GEOMETRY OF HIGHER ORDER DIFFERENTIAL EQUATIONS OF FINITE TYPE ASSOCIATED WITH SYMMETRIC SPACES

KEIZO YAMAGUCHI AND TOMOAKI YATSUI

§1. Differential Equations of Finite Type

We will consider Higher order ODE

$$y^{(k)} = F(x, y, y', \dots, y^{(k-1)}).$$

Or more generally

$$\frac{\partial^k y}{\partial x_{i_1} \cdots \partial x_{i_k}} = F_{i_1 \cdots i_k}(x_1, \dots, x_n, y, p_1, \dots, p_n, \dots, p_{i_1 \cdots i_{k-1}}) \quad (1 \le i_1 \le \dots \le i_k \le n),$$

where $p_{i_1\cdots i_\ell} = \frac{\partial^\ell y}{\partial x_{i_1}\cdots \partial x_{i_\ell}}$. These equations define a submaifold R in k-jets space J^k .

$$J^k \supset R \to J^{k-1}$$
; Diffeomorphism (*)

We have the Contact system C^k on J^k

$$\begin{cases}
\varpi = d y - \sum p_i d x_i, \\
\varpi_i = d p_i - \sum p_{ij} d x_j, \\
\cdots \\
\varpi_{i_1 \cdots i_{k-1}} = d p_{i_1 \cdots i_{k-1}} - \sum p_{i_1 \cdots i_{k-1} j} d x_j.
\end{cases}$$

 C^k gives a foliation on R when R is integrable.

Through the diffeomorphism (*), R defines a differential system E on J^{k-1} such that

$$C^{k-1} = E \oplus F$$
, $F = \text{Ker}(\pi_{k-2}^{k-1})_*$

where $\pi_{k-2}^{k-1}:J^{k-1}\to J^{k-2}$ is the bundle projection.

N.Tanaka introduced the notion of pseudo-product manifolds as follows.

Pseudo-Product Manifolds (R; E, F)

- (1) $E \cap F = 0$, and both E and F are completely integrable.
- (2) $D = E \oplus F$ is non-degenerate.
- (3) The full derived systems of D coincides with T(R)

N.Tanaka, On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math.J. 14 (1985), 277-351

§2. Geometry of Linear Differential Systems (Tanaka Theory)

We summarize here the basic notion for differential systems.

For a manifold M of dimension d, a subbundle $D \subset T(M)$ of rank r (s + r = d) is called a differential system of rank r (or codimension s).

$$D = \{ \omega_1 = \dots = \omega_s = 0 \}.$$

(M, D) is completely integrable

$$\iff D = \{dx_1 = \dots = dx_s = 0\}$$

$$\iff d\omega_i \equiv 0 \pmod{\omega_1, \cdot \cdot, \omega_s} \ (1 \leq i \leq s)$$

$$\iff [\mathcal{D}, \mathcal{D}] \subset \mathcal{D} \text{ where } \mathcal{D} = \Gamma(D)$$

$$\iff [\mathcal{D}, \mathcal{D}] \subset \mathcal{D} \text{ where } \mathcal{D} = \Gamma(\mathcal{D})$$

For non-completely integrable system, we have

Derived System $\partial D: \partial \mathcal{D} = \mathcal{D} + [\mathcal{D}, \mathcal{D}].$

Cauchy Characteristic System Ch(D):

$$Ch(D)(x) = \{X \in D(x) \mid X \rfloor d\omega_i \equiv 0 \pmod{\omega_1, \dots, \omega_s} \text{ for } i = 1, \dots, s \},$$

k-th Derived System $\partial^k D$:

$$\partial^k D = \partial(\partial^{k-1} D)$$

k-th Weak Derived System $\partial^{(k)}D$:

$$\partial^{(k)} \mathcal{D} = \partial^{(k-1)} \mathcal{D} + [\mathcal{D}, \partial^{(k-1)} \mathcal{D}],$$

Symbol Algebras

(M,D) is called **regular** iff

(S1) $\exists \mu > 0$ such that, for all $k \geq \mu$,

$$D^{-k} = \dots = D^{-\mu} \supseteq \dots \supseteq D^{-2} \supseteq D^{-1} = D,$$

 $[\mathcal{D}^p, \mathcal{D}^q] \subset \mathcal{D}^{p+q}$ for all p, q < 0.

