{\langle a+1)}\nearrow$

$x-abx_{\nabla^{\langle b+1)}}\searrow$

$\nabla^{\langle 2a+})X_{\nabla^{(2b+2)}}^{-a-b-3}2\cross-K\backslash ^{\nabla^{\langle b+1)}}\nearrow_{\nabla^{(\circ+1)}}-b-2-a-2$

$a+b\underline{+1}-\cross xa-b-3arrow K-b-2\overline{\nabla^{(\circ+b+2)}}a$
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4-dimensional conformal:

(6) $\underline{ba+b+}c+2$

$\nabla^{(a+1)}<-a-b-3$ $\nabla^{(c+1)}$

”
$\frac{ac}{b}arrow\frac{b+1b+c}{-b-2}\nabla^{\langle b+1)_{a++1}}$ $b+ \frac{c+1a+b}{a-b-c-}+1\nabla^{(b+1)}-4rightarrow-\frac{ca}{a-b-c-}4$

$\nabla^{\langle c+1}\backslash _{\gg_{a+b_{\frac{+c+2b}{-b-c-3}}}}\nearrow\nabla^{(a+1)}$

2.5. De Rham complexes. The simplest examples are the trivial representations,
i.e. the choice $a=b=c=0$ . For the $|1|$ -graded algebras, these are exactly the
(complexified) de Rham complexes, see (2), (3), (6). Surprisingly enough, the re-
maining two sequences include bundles of lower dimensions. Indeed, instead of the
standard one-forms the second column contains the dual space to the (complexified)
contact distribution (which splits in the $CR$-case into the holomorphic and anti-
holomorphic parts), etc. Another surprising fact is that the order of the operators
is not always one. More generally, there is the so called twisted de Rham sequence
corresponding to a $G$-module V and the striking feature of the BGG-resolution is
that they compute the same cohomology as the twisted de Rham complexes, but
they have much smaller dimensions.

We shall not pay any attention to the so called singular infinitesimal characters
and the half-integral weights, although they involve many important operators, see
e.g. [15] for a complete discussion in the special case of the conformal Riemannian
geometries.

3. PARABOLIC GEOMETRIES

Even for the (curved) conformal Riemannian and projective geometries, the
general discussion on the invariant operators occupies mathematicians for many
decades. Since the beginning of the 20th century, a few similar geometrical struc-
tures were known to fit within the framework of the Cartan geometries, i.e. they
were shown to allow a canonical Cartan connection under suitable normalizations.
See e.g. Kobayashi’s treatment of groups of geometric transformations in [21], the
generalization of Cartan’s description of 3-dimensional $CR$-geometry to all non-
degenerate $CR$-structures of hypersurface type due to $[26, 13]$ , and the pioneering
series of papers by Tanaka, cf. [27] and the references therein, as well as [29, 24, 8].
The name $\dot{p}arabolic$ geometry has been commonly adopted for the general class of
all Cartan geometries with $G$ semisimple and $P$ parabolic. There is also the closely
related parabolic invariants program initiated by Fefferman, [16], see also $[17, 4]$ .

Tanaka’s motivation came from pfaffian systems of PDE’s, while the relation to
twistor theory renewed the interest in a good calculus for such geometries, with the
aim to improve the techniques in conformal geometry and to extend them to other
geometries. See e.g. [3] for links to twistor theory and representation theory, [28] for
classical methods in conformal geometry, and [1, 2, 4, 19] and references therein,
for generalizations. One of the main objectives was the construction of invariant
differential operators.

Motivated by the remarkable (but quite unclear) papers $[1, 2]$ , the systematic
combination of Lie algebraic tools with the frame bundle approach was developed in
[11] and the first strong applications for all parabolic geometries were given in [12].
The main aim of this lecture is to describe roughly the results of the latter paper.
For further essential development of both the abstract calculus and the differential
geometry in the general setting see $[7, 9]$ , and in particular [10].
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3.1. $Semi-holonomicjet-modules$ . The algebraic core of our approach are the
$semi-holonomicjet-modules$ . While the standardjet prolongations of homogeneous
vector bundles are again homogeneous vector bundles corresponding to certain jet-
modules, this construction does not extend out of locally flat geometries, i.e. those
witllout $c\iota lrvaturc$ . On tlle $otl\iota er1l\dot{t}\iota\iota ld$ , the clefining absolutc $1$)$arallelism$ allows sucb
a construction for one-jets and a $sim_{1^{)}}1e$ check shows that we can proceed to all
orders with the semi-holonomic prolongations.