From now on, we will consider regular differential systems (M, D) such that T(M) = $D^{-\mu}$.

Symbol algebra $\mathfrak{m}(x)$ of (M, D) at x is defined as follows; $\forall x \in M$,

$$\mathfrak{m}(x) = \bigoplus_{p=-1}^{-\mu} \mathfrak{g}_p(x).$$

$$\mathfrak{g}_{-1}(x) = D^{-1}(x), \ \mathfrak{g}_p(x) = D^p(x)/D^{p+1}(x)$$

$$[X,Y] = \varpi_{p+q}([\tilde{X},\tilde{Y}]_x),$$

$$\begin{cases} \tilde{X} \in \Gamma(D^p), X = \varpi_p(\tilde{X}_x) \in \mathfrak{g}_p(x), \\ \tilde{Y} \in \Gamma(D^q), Y = \varpi_q(\tilde{Y}_x) \in \mathfrak{g}_q(x). \end{cases}$$

$$g_p(x) = [g_{p+1}(x), g_{-1}(x)]$$
 for $p < -1$.

Conversely given a

Fundamental Graded Lie Algebra:

$$\mathfrak{m}=\bigoplus_{p=-1}^{-\mu}\mathfrak{g}_p$$

i.e., Nilpotent GLA satisfying the generating condition:

$$\mathfrak{g}_p = [\mathfrak{g}_{p+1}, \mathfrak{g}_{-1}] \quad \text{for } p < -1$$

We have the notions of

Standard Differential System $(M(\mathfrak{m}), D_{\mathfrak{m}})$ of type \mathfrak{m}

Prolongation $\mathfrak{g}(\mathfrak{m})$ of $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$

N.Tanaka, On differential systems, graded Lie algebras and pseudo-groups, J.Math. Kyoto Univ. 10 (1970), 1-82

§3. Symbol Algebra of (J^k, C^k)

$$C^k = \{ \varpi = \varpi_i = \dots = \varpi_{i_1 \dots i_{k-1}} = 0 \}$$

$$\mathfrak{C}^k(m,n) = \mathfrak{C}_{-(k+1)} \oplus \mathfrak{C}_{-k} \oplus \cdots \oplus \mathfrak{C}_{-1}$$

where $\mathfrak{C}_{-(k+1)} = W$, $\mathfrak{C}_p = W \otimes S^{k+p+1}(V^*)$, $\mathfrak{C}_{-1} = V \oplus W \otimes S^k(V^*)$.

Coframe:

$$\{\varpi,\ldots,\varpi_{i_1\cdots i_\ell},\ldots,d\,x_i,d\,p_{i_1\cdots i_k}\},\$$

Dual Frame:

$$\left\{\frac{\partial}{\partial y}, \dots, \frac{\partial}{\partial p_{i_1 \dots i_{\ell}}}, \dots, \frac{d}{d x_i}, \frac{\partial}{\partial p_{i_1 \dots i_k}}\right\}$$

where

$$\frac{d}{d\,x_i} = \frac{\partial}{\partial\,x_i} + \sum p_{ij_1\cdots j_\ell} \frac{\partial}{\partial\,p_{j_1\cdots j_\ell}}$$

K. Yamaguchi, Contact Geometry of Higher Order, Japan. J. Math. 8 (1982), 109-176 Pseudo-projective strucures of order k of bidegree (m, n)

Starting from

$$\mathfrak{C}_{-1} = \mathfrak{e} \oplus \mathfrak{f},$$

where $e = V, f = W \otimes S^{k-1}(V^*)$.

This splitting represents the pseudo-product structure of k-th order equation R in the symbol level.

Put

$$\check{\mathfrak{g}}_0 = \{ X \in \mathrm{Der}_0(\mathfrak{C}^{k-1}(m,n)) : [X,\mathfrak{e}] \subset \mathfrak{e}, [X,\mathfrak{f}] \subset \mathfrak{f} \}$$

Peudo-projective GLA

$$\mathfrak{g}^k(m,n) = \text{Prolongation of } (\mathfrak{C}^{k-1}(m.n), \check{\mathfrak{g}}_0)$$

Cartan Connections

T.Morimoto, Geometric structures on filtered manifolds, Hokkaido Math. J. **22**(1993), 263-347

§4. Pseudo-product GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ of type (\mathfrak{l}, S)

Now we will give the notion of the pseudo-product GLA of type (l, S).