Let us consider a representation $E$ of $P$ , the corresponding homogeneous bundle
$\mathcal{E}(G/P)=G\cross_{P}E$ and its first jet prolongation $J^{1}(\mathcal{E}(G/P))arrow G/P$ . The action
of $P$ on its standard fiber

$J^{1}(E):=J^{1}(\mathcal{E}(G/P))_{0}=E\oplus(g_{-}^{*}\otimes E)$

is defined by means of the action of fundamental vector fields on the equivariant
functions $s\in C^{\infty}(G, E)^{P}$ . The formula for the action of $Z\in \mathfrak{p}_{+}$ on elements of
$J^{1}(E)$ viewed as pairs $(v, \varphi)$ , where $v\in E$ and $\varphi$ is a linear map from $9-toE$, is
given by

$Z\cdot(v, \varphi)=(Z\cdot v, X\}arrow Z\cdot(\varphi(X))-\varphi(ad_{-}(Z)(X))+ad_{\mathfrak{p}}(Z)(X)\cdot v)$ ,

i.e. we get the tensorial action plus one additional term mapping the value-part to
the derivative-part.

Now, let us also notice that the defining Cartan connection $\omega$ of a parabolic
geometry $(\mathcal{G},\omega)$ determines a well defined differential operator on functions on $\mathcal{G}$ .
Recall that $\omega$ is a absolute parallelism and so it defines the constant vector fields
$\omega^{-1}(X)$ on $\mathcal{G}$ for all $X\in g,$ $\omega(\omega^{-1}(X)(u))=X$ , for all $u\in \mathcal{G}$ . In particular, $\omega^{-1}(Z)$

is the fundamental vector field if $Z\in \mathfrak{p}$ . The constant fields $\omega^{-1}(X)$ with $X\in g$-are
called horizontal. Next, let us consider any natural vector bundle $EM=\mathcal{G}\cross_{P}$ E. Its
sections are $P$-equivariant functions $s$ : $\mathcal{G}arrow E$ and the Lie derivative of functions
with respect to the constant horizontal vector fields defines the invariant derivative

$\nabla^{t\theta}$ : $C^{\infty}(\mathcal{G}, E)arrow C^{\infty}(\mathcal{G}, g_{-}^{*}\otimes E)$

$\nabla^{\omega}s(u)(X)=\mathcal{L}_{tv^{-1}(X)^{S}}(u)$ .

Clearly, this construction provides the natural identification $J^{1}\mathcal{E}(M)\simeq \mathcal{G}XpJ^{1}E$

for all natural bundles $\mathcal{E}=\mathcal{G}\cross_{P}$ E.
By iteration,. we obtain the semi-holonomic jet modules

$\overline{J}^{k}E=E\oplus(g_{-}^{*}\otimes E)\oplus\cdots\oplus(\otimes^{k}g_{-}^{*}\otimes E)$

with the appropriate action of $P$ as the equalizers of the natural projections
$J^{1}(\overline{J}^{k-1}E)arrow\overline{J}^{k-1}E\subset J^{1}(\overline{J}^{k-2}E)$ .

Now, the semi-holonomic jet prolongations of natural bundles with standard fiber
$E$ turn out to be natural bundles corresponding to $P$-modules $\overline{J}^{k}$ E.

This has a striking consequence: $P$ -module homomorphisms $\Psi$ : $\overline{J}^{k}Earrow F$ give
rise to invariant operators $D:\Gamma(\mathcal{E})arrow\Gamma(\mathcal{F})$ .

3.2. Setting of the problem. Still two essential questions are obviously left.
First, how to recognize the non-zero operators? Second, are all invariant operators
of this type? Unfortunately, the answer to the second question is $no$ , while the first
one provides an unpleasant challenge. We call the operators which come this way
strongly invariant and the conformally invariant square of the Laplacian on func-
tions on four-dimensional conformal Riemannian manifolds (the so called Paneitz
operator) is an example of an invariant operator which is not strongly invariant, cf.
[20].

On the other hand, each invariant operator on the locally flat geometries has an
invariant symbol. This is a tensor and thus it exists as an invariant on all curved
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geometries as well. Thus we have a simple problem to deal with: Given invariant
operator $D_{G/P}$ between homogeneous bundles, is there an invariant operator on
all parabolic geometries which restricts to $D_{G/P}$ ? We shall discuss this problem in
the rest of the paper and we call such operators curved versions of the invariant
operators on $G/P$ . The first observation to make is that if an invariant operator
on $G/P$ is given by a homomorphism of the semi-holonomic jet-modules, then its
symbol (i.e. the symmetrized part of the restriction to the highest order component)
does not vanish and so the resulting strongly invariant operator definitely does not
vanish too. Moreover, this operator clearly is the curved version of its restriction
to $G/P$ .

3.3. Remarks. The invariant derivative is a helpful substitute for the Levi-Civita
connections in Riemannian geometry, but there is a problem: it does not produce
$P$-equivariant functions even if restricted to equivariant $s\in C^{\infty}(\mathcal{G}, E)^{P}$ . One good
way how to avoid this drawback is to extend the derivative to all constant fields, i.e.
to consider $\nabla$ : $C^{\infty}(\mathcal{G}, E)arrow C^{\infty}(\mathcal{G}, g^{*}\otimes E)$ which preserves the equivariance. This
is a helpful approach in the the so called twistor and tractor calculus, see e.g. $[7, 10]$ .
An easy computation reveals also the (generalized) Ricci and Bianchi identities and
a quite simple calculus is available, cf. [12, 9, 10]. Moreover, this calculus involves
a class of distinguished connections underlying each parabolic geometry, always
parametrized by one-forms. In the conformal case, these are the Weyl connections
of the conformal Riemannian manifolds. The general theory extends surprisingly
many features of the conformal geometry and it has been worked out recently in
[9].

It is remarkable that the general calculus shows that each invariant operator is
given by a uniform formula in terms of the (generalized) Weyl connections. Even in
the locally flat cases, these formulae involve the curvatures of the Weyl connections.
Their explicit and closed forms for the curved versions of all BGG-resolutions for
$|1|$ -graded algebras llave been computed in [11], Part III.

Another essential part of the general theory is the construction of the normalized
Cartan connection out of some more elementary underlying structures. We do not
touch this problem here and refer the reader to [27, 29, 24, 8]. In fact, our construc-
tions of the curved BGG-sequences work for all Cartan connections, without any
normalization.

3.4. Twisted invariant operators. A useful observation reveals that for each
$P$-module $E$ and each $G$-module V, the mapping

$s\otimes v\}arrow(g-;s(g)\otimes g-1. v)$

defines the identification $\Gamma(\mathcal{E})\otimes V\simeq\Gamma(\mathcal{E}\otimes V)$ . This implies that for each invariant
operator $D:\Gamma(\mathcal{E})arrow\Gamma(\mathcal{F})$ on the flat model, there is the twisted invariant operator

$Dv:\Gamma(\mathcal{E}\otimes V)\simeq\Gamma(\mathcal{E})\otimes V$

$D\otimes id\backslash _{j}$

$\Gamma(F)\otimes V\simeq\Gamma(\mathcal{F}\otimes V)$ .

Now, reading off the information on level of the semi-holonomic jet modules, we
conclude: For each strongly invariant operator $D$ and each $G$ -module V, there is
the twisted strongly invariant operator $D_{V}$ .

The easiest, but most important, example is the exterior differential $d:\Omega^{j}(M)arrow$

$\Omega^{j+1}(M)$ which is clearly strongly invariant. For each $G$-module V, the twisted
operator $d_{V}$ is given by the homomorphism $J^{1}(\Lambda^{j}\mathfrak{p}\otimes V)arrow\Lambda^{j+1}\mathfrak{p}\otimes V$

$(v_{0}, Z\otimes v_{1})-\rangle\partial v_{0}+(j+1)(Z\wedge v_{1})$

where $Z\in \mathfrak{p}_{+}$ and $Z\wedge v_{1}$ means the obvious alternation and $\partial$ is the Lie algebra
cohomology differential.
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There are two crucial remarks in order: First, $\Omega^{j}(M;\mathcal{V}(M))$ splits into irreducible
components once a reduction of the structure group $P$ to its reductive part is chosen.
The above formula shows, that only the differential $\partial$ preserves the homogeneity,
while the rest increases the homogeneity. Second, the exterior covariant clerivative
$d^{\omega}$ with respect to the Cartan connection $\omega$ (which acts on $\mathcal{V}$-valued forms on $\mathcal{G}$ ),
relates to $d_{V}$ as $d_{V}\varphi=d^{\omega}\varphi-i_{\kappa}\varphi$ where $\kappa$ is the curvature function of $(\mathcal{G},\omega)$ .

3.5. Main construction. Since our $|k|$-graded $\mathfrak{g}$ is semisimple, there is the ad-
joint codifferential $\partial^{*}$ to the Lie algebra cohomology differential $\partial$ , see e.g. [22].
Consequently, there is the Hodge theory on the cochains which allows to deal very
effectively with the curvatures. Moreover $\partial^{*}$ is a $P$-module homomorphism and so
there are the well defined projections

$\pi$ : $\Omega^{j}(M;\mathcal{V}M)\supset ker\partial^{*}arrow \mathcal{H}_{V}^{j}M$ .
Next, consider an irreducible $G_{0}$ -component $\mathbb{R}$ of the $P$-module $\dot{\mathbb{R}}$ . Of course,
$\mathbb{R}$ is in the kernel of the algebraic Laplacian, but this is not $P$-invariant. Thus
we consider the $P$-submodule $E$ generated by $F_{0}$ and we try to define a suitable
homomorphism $\overline{J}^{\ell}\mathbb{R}arrow E$ , i.e. a differential operator, splitting $\pi$ . There is the
surprising technical result:

Proposition. There is a unique differential operator
$L:\Gamma(\mathcal{H}_{V}^{j})arrow ker\partial^{*}\subset\Omega^{j}(M;\mathcal{V}M)$

such that $\pi\circ L(s)=s$ and $d_{V}\circ L(s)\in ker\partial^{*}\subset\Omega^{j+1}(M;\mathcal{V}M)$ for all sections $s$ of
$?t_{V}^{j}$ .