 $\mathfrak{l}=\mathfrak{l}_{-1}\oplus\mathfrak{l}_0\oplus\mathfrak{l}_1$: reductive GLA

(1)
$$\hat{\mathfrak{l}} = \mathfrak{l}_{-1} \oplus [\mathfrak{l}_{-1}, \mathfrak{l}_1] \oplus \mathfrak{l}_1$$
 is simple.

(2)
$$\mathfrak{z}(\mathfrak{l}) \subset \mathfrak{l}_0$$
.

S: faithful irreducible $\mathfrak l$ -module.

$$S_{-1} = \{ s \in S : \mathfrak{l}_1 \cdot s = 0 \}$$

$$S_p = \operatorname{ad}(\mathfrak{l}_{-1})^{-p-1} S_{-1}$$
 for $p < 0$

Form the semi-direct product

$$\begin{split} \mathfrak{g} &= S \oplus \mathfrak{l}, \qquad [S,S] = 0 \\ \mathfrak{g}_p &= \mathfrak{l}_p \ (p \geqq 0), \quad \mathfrak{g}_{-1} = \mathfrak{l}_{-1} \oplus S_{-1}, \\ \mathfrak{g}_q &= S_q \ (q \leqq -2). \end{split}$$

Then the following hold:

(1)
$$S = \bigoplus_{p=-1}^{-\mu} S_p;$$

(2)
$$\mathfrak{m} = \bigoplus_{p<0} \mathfrak{g}_p$$
 is generated by \mathfrak{g}_{-1}

(3)
$$S_{-\mu} = \{ s \in S : [\mathfrak{l}_{-1}, s] = 0 \}$$

(4)
$$S_p \hookrightarrow W \otimes S^{\mu+p}(\mathfrak{l}_{-1}^*), \quad W = S_{-\mu}$$

(5)
$$S_{-1}$$
, $S_{-\mu}$: irreducible \mathfrak{l}_0 -modules

Thus, \mathfrak{m} is a symbol algebra of μ -th order differential equations of finite type.

We will ask the following questions.

Our Problem

(1) When is \mathfrak{g} the prolongation of \mathfrak{m} or $(\mathfrak{m}, \mathfrak{g}_0)$?

(2) Find the fundamental invariants for equations of type \mathfrak{m} .

§5. Y. Se-ashi's Theory for Linear Differential Equations of Finite Type

For the linear differential equations of finite type, we have the following theory due to Y. Se-ashi.

Y.Se-ashi, On differential invariants of integrable finite type linear differential equations, Hokkaido Math.J., 17 (1988), 151-195

In particular, he established the **Rigidity Theorem** of Equations of type (\mathfrak{l}, S) for M = L/L' other than projective spaces and quadrics

Utilizing this Rigidity Theorem, we have an **Application to Hypergeometric Equations**

T. Sasaki, K. Yamaguchi and M. Yoshida, On the Rigidity of Differential Systems modelled on Hermitian Symmetric Spaces and Disproofs of a Conjecture concerning Modular Interpretations of Configuration Spaces, Advanced Studies in Pure Math. 25 (1997), 318-354

§6. Generalized Spencer cohomology

$$\mathfrak{a} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{a}_p$$
: graded Lie algebra $V = \bigoplus_{p \in \mathbb{Z}} V_p$: graded \mathfrak{a} -module

Cohomology space $H^q(\mathfrak{a}, V)$ associated with $(C^q(\mathfrak{a}, V), \partial) = (\text{Hom}(\bigwedge^q \mathfrak{a}, V), \partial)$ here $\partial^q : C^q(\mathfrak{a}, V) \to C^{q+1}(\mathfrak{a}, V)$ is given by

$$\partial^{q} \omega(x_{1}, \dots, x_{q+1}) = \sum_{i=1}^{q+1} (-1)^{i+1} x_{i} \cdot \omega(x_{1}, \dots, \hat{x}_{i}, \dots, x_{q+1}) + \sum_{i < j} (-1)^{i+j} \omega([x_{i}, x_{j}], x_{1}, \dots, \hat{x}_{i}, \dots, \hat{x}_{j}, \dots, x_{q+1}),$$

where $x_i \in \mathfrak{a}$ and $\omega \in C^q(\mathfrak{a}, V)$.

Moreover

$$C^{q}(\mathfrak{a}, V) = \bigoplus_{r} C^{q}(\mathfrak{a}, V)_{r},$$

$$C^{q}(\mathfrak{a}, V)_{r} = \{ \omega \in C^{q}(\mathfrak{a}, V) : \omega(\mathfrak{a}_{i_{1}} \wedge \cdots \wedge \mathfrak{a}_{i_{q}}) \subset V_{i_{1} + \cdots + i_{q} + r} \}.$$

Cohomology group $H^*(\mathfrak{m},\mathfrak{g})$ associated with the adjoint representation of \mathfrak{m} on \mathfrak{g}

Put
$$\mathfrak{b}_{-1}=S,\; \mathfrak{b}_0=\mathfrak{l},\; \mathfrak{b}_p=0\; (p\neq -1,0)$$

$$\mathfrak{g}=\bigoplus_p \mathfrak{b}_p=\mathfrak{b}_{-1}\oplus \mathfrak{b}_0, \quad \mathfrak{b}_-=\mathfrak{b}_{-1}$$

Cohomology group $H^*(\mathfrak{b}_-,\mathfrak{g})$ associated with the adjoint rep. of \mathfrak{b}_- on \mathfrak{g} $H^i(\mathfrak{b}_-,\mathfrak{g})$ is a \mathfrak{l} -module

Theorem 6.1.

 $H^q(\mathfrak{m},\mathfrak{g})\cong \bigoplus_{i=0}^q H^{q-i}(\mathfrak{l}_-,H^i(\mathfrak{b}_-,\mathfrak{g}))$ as a \mathfrak{l}_0 -module.

Explicitly for q = 1

$$H^1(\mathfrak{m},\mathfrak{g})\cong H^1(\mathfrak{l}_-,S)\oplus H^0(\mathfrak{l}_-,S\otimes S^*/\mathfrak{l})\oplus H^0(\mathfrak{l}_-,\check{\mathfrak{b}}_1)$$

where $\check{\mathfrak{b}} = \bigoplus_{p \in \mathbb{Z}} \check{\mathfrak{b}}_p$ is the prolongation of $\mathfrak{g} = \mathfrak{b}_{-1} \oplus \mathfrak{b}_0 = S \oplus \mathfrak{l}$

Gradations of cohomology groups

Put $\mathfrak{g}_{p,q} = \mathfrak{g}_p \cap \mathfrak{b}_q$

$$C^{q}(\mathfrak{m},\mathfrak{g})_{r,s} = \{ \omega \in \operatorname{Hom}(\bigwedge^{q} \mathfrak{m},\mathfrak{g}) : \\ \omega(\mathfrak{g}_{i_{1},j_{1}} \wedge \cdots \wedge \mathfrak{g}_{i_{q},j_{q}}) \subset \mathfrak{g}_{i_{1}+\cdots+i_{q}+r,j_{1}+\cdots+j_{q}+s} \text{for all } i_{1},\ldots,i_{q},j_{1},\ldots,j_{q} \}$$

$$H^{*}(\mathfrak{m},\mathfrak{g}) = \bigoplus_{q,r,s} H^{q}(\mathfrak{m},\mathfrak{g})_{r,s}$$

 $C^q(\mathfrak{b}_-,\mathfrak{g})_s = \{\omega \in \mathrm{Hom}(\bigwedge^q \mathfrak{b}_-,\mathfrak{g}) :$

$$\omega(\mathfrak{b}_{j_1} \wedge \cdots \wedge \mathfrak{b}_{j_q}) \subset \mathfrak{b}_{j_1 + \cdots + j_q + s} \text{ for all } j_1, \dots, j_q < 0 \}$$

$$\mathfrak{b}_{-}, \mathfrak{g}) = \bigoplus H^q(\mathfrak{b}_{-}, \mathfrak{g})_s$$

 $H^*(\mathfrak{b}_-,\mathfrak{g}) = \bigoplus_{q,s} H^q(\mathfrak{b}_-,\mathfrak{g})_s$

Thus

$$H^q(\mathfrak{m},\mathfrak{g})_{r,s}\cong \bigoplus_{i=0}^q H^{q-i}(\mathfrak{l}_-,H^i(\mathfrak{b}_-,\mathfrak{g})_s)_r$$

Utilizing the following theorems

Theorem A (Kostant) Let $\mathfrak{s} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{s}_p$ be a simple GLA of type (X_l, Δ_1) and $M(\omega)$ be an irreducible \mathfrak{s} -module with lowest weight ω . Then

$$\mathrm{ch}_{\mathfrak{s}_0}(H^j(\mathfrak{s}_-,M(\omega))) = \sum_{w \in W^j_+} \mathrm{ch}_{\mathfrak{s}_0}(m(w(\omega-\rho)+\rho)),$$

where ρ is the half sum of positive roots.

Theorem B (Kobayashi-Nagano)

 $S:\ faithful\ irreducible\ {\mathfrak l}{\operatorname{-module}}.$

If
$$\dot{\mathfrak{b}}_1 \neq \{0\}$$
,

(1) $\dim \check{\mathfrak{b}} < \infty$ $\check{\mathfrak{b}} = \mathfrak{b}_{-1} \oplus \mathfrak{b}_0 \oplus \check{\mathfrak{b}}_1 : simple$

$$\mathfrak{b}_{-1} = S, \quad \mathfrak{b}_0 = \mathfrak{l}, \quad \check{\mathfrak{b}}_1 = S^*$$

(2)
$$\dim \check{\mathfrak{b}} = \infty$$

 $\mathfrak{l} = \mathfrak{gl}(S) \text{ or } \mathfrak{csp}(S)$

We have the following answer for our problem (1) cited in §4.

Theorem 6.2. Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a pseudo-product GLA of type (\mathfrak{l}, S) . Except for (1), (2), (3),

$$\mathfrak{g}=igoplus_{p\in\mathbb{Z}}\mathfrak{g}_p\cong\mathfrak{g}(\mathfrak{m}),$$

where $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$

(1) $0 < \dim \check{\mathfrak{b}} < \infty$ ($\check{\mathfrak{b}}$: simple)

$\mathcal{D}(\mathfrak{l})$	λ	$\check{\mathfrak{b}} = (Y_{\ell+1}, \Sigma_1)$
$(A_i \times A_{\ell-i}, \{\alpha_j\}) \ (j \le i)$	$\varpi_1 + \varpi_i$	$(A_{\ell+1}, \{\alpha_j, \alpha_{i+1}\})$
$(B_{\ell}, \{\alpha_1\}) \ (\ell \geq 3)$	ϖ_1	$(B_{\ell+1}, \{\alpha_1, \alpha_2\})$
$(A_{\ell}, \{\alpha_i\}) \ (\ell \ge 2)$	$2\omega_{\ell}$	$(C_{\ell+1}, \{\alpha_i, \alpha_{\ell+1}\})$
$(D_{\ell}, \{\alpha_{\ell}\}) \ (\ell \ge 4)$	ϖ_1	$(D_{\ell+1}, \{\alpha_1, \alpha_{\ell+1}\})$
$(D_{\ell}, \{\alpha_1\}) \ (\ell \ge 4)$	ϖ_1	$(D_{\ell+1}, \{\alpha_1, \alpha_2\})$
$(A_{\ell}, \{\alpha_i\}) \ (\ell \ge 4) \ (1 < i < \ell)$	$\varpi_{\ell-1}$	$(D_{\ell+1}, \{\alpha_i, \alpha_{\ell+1}\})$
$(D_5,\{lpha_5\})$	$arpi_5$	$(E_6,\{\alpha_1,\alpha_3\})$
$(D_5,\{lpha_4\})$	$arpi_5$	$(E_6,\{\alpha_1,\alpha_2\})$
$(D_5,\{lpha_1\})$	ϖ_5	$(E_6,\{\alpha_1,\alpha_6\})$
$(E_6,\{\alpha_1\})$	ϖ_6	$(E_7,\{\alpha_1,\alpha_7\})$
$(E_6,\{\alpha_6\})$	ϖ_6	$(E_7, \{\alpha_6, \alpha_7\})$

(2) $\dim \check{\mathfrak{b}} = \infty$

$\mathcal{D}(\mathfrak{l})$	λ	$\mathfrak{g}(\mathfrak{m},\mathfrak{g}_0)$
$(A_{\ell}, \{\alpha_i\})$	ϖ_1	$(A_{\ell+1}, \{\alpha_i, \alpha_{\ell+1}\})$
$(C_{\ell}, \{\alpha_{\ell}\})$	$\overline{\omega}_1$	g

In $(C_{\ell}, \{\alpha_{\ell}\})$ -case, $\mu = 2$

$$S_{-2} = V^*, \quad S_{-1} = V, \quad \mathfrak{l}_{-1} = S^2(V^*),$$

 $\mathfrak{l}_0 = V \otimes V^* \oplus \mathbb{C}, \quad \mathfrak{l}_1 = S^2(V)$

(3) g is a pseudo-projective GLA, i.e., $\mathcal{D}(\mathfrak{l}) = (A_{\ell} \times A_n, \{\alpha_1\})$ and $\lambda = k\varpi_1 + \pi_1$ $\mu = k+1$ and dim W = n+1

$$S_{-\mu} = W, \quad S_p = W \otimes S^{\mu+p}(V^*) \ (-\mu
$$\mathfrak{l}_{-1} = V, \quad \mathfrak{l}_0 = \mathfrak{gl}(V) \oplus \mathfrak{sl}(W), \quad \mathfrak{l}_1 = V^*$$$$

§7. Gradation of Simple Lie Algebras.

We summarize here the relavent terminology to express the contents of Theorem 6.2.

s: Simple Lie Algebra over C

 \mathfrak{h} : Cartan Subalgebra ; $\Phi \subset \mathfrak{h}^*$: Root System

 $\Delta = \{\alpha_1, \dots, \alpha_\ell\}$: Simple Root System

$$\mathfrak{s} = \bigoplus_{lpha \in \Phi^+} \mathfrak{g}_lpha \oplus \mathfrak{h} \oplus \bigoplus_{lpha \in \Phi^+} \mathfrak{g}_{-lpha},$$

 $\Delta_1 \subset \Delta$: Fix, $\Phi^+ = \bigcup_{p \geq 0} \Phi_p^+$

$$\Phi_p^+ = \{ \alpha = \sum_{i=1}^{\ell} n_i \alpha_i \mid \sum_{\alpha_i \in \Delta_1} n_i = p \},$$

$$\begin{cases} \mathfrak{s}_{p} = \bigoplus_{\alpha \in \Phi_{p}^{+}} \mathfrak{g}_{\alpha}, & (p > 0) \\ \mathfrak{s}_{0} = \bigoplus_{\alpha \in \Phi_{0}^{+}} \mathfrak{g}_{\alpha} \oplus \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi_{0}^{+}} \mathfrak{g}_{-\alpha}, \\ \mathfrak{s}_{-p} = \bigoplus_{\alpha \in \Phi_{p}^{+}} \mathfrak{g}_{-\alpha}, \end{cases}$$

Then

$$[\mathfrak{s}_p,\mathfrak{s}_q]\subset\mathfrak{s}_{p+q} \qquad \text{for} \quad p,q\in\mathbb{Z}.$$

Generating Condition: $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{s}_p$

$$(\star)$$
 $\mathfrak{s}_p = [\mathfrak{s}_{p+1}, \mathfrak{s}_{-1}]$ for $p < -1$

$$\Delta_1 \subset \Delta \implies (X_\ell, \Delta_1) : \quad \mathfrak{s} = \bigoplus_{p=-\mu}^{\mu} \mathfrak{s}_p$$

where $\mu = \sum_{\alpha_i \in \Delta_1} n_i(\theta)$, $\theta = \sum_{i=1}^{\ell} n_i(\theta) \alpha_i$

Theorem 7.1. $\mathfrak{s} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{s}_p$: Simple Graded Lie Algebra over \mathbb{C} satisfying (\star) . X_{ℓ} : Dynkin Diagram of \mathfrak{s} .

$$\exists_1 \ \Delta_1 \subset \Delta \ s.t. \ \mathfrak{s} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{s}_p \cong (X_{\ell}, \Delta_1)$$

Classification of $\mathfrak{s} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{s}_p$ with (\star) is equivalent to

Classification of Parabolic subalgebras $\mathfrak{s}^{'}=\bigoplus_{p\geqq 0}\mathfrak{s}_{p}$

Extended Dynkin Diagrams with the coefficient of the highest root

§8. Second Cohomology

We summarize here the results on the second cohomology.

$$H^2(\mathfrak{m},\mathfrak{g})_{r,-1}\cong H^2(\mathfrak{l}_-,\mathfrak{b}_{-1})_r,$$

Proposition 8.1.

(1) $H^2(\mathfrak{m}, \mathfrak{g})_{r,-1} = 0$ for all $r \geq 2$.

(2) $H^2(\mathfrak{m}, \mathfrak{g})_{1,-1} \neq 0$ iff the sequence $(X_{\ell}, \Delta_1, \lambda)$ is one of the following $(A_{\ell}, \{\alpha_1\}, j\varpi_{\ell-1} + k\varpi_{\ell})(\ell \geq 2, j, k \geq 0, j+k \geq 1), (A_{\ell}, \{\alpha_2\}, k\varpi_{\ell})$ $(\ell \geq 3, k \geq 1), (C_2, \{\alpha_2\}, k\varpi_1)$ $(k \geq 1)$

$$H^2(\mathfrak{m},\mathfrak{g})_{r,0}\cong H^1(\mathfrak{l}_-,H^1(\mathfrak{b}_,\mathfrak{g})_0)_r$$

Proposition 8.2.

- (1) $H^2(\mathfrak{m},\mathfrak{g})_{r,0} = 0$ for $r \geq 2$ except for the case when $(X_{\ell}, \Delta_1) = (A_{\ell}, \{\alpha_1\})$ or $(A_{\ell}, \{\alpha_{\ell}\})$.
- (2) $H^2(\mathfrak{m},\mathfrak{g})_{1,0} = 0$ if (X_{ℓ},Δ_1) is one of $(A_{\ell},\{\alpha_i\})$ $(\ell \ge 4, 1 < i \le \left[\frac{l+1}{2}\right]), (C_{\ell},\{\alpha_{\ell}\})$ $(\ell \ge 3), (D_{\ell},\{\alpha_{\ell-1}\})$ $(\ell \ge 5), (E_6,\{\alpha_1\}), (E_7,\{\alpha_7\}).$
- $(\ell \geq 3), (D_{\ell}, \{\alpha_{\ell-1}\}) \ (\ell \geq 5), (E_{6}, \{\alpha_{1}\}), (E_{7}, \{\alpha_{7}\}).$ $(3) If (X_{\ell}, \Delta_{1}) = (A_{\ell}, \{\alpha_{1}\}), then$ $H^{2}(\mathfrak{m}, \mathfrak{g})_{r,0} = 0 for r \geq \min\{m_{1}, m_{\ell}\} + 2.$

$$H^2(\mathfrak{m},\mathfrak{g})_{r,1} \cong H^0(\mathfrak{l}_-,H^2(\mathfrak{b}_-,\mathfrak{g})_1)_r \oplus H^1(\mathfrak{l}_-,\check{\mathfrak{b}}_1)_r,$$

$$H^2(\mathfrak{m},\mathfrak{g})_{r,2} \cong H^0(\mathfrak{l}_-,H^2(\mathfrak{b}_-,\mathfrak{g})_2)_r$$

Proposition 8.3.

(1) For s = 1, 2,

$$H^{0}(\mathfrak{l}_{-}, H^{2}(\mathfrak{b}_{-}, \mathfrak{g})_{s})_{r} = 0$$
 for $r \ge s(\mu - 1) + 1$,

(2) If $X_l = B_l$, C_l or E_7 , then

$$H^0(\mathfrak{l}_-, H^2(\mathfrak{b}_-, \mathfrak{g})_s)_r = 0$$
 for $r \ge [s(\mu + 1)/2] + 1$.

Department of Mathematics, Faculty of Science,

Hokkaido University, Sapporo 060-0810, Japan

E-mail:yamaguch@math.sci.hokudai.ac.jp

Department of Mathematics,

Hokkaido University of Education, Asahikawa Campus, Asahikawa 070-8261, Japan E-mail:tomoaki@atson.asa.hokkyodai.ac.jp