The proof is consists of an iterative procedure and represents the technical core
of [12]. At the same time, it provides an explicit construction of the operator $L$ . On
the level of the operators, we obtain the diagram

where the dotted horizontal arrows are the newly constructed operators $D^{V}$ .
In other words, the twisted exterior derivatives produce plenty of natural dif-

ferential operators in a purely algebraic way. A few further arguments lead in [12]
to

3.6. Theorem. Let $(\mathcal{G}, \omega)$ be a real parabolic $geo7netr?/$ of $tl\iota e$ type $(G, P)$ on a

manifold $M,$ $V$ be a $G$ -module. If the twisted de Rham sequence

$0arrow\Omega^{0}(M;VM)arrow\Omega^{1}(M;VM)varrow\ldotsarrow\Omega^{\dim(G/P)}(M;VM)arrow 0dd_{V}dv$ .
is a complex, then also the $Bernstein-Gelfand$-Gelfand sequence

$0arrow\Gamma(\mathcal{H}_{V}^{0}M)arrow\Gamma(\mathcal{H}_{V}^{1}M)arrow\ldotsarrow\Gamma(\mathcal{H}_{V}^{\dim(G/P)}M)arrow 0D^{V}D^{\psi}D^{V}$

defined above is a complex, and they both compute the same cohomology.
The same statement is true for complex parabolic geometries $(\mathcal{G},\omega)$ under the

additional requirement that $\mathcal{G}arrow \mathcal{G}/P_{+}$ admits a global holomorphic $G_{0}-equivariant$

section.

All these operators belong to the class of standard operators. An important fea-
ture of our theory is the exclusive usage of the elementary (finite dimensional)
representation theory. With a bit of exaggeration wc could say that the representa-
tion theory enters rather as a language and the way of thinking. On the other hand,
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there are also purely representation theoretical aspects of interest as indicated in
[15].

3.7. Remarks. The complex version of the Theorem may be understood as: If
the twisted de Rham sequence induces a complex on $tl\iota e$ sheaf level, then the same
is true for the $Bernstein-Gelfand$-Gelfand sequence. In particular, if the twisted
de Rham sequence induces a resolution of V, then so does the BGG-sequence. Now,
the original $re_{P}1^{\cdot}csetltation$ theorcticsl version of thc (gcneralizecl) BGG-resolution
follows immediately by duality.

The Theorem also claims that all the BGG-resolutions on homogeneous spaces
admit canonical curved analogs. In particular, the examples (2), (3), (4), (5), and
(6) make sense for all curved gemetries of the corresponding types. Moreover, the
powers of the nablas refer to the iteration of the invariant derivative and we may
expand this derivative in terms of the underlying Weyl connections. Partial results
in this direction were achieved earlier in $[1, 18]$ .

Let us consider any torsion free real parabolic geometry of type $G/P$ on $M$ .
Then the de Rham cohomology of $M$ with coefficients in $K=\mathbb{R}$ or $\mathbb{C}$ is computed
by the (much smaller) complex

$0arrow\Gamma(\mathcal{H}_{K}^{0}M)arrow\Gamma(\mathcal{H}_{K}^{1}M)arrow.arrow\Gamma(\mathcal{H}_{K}^{\dim(G/P)}M)arrow 0D^{K}D^{Y}\ldots D^{D_{-}’}$ .

Similarly, if $(\mathcal{G},\omega)$ is a flat real parabolic geometry, then for any representation
V of $G$ the BGG-sequence is a complex, which computes the twisted de Rham
cohomology of $M$ with coefficients in tbe bundle $\mathcal{V}M$ , which is defined as the
cohomology of the complex given by the covariant exterior derivative $d^{\omega}$ induced
by the Cartan connection $\omega$ .

3.8. Further development. The theory is developing very quickly and we do not
have place here to mention all main recent achievements. But we cannot miss the
paper [10] which extends the definition of our operator $L$ to the whole spaces of
forms (and provides a nice alternative definition of $L$ too). This enables the authors
to work out differential pairings which restrict to cup product on the cohomologies
in the homogeneous case. Some applications are included as well, in particular first
steps towards $t11C$ deformation tlleory $aI\iota d$ an $inter\iota$)$retatioIl$ in terms of lincarized
field theories.
